
www.keithley.com

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Series 3700 System Switch/Multimeter
Reference Manual
3700S-901-01 Rev. C / July 2008

www.keithley.com

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Series 3700 System Switch/Multimeter
Reference Manual
3700S-901-01 Rev. C / July 2008

3700S-901 (B - Mar 2008)(FtCr).qxd 7/31/08 11:50 AM Page 1

WARRANTY
Keithley Instruments, Inc. warrants this product to be free from defects in material and workmanship for a period of

one (1) year from date of shipment.

Keithley Instruments, Inc. warrants the following items for 90 days from the date of shipment: probes, cables,

software, rechargeable batteries, diskettes, and documentation.

During the warranty period, Keithley Instruments will, at its option, either repair or replace any product that proves to

be defective.

To exercise this warranty, write or call your local Keithley Instruments representative, or contact Keithley

Instruments headquarters in Cleveland, Ohio. You will be given prompt assistance and return instructions. Send the

product, transportation prepaid, to the indicated service facility. Repairs will be made and the product returned,

transportation prepaid. Repaired or replaced products are warranted for the balance of the original warranty period,

or at least 90 days.

LIMITATION OF WARRANTY

This warranty does not apply to defects resulting from product modification without Keithley Instruments‟ express

written consent, or misuse of any product or part. This warranty also does not apply to fuses, software, non-

rechargeable batteries, damage from battery leakage, or problems arising from normal wear or failure to follow

instructions.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY

IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. THE REMEDIES

PROVIDED HEREIN ARE BUYER‟S SOLE AND EXCLUSIVE REMEDIES.

NEITHER KEITHLEY INSTRUMENTS, INC. NOR ANY OF ITS EMPLOYEES SHALL BE LIABLE FOR ANY

DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF

ITS INSTRUMENTS AND SOFTWARE, EVEN IF KEITHLEY INSTRUMENTS, INC. HAS BEEN ADVISED IN

ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES. SUCH EXCLUDED DAMAGES SHALL INCLUDE, BUT

ARE NOT LIMITED TO: COST OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF

INJURY TO ANY PERSON, OR DAMAGE TO PROPERTY.

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Keithley Instruments, Inc.

Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139

440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (1-888-534-8453) • www.keithley.com

System Switch/Multimeter

Reference Manual

©2008, Keithley Instruments, Inc.

Cleveland, Ohio, U.S.A.

All rights reserved.

Any unauthorized reproduction, photocopy, or use the information herein, in whole or in

part, without the prior written approval of Keithley Instruments, Inc. is strictly prohibited.

TSPTM, TSP-LinkTM, and TSP-NetTM are trademarks of Keithley Instruments, Inc. All

Keithley Instruments product names are trademarks or registered trademarks of Keithley

Instruments, Inc. Other brand names are trademarks or registered trademarks of their

respective holders.

Document Number: 3700S-901-01 Rev. C / July 2008

Series 3700

 11/07

 Safety Precautions

The following safety precautions should be observed before using this product and any associated instrumentation. Although

some instruments and accessories would normally be used with non-hazardous voltages, there are situations where hazardous

conditions may be present.

This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions

required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using

the product. Refer to the user documentation for complete product specifications.

If the product is used in a manner not specified, the protection provided by the product warranty may be impaired.

The types of product users are:

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the

equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the

instrument. They must be protected from electric shock and contact with hazardous live circuits.

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line

voltage or replacing consumable materials. Maintenance procedures are described in the user documentation. The procedures

explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, perform safe installations, and repair products. Only properly trained

service personnel may perform installation and service procedures.

Keithley Instruments products are designed for use with electrical signals that are rated Measurement Category I and

Measurement Category II, as described in the International Electrotechnical Commission (IEC) Standard IEC 60664. Most

measurement, control, and data I/O signals are Measurement Category I and must not be directly connected to mains voltage or

to voltage sources with high transient over-voltages. Measurement Category II connections require protection for high transient

over-voltages often associated with local AC mains connections. Assume all measurement, control, and data I/O connections are

for connection to Category I sources unless otherwise marked or described in the user documentation.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test

fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than

30V RMS, 42.4V peak, or 60VDC are present. A good safety practice is to expect that hazardous voltage is present in any

unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators

are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential

human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If

the circuit is capable of operating at or above 1000V, no conductive part of the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance-limited

sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective

devices to limit fault current and voltage to the card.

Before operating an instrument, ensure that the line cord is connected to a properly-grounded power receptacle. Inspect the

connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input

power disconnect device must be provided in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under

test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting

cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth)

ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the

voltage being measured.

The instrument and accessories must be used in accordance with its specifications and operating instructions, or the safety of

the equipment may be impaired.

Do not exceed the maximum signal levels of the instruments and accessories, as defined in the specifications and operating

information, and as shown on the instrument or test fixture panels, or switching card.

When fuses are used in a product, replace with the same type and rating for continued protection against fire hazard.

Chassis connections must only be used as shield connections for measuring circuits, NOT as safety earth ground connections.

If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use

of a lid interlock.

If a screw is present, connect it to safety earth ground using the wire recommended in the user documentation.

The symbol on an instrument indicates that the user should refer to the operating instructions located in the user

documentation.

The symbol on an instrument shows that it can source or measure 1000V or more, including the combined effect of normal

and common mode voltages. Use standard safety precautions to avoid personal contact with these voltages.

The symbol on an instrument shows that the surface may be hot. Avoid personal contact to prevent burns.

The symbol indicates a connection terminal to the equipment frame.

If this symbol is on a product, it indicates that mercury is present in the display lamp. Please note that the lamp must be

properly disposed of according to federal, state, and local laws.

The WARNING heading in the user documentation explains dangers that might result in personal injury or death. Always read

the associated information very carefully before performing the indicated procedure.

The CAUTION heading in the user documentation explains hazards that could damage the instrument. Such damage may

invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits - including the power transformer,

test leads, and input jacks - must be purchased from Keithley Instruments. Standard fuses with applicable national safety

approvals may be used if the rating and type are the same. Other components that are not safety-related may be purchased

from other suppliers as long as they are equivalent to the original component (note that selected parts should be purchased only

through Keithley Instruments to maintain accuracy and functionality of the product). If you are unsure about the applicability of a

replacement component, call a Keithley Instruments office for information.

To clean an instrument, use a damp cloth or mild, water-based cleaner. Clean the exterior of the instrument only. Do not apply

cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that consist of a circuit board with

no case or chassis (e.g., a data acquisition board for installation into a computer) should never require cleaning if handled

according to instructions. If the board becomes contaminated and operation is affected, the board should be returned to the

factory for proper cleaning/servicing.

 Introduction ... 1-1

Contact information ... 1-1

Overview .. 1-1
Measure and switching capabilities .. 1-2

Warranty information ... 1-2
Displaying the unit's serial number ... 1-3

 TSP Programming Fundamentals ... 2-1

Introduction .. 2-1

Test Script Processor (TSPTM) .. 2-2

Run-time environment ... 2-3

Queries .. 2-3

Scripts .. 2-4

Named scripts .. 2-5

Programming overview .. 2-6
Chunk defined .. 2-6
Script defined ... 2-7
Run-time environment .. 2-8
Nonvolatile memory ... 2-8
TSPTM programming levels ... 2-8
Programming model for scripts .. 2-9

Installing the TSPTM software .. 2-10

System connections .. 2-10
Rear panel summary .. 2-10
GPIB interface connection ... 2-11
Standard RJ-45 (Ethernet) interface connection .. 2-12
USB connection ... 2-13

Using Test Script Builder (TSB) .. 2-13
Project Navigator ... 2-14
Script Editor ... 2-14
Programming interaction .. 2-15

Sending commands and statements ... 2-15

Measure voltage .. 2-15
Read and write to the digital I/O port .. 2-16
Display user-defined messages ... 2-16

User scripts .. 2-16
Script examples ... 2-17
Creating a user script ... 2-20
Saving a user script.. 2-22
Loading a user script .. 2-24
Running a user script ... 2-25

Table of Contents

Table of Contents Series 3700 System Switch/Multimeter Reference Manual

ii 3700S-901-01 Rev. C / July 2008

Loading a script from the Series 3700 front panel .. 2-28
Saving a script from the Series 3700 front panel ... 2-29
Modifying a user script ... 2-29
Script management .. 2-30

Differences: Remote versus local state ... 2-32
Remote state .. 2-32
Local state .. 2-32
TSP-LinkTM system ... 2-32

Test Script Language (TSL) Reference ... 2-33
Introduction .. 2-33
Variables and types ... 2-34
Operators ... 2-34
Functions ... 2-35
Tables/arrays ... 2-36
Precedence .. 2-37
Logical operators ... 2-38
Concatenation .. 2-39
Branching ... 2-40
Loop control ... 2-41
Standard libraries ... 2-42

 TSP Advanced Features ... 3-1

Introduction .. 3-1

Using groups to manage nodes on TSP-LinkTM network ... 3-4
Master node overview .. 3-5
Group leader overview ... 3-5
Assigning groups ... 3-5
Reassigning groups ... 3-6

Running parallel test scripts .. 3-6
Coordinating overlapped operations in remote groups .. 3-7

Using the data queue for real-time communication ... 3-8

Copying test scripts across the TSP-LinkTM network ... 3-8

Removing stale values from the reading buffer ... 3-9

Commands related to TSP advanced features ... 3-10

 Using the Front Panel ... 4-1

Front panel introduction ... 4-1

Display ... 4-4
Channel type indication .. 4-8
Using the front panel with non-switch channels ... 4-9

Special keys and power switch ... 4-11
CONFIG key .. 4-11
CONFIG CHAN key ... 4-11
DISPLAY key ... 4-16

Series 3700 System Switch/Multimeter Reference Manual Table of Contents

3700S-901-01 Rev. C / July 2008 iii

POWER switch .. 4-17
RESET switch .. 4-17

Operation keys .. 4-17
CHAN key .. 4-17
DELETE key .. 4-20
DMM key .. 4-21
ENTER key .. 4-25
EXIT key .. 4-25
FILTER key .. 4-25
FUNCtion key ... 4-26
INSERT key ... 4-26
LIMIT key ... 4-27
LOAD key ... 4-27
MENU key .. 4-28
PATT key ... 4-29
REL key ... 4-30
RUN key ... 4-30
SCAN key .. 4-31
SLOT key ... 4-32
TRIG key .. 4-32

Range keys, cursor keys, and navigation wheel ... 4-32
AUTO key .. 4-32
CURSOR keys ... 4-32
Navigation wheel .. 4-33
RANGE keys .. 4-33

Action keys .. 4-33
CLOSE key .. 4-33
OPEN ALL key ... 4-33
OPEN key .. 4-34
RATE key ... 4-34
RECall key ... 4-34
STEP key ... 4-34
STORE key .. 4-35

 Range, Digits, Rate, Bandwidth, and Filter ... 5-1

Range .. 5-1
Measurement ranges and maximum readings ... 5-1
Manual range keys ... 5-2
Auto ranging over the front panel ... 5-3
Scanning .. 5-3
Range remote programming (ICL) ... 5-3

Digits ICL programming ... 5-4
Scanning .. 5-4
Setting digits .. 5-4

Rate ... 5-5
Setting Rate from the front panel ... 5-7
Setting measurement speed from a remote interface .. 5-7

Bandwidth .. 5-7

Table of Contents Series 3700 System Switch/Multimeter Reference Manual

iv 3700S-901-01 Rev. C / July 2008

Filter ... 5-8
Filter characteristics ... 5-8
Digital filter window .. 5-10

 Relative, Math, and dB .. 6-1

Relative .. 6-1
Basic front panel REL procedure ... 6-2
REL remote operation .. 6-2
Scanning .. 6-3

Math calculations ... 6-3
mX+b ... 6-4
Percent ... 6-6
Reciprocal (1/X) ... 6-7

dB commands .. 6-10
dB configuration ... 6-10
dB scanning ... 6-11

 Buffer: Data Storage and Retrieval .. 7-1

Buffer overview .. 7-1

Front panel operation .. 7-2
Creating and selecting a reading buffer ... 7-2
Selecting a reading buffer .. 7-3
Storing readings ... 7-3
Saving readings ... 7-3
Clearing readings ... 7-4
Deleting a reading buffer .. 7-5
Recalling readings ... 7-5
Buffer configuration (front panel) .. 7-6
Appending readings ... 7-7

Remote buffer operation .. 7-7
Data store (buffer) commands ... 7-8
Reading buffers .. 7-12
Time and date values ... 7-16
Buffer status ... 7-16
Dynamically-allocated buffers .. 7-17
Dynamic buffer programming example .. 7-18
Buffer for...do loops .. 7-19
Exceeding reading buffer capacity ... 7-21

 Scanning .. 8-1

Scanning fundamentals ... 8-1
Channel assignments... 8-2
Events .. 8-2
Foreground and background scan execution ... 8-3
Trigger model ... 8-4

Series 3700 System Switch/Multimeter Reference Manual Table of Contents

3700S-901-01 Rev. C / July 2008 v

Trigger model components .. 8-5

Scan and step counts .. 8-7

Basic scan procedure .. 8-7
Buffer ... 8-9
Changing channel and DMM attributes of an existing scan ... 8-9

Front panel scanning ... 8-10
Scan configuration ... 8-11

Bus operation scanning ... 8-12
ICL commands ... 8-12
Scanning examples .. 8-14

Hardware trigger modes .. 8-18
Falling edge trigger mode .. 8-20
Rising edge master trigger mode (version 1.4.0 or higher) .. 8-21
Rising edge acceptor trigger mode (version 1.4.0 or higher) ... 8-22
Either edge trigger mode .. 8-23
Understanding synchronous triggering modes ... 8-24

 Files .. 9-1

File formats .. 9-1

Default file extensions ... 9-1

File system navigation ... 9-2

File I/O ... 9-3

Script examples ... 9-4

Command table entries ... 9-9

 TSP-Net .. 10-1

Overview .. 10-1

TSP-NetTM Capabilities .. 10-1

Using TSP-NetTM with any Ethernet-enabled device ... 10-2
Example script ... 10-3

Using TSP-NetTM vs. TSP-LinkTM for communication with TSP-enabled devices 10-4

Instrument Control Library (ICL) - General device control .. 10-5

Instrument Control Library - TSP-specific device control .. 10-12

 LXI Class B Triggering (IEEE-1588) ... 11-1

Introduction to IEEE-1588 based triggering .. 11-1

IEEE-1588 implementation in the Series 3700.. 11-1

Correlating PTP to Coordinated Universal Time (UTC) .. 11-2

Table of Contents Series 3700 System Switch/Multimeter Reference Manual

vi 3700S-901-01 Rev. C / July 2008

Configuring and enabling IEEE-1588 .. 11-3
Scheduling alarms ... 11-5

Monitoring alarms with LAN triggers and LXI event log .. 11-6
LXI event log .. 11-7
Example applications of IEEE-1588 in Series 3700-based systems .. 11-7
Synchronizing multiple Series 3700 instruments .. 11-9

 Status Model .. 12-1

Status register sets .. 12-1
Negative and positive transition registers ... 12-2

Status byte and SRQ ... 12-2
Queues .. 12-2

System summary and status byte ... 12-3

System summary registers .. 12-4

Standard event status register and enable .. 12-5

Operation events registers .. 12-6

Questionable event register .. 12-7

Measurement event register (measurement) .. 12-8

Status function summary ... 12-8

Clearing registers and queues .. 12-9

Programming enable and transition registers.. 12-10

Reading registers .. 12-11

Status byte and service request (SRQ) ... 12-12
Status byte register .. 12-13
Serial polling and SRQ ... 12-14
Service request enable register ... 12-14
SPE, SPD (serial polling) ... 12-14
Status byte and service request commands .. 12-15
Enable and transition registers ... 12-15
Controlling node and SRQ enable registers ... 12-16

Status register set specifics ... 12-16
System summary event registers ... 12-16
Standard event register .. 12-19
Operation event registers ... 12-21
Questionable event registers ... 12-23
Measurement event registers ... 12-24

Queues .. 12-25
Output queue ... 12-25
Error queue .. 12-26

Series 3700 System Switch/Multimeter Reference Manual Table of Contents

3700S-901-01 Rev. C / July 2008 vii

 Instrument Control Library (ICL) ... 13-1

Command programming notes .. 13-1
Wild characters .. 13-1
Functions and attributes ... 13-2
TSP-LinkTM nodes .. 13-5
Logical instruments .. 13-5
Query commands ... 13-6
DMM configuration ... 13-8

ICL command list ... 13-11
beeper functions and attributes .. 13-16
bit functions .. 13-17
channel functions and attributes .. 13-24
dataqueue functions and attributes .. 13-85
delay functions ... 13-86
digio functions and attributes ... 13-87
display functions and attributes .. 13-93
dmm functions and attributes ... 13-109
errorqueue functions and attributes ... 13-176
eventlog functions and attributes ... 13-177
exit functions .. 13-180
file functions ... 13-181
format attributes ... 13-183
fs functions ... 13-186
gpib attributes .. 13-187
io functions ... 13-188
LAN functions and attributes .. 13-190
localnode functions and attributes .. 13-210
makegetter functions .. 13-218
memory functions ... 13-219
opc functions .. 13-220
print functions ... 13-221
ptp functions and attributes .. 13-223
reset functions .. 13-230
scan functions and attributes ... 13-230
schedule functions and attributes ... 13-250
setup functions and attributes .. 13-252
slot[X] attributes ... 13-255
status functions and attributes ... 13-264
timer functions .. 13-286
trigger functions and attributes ... 13-287
trigger.timer functions and attributes .. 13-290
tsplink functions and attributes ... 13-294
tsplink.trigger functions and attributes .. 13-295
tspnet functions and attributes ... 13-300
upgrade functions .. 13-309
userstring functions .. 13-310
waitcomplete functions ... 13-312

Table of Contents Series 3700 System Switch/Multimeter Reference Manual

viii 3700S-901-01 Rev. C / July 2008

 Verification ... 14-1

Introduction .. 14-1

Verification test requirements .. 14-2
Environmental conditions ... 14-2
Warmup period .. 14-2
Line power ... 14-3
Recommended test equipment .. 14-3
Verification limits .. 14-4
Restoring factory defaults .. 14-5

Performing the verification test procedures ... 14-5
Test summary .. 14-5
Test considerations .. 14-6

Series 3700 verification tests .. 14-6
Verifying DC voltage .. 14-6
Verifying AC voltage... 14-9
Verifying DC current 10µA to 100µA ranges .. 14-11
Verifying DC current 1mA to 3A ranges ... 14-13
Verifying AC current 1mA to 3A ranges ... 14-15
Verifying frequency .. 14-18
Verifying 4-wire resistance ... 14-19
Verifying 2-wire resistance ... 14-21
Verifying dry circuit resistance ... 14-22
Verifying 1-OHM and 10-OHM resistance ranges .. 14-24
Verifying zeros using a 4-wire short ... 14-25

 Calibration ... 15-1

Overview .. 15-1

Environmental conditions .. 15-2
Warmup period .. 15-2
Line power ... 15-2

Calibration considerations ... 15-3
Calibration cycle ... 15-3
Recommended equipment ... 15-3

Calibration ... 15-4

Remote calibration procedure ... 15-5
DC volts calibration .. 15-6
Resistance calibration .. 15-8
DC current calibration .. 15-9
AC volts calibration .. 15-11
AC current calibration... 15-13
Frequency calibration ... 15-15
Save calibration ... 15-16

Series 3700 System Switch/Multimeter Reference Manual Table of Contents

3700S-901-01 Rev. C / July 2008 ix

 Maintenance .. 16-1

Introduction .. 16-1

Fuse replacement .. 16-1

Front panel tests .. 16-3
Test procedure ... 16-3

 Error and status messages .. 17-1

Introduction .. 17-1

Error summary ... 17-1

Error effects on scripts ... 17-1

Reading errors ... 17-2

Error and status message list .. 17-2

 Appendix A: EEE-1588 Glossary of Terms .. A-1

Boundary clock .. A-1

Epoch... A-1

Grandmaster clock .. A-1

Master clock .. A-2

PTP .. A-2

PTP port .. A-2

PTP subdomain ... A-2

 Index .. I-1

3700S-901-01 Rev. C / July 2008 xi

Figure 1-1: DMM measurement capabilities ... 1-2

Figure 2-1: TSP test script example ... 2-7

Figure 2-2: Programming model for scripts .. 2-9

Figure 2-3: Rear panel features .. 2-10

Figure 2-4: GPIB cable ... 2-11

Figure 2-5: Using Test Script Builder (TSB) ... 2-14

Figure 3-1: Multiple TSP-Link networks .. 3-2

Figure 3-2: Single TSP-Link network with groups .. 3-3

Figure 4-1: Model 3706 System Switch/Multimeter .. 4-2

Figure 4-2: Model 3706-S System Switch (no DMM) ... 4-2

Figure 4-3: Model 3706-NFP System Switch/Multimeter .. 4-3

Figure 4-4: Model 3706-SNFP System Switch (no DMM) .. 4-3

Figure 4-5: Active channel display example ... 4-5

Figure 4-6: MAIN MENU display ... 4-7

Figure 5-1: Speed versus noise characteristics .. 5-5

Figure 5-2: Moving average filter .. 5-9

Figure 5-3: Repeating average filter ... 5-9

Figure 5-4: Filter window... 5-11

Figure 8-1: Event detector .. 8-2

Figure 8-2: Trigger model ... 8-4

Figure 8-3: Falling edge input trigger .. 8-20

Figure 8-4: Falling edge output trigger .. 8-20

Figure 8-5: RisingM output trigger .. 8-21

Figure 8-6: RisingA input trigger ... 8-22

Figure 8-7: RisingA output trigger ... 8-22

List of Figures

List of Figures Series 3700 System Switch/Multimeter Reference Manual

xii 3700S-901-01 Rev. C / July 2008

Figure 8-8: Either edge input trigger ... 8-23

Figure 8-9: Either edge output trigger ... 8-24

Figure 8-10: SynchronousM input trigger ... 8-25

Figure 8-11: SynchronousM output trigger ... 8-26

Figure 8-12: SynchronousA input trigger .. 8-27

Figure 8-13: SynchronousA output trigger .. 8-27

Figure 8-14: Synchronous input trigger .. 8-28

Figure 8-15: Synchronous output trigger .. 8-29

Figure 12-1: Status byte and queues .. 12-2

Figure 12-2: Status byte and system summary register ... 12-3

Figure 12-3: System summary registers ... 12-4

Figure 12-4: Standard event registers and event status enable ... 12-5

Figure 12-5: Operation event registers ... 12-6

Figure 12-6: Questionable event register ... 12-7

Figure 12-7: Measurement event register ... 12-8

Figure 12-8: 16-bit status register ... 12-10

Figure 12-9: Status byte and service request (SRQ) .. 12-12

Figure 12-10: Standard event register .. 12-20

Figure 13-1: ch_list legend ... 13-24

Figure 13-2: Multiplexer card display .. 13-26

Figure 13-3: Matrix card display ... 13-27

Figure 13-4: Status byte and queues .. 13-264

Figure 14-1: DC voltage verification ... 14-7

Figure 14-2: AC voltage verification .. 14-10

Figure 14-3: DC current verification 10µA to 100µA ranges ... 14-12

Figure 14-4: DC current verification 1mA to 3A ranges .. 14-13

Series 3700 System Switch/Multimeter Reference Manual List of Figures

3700S-901-01 Rev. C / July 2008 xiii

Figure 14-5: DC current verification 3A range diagram .. 14-14

Figure 14-6: AC current verification 1mA to 1A range .. 14-16

Figure 14-7: AC current verification 3A range .. 14-16

Figure 14-8: Frequency verification .. 14-18

Figure 14-9: Resistance verification ... 14-19

Figure 14-10: 2-wire resistance verification .. 14-21

Figure 14-11: Resistance verification ... 14-23

Figure 14-12: Verifying discrete resistance .. 14-24

Figure 14-13: 4-wire short diagram ... 14-26

Figure 15-1: 4-wire short diagram ... 15-6

Figure 15-2: DC voltage calibration .. 15-7

Figure 15-3: Resistance calibration .. 15-8

Figure 15-4: DC current calibration ... 15-9

Figure 15-5: AC voltage calibration .. 15-11

Figure 15-6: AC current calibration 1mA to 1A range ... 15-13

Figure 15-7: Low frequency calibration ... 15-15

Figure 15-8: Frequency verification .. 15-15

Figure 16-1: Fuse location .. 16-2

In this section:

Contact information ... 1-1

Overview ... 1-1

Warranty information ... 1-2

Contact information

If you have any questions after reviewing this information, please contact your

local Keithley Instruments representative or call one of our Applications

Engineers at 1-888-KEITHLEY (1-888-534-8453). You can also contact us

through our website (http://www.keithley.com).

Overview

The Keithley Instruments Series 3700 System Switch/Multimeter features

scalable, instrument grade switching and multi-channel measurement solutions

that are optimized for automated testing of electronic products and components.

The Series 3700 includes four versions of the Model 3706 system switch

mainframe, along with a growing family of plug-in switch and control cards.

When the Model 3706 mainframe is ordered with the high performance

multimeter, you receive a tightly-integrated switch and measurement system that

can meet the demanding application requirements in a functional test system or

provide the flexibility needed in stand-alone data acquisition and measurement

applications.

Section 1

Introduction

http://www.keithley.com/

Section 1: Introduction Series 3700 System Switch/Multimeter Reference Manual

1-2 3700S-901-01 Rev. C / July 2008

Measure and switching capabilities

The basic measurement capabilities of Series 3700 systems are summarized in

the following figure.

Figure 1-1: DMM measurement capabilities

Warranty information

Detailed warranty information is located at the front of this manual. Should your

Series 3700 require warranty service, contact the Keithley Instruments

representative or authorized repair facility in your area for further information.

When returning the instrument for repair, be sure to complete the service form at

the back of this manual and give it to the repair facility with all relevant

information.

NOTE The service form requires the serial number of the Series 3700. The

serial number label is located inside the unit on the bottom panel. The

serial number can be viewed by removing the slot covers and/or

switching modules from the mainframe.

Series 3700 System Switch/Multimeter Reference Manual Section 1: Introduction

3700S-901-01 Rev. C / July 2008 1-3

WARNING Before removing (or installing) switching modules, make

sure you turn off the Series 3700 and disconnect the line

cord. Also, remove any other external power connected to

the instrument or switching module(s).

 Failure to disconnect power before removing (or installing)

switching modules may result in personal injury or death

due to electric shock.

Displaying the unit's serial number

To display the serial number on the front panel:

NOTE If the Series 3700 is in remote mode, press the EXIT key once to

place the unit in local mode.

1. When in local mode, press the MENU key.

2. Scroll to the SYSTEM-INFO menu and press the ENTER key.

3. On the SYSTEM INFORMATION menu, scroll to the SERIAL# and press

the ENTER key. The Series 3700 serial number will be displayed.

In this section:

Introduction ... 2-1

Test Script Processor (TSPTM) .. 2-2

Run-time environment ... 2-3

Queries ... 2-3

Scripts ... 2-4

Named scripts ... 2-5

Programming overview ... 2-6

Installing the TSPTM software .. 2-10

System connections .. 2-10

Using Test Script Builder (TSB) 2-13

Sending commands and statements 2-15

Measure voltage ... 2-15

User scripts ... 2-16

Differences: Remote versus local state 2-32

Test Script Language (TSL) Reference 2-33

Introduction

Conventional electronic test and measurement equipment responds to

command messages sent to the instrument. Each command message contains

one or more commands that the instrument executes in order. To conduct a test,

a computer controller is programmed to send a sequence of commands to an

instrument. The controller orchestrates the actions of the instrumentation.

Typically, the controller is programmed to request measurement results from the

instrumentation and make test sequence decisions based on those

measurements.

In addition to operating as conventional instruments, Keithley Instruments‟ Test

Script Processor (TSP)-based instruments are capable of executing scripts that

process commands in the instrument rather than needing to be sent from a

computer. Basically, a script allows you to have a program running inside the

instrument to execute a sequence of commands without the need to send them

individually from a computer. Once a script is loaded into the instrument, it only

needs to be called (similar to a function) to execute the desired command

sequence. In the sections that follow, you will learn what a script is, and how to

create, save, and load a script.

Section 2

TSP Programming Fundamentals

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-2 3700S-901-01 Rev. C / July 2008

Test Script Processor (TSPTM)

The Test Script Processor (TSP) is a scripting engine that runs inside the

instrument. It is capable of running code written in a scripting language called

Lua (http://www.lua.org). This makes the instrument fully capable of interpreting

and executing code in a way that is similar to Visual Basic (VB) or Java, rather

than only responding to single-line commands. Program statements control

script execution and provide capabilities such as variables, functions, branching,

and loop control.

Because scripts are programs, they are written using a programming language,

called the test script language or TSL. TSL is derived from the Lua scripting

language. For details about TSL, see the Test Script Language (TSL) reference

(on page 2-33).

In this manual, we refer to Lua as the "test script language" or "TSL." The TSP

runs portions of TSL code called "chunks." Most messages sent to the

instrument are directly executed by the TSP as TSL chunks. The simplest

messages sent to the instrument are individual instrument control commands.

Even though these messages are executed as TSL chunks, using them is no

different than using a conventional instrument. You send a command message

and the instrument executes that command. When sending individual command

messages, it is irrelevant that the TSP is executing the message as a chunk.

The command set for each TSP-enabled instrument is referred to as the

"instrument control library" or ICL. Each TSP-enabled instrument will have its

own set of ICL commands. Although each TSP-enabled instrument inherits the

same TSL, different instruments extend the language in their own way.

ICL commands are similar to the commands sent to a conventional instrument,

but ICL commands appear like function calls or assignment statements. For

example, the command to set ASCII precision to 10 for ASCII readings is:

format.asciiprecision = 10

Similarly, the command to format readings as ASCII is:

format.data = format.ASCII

These commands do not need to be sent as separate messages. They can be

combined into one message by joining the two commands together with a space

separating them. The resulting chunk would be as follows:

format.asciiprecision = 10 format.data = format.ASCII

http://www.lua.org/

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-3

Run-time environment

A feature of all scripting environments is the run-time environment. In the TSPTM,

the run-time environment is simply a temporary collection of global variables. A

global variable can be used to remember a value as long as the unit is powered

on and the variable is not assigned a new value. To instruct the instrument to

read the ASCII precision setting and store the result in a global variable named

"x", send:

x = format.asciiprecision

A global variable can be removed from the environment by assigning it the nil

value. For example, the command x = nil will remove the global variable x

from the run-time environment. When the unit is turned off, the entire run-time

environment will be lost.

Queries

TSPTM-enabled instruments do not have inherent query commands. Like any

other scripting environment, the print command and other related print

commands are used to generate output. The print command creates one

response message.

The following chunk is an example that generates an output response message:

x = 10 print(x) 1.000000000e+001

NOTE The output (indicated by the) may vary, depending on the ASCII

precision setting.

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-4 3700S-901-01 Rev. C / July 2008

Scripts

When taking advantage of the TSPTM to perform more complicated sequences of

commands, especially sequences utilizing advanced scripting features such as

looping and branching, sending the entire sequence in one message is very

cumbersome. Use the loadscript and endscript messages to collect a

sequence of commands into one chunk.

The loadscript message marks the beginning of a script. The instrument will

collect all following messages until the endscript message is received (the

endscript message marks the end of the script). The TSP-enabled instrument

compiles the test sequence and makes it available to run in a subsequent

message. This chunk is called the "anonymous script."

NOTE Every time the script.run() command is given, the anonymous

script will be executed.

The anonymous script can be run at any time by sending the command

script.run() or script.anonymous(). The anonymous script can be run

many times (it remains in active memory until a new anonymous script is

created). Sending a new script using the loadscript and endscript

messages will instruct the TSP-enabled instrument to replace the anonymous

script with the new script. To see the current contents of the anonymous script,

send the command script.anonymous.list().

Creating and using scripts this way is a very powerful feature of TSP-enabled

instruments, but it is limited to accessing only one script at a time. The solution

to this limitation is to create user-defined named scripts. See Named scripts (on

page 2-5) for information on how to use named scripts, and also how to store

many scripts in the instrument at one time.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-5

Named scripts

The loadscript message can also be used to create named scripts. Loading

a named script does not replace the anonymous script. Instead, a global

variable in the run-time environment is temporarily created to store the script.

Because the script is stored in a global variable, the name of the script must be

a legal TSL variable name. Specify the name of the script in the loadscript

message by separating it from the loadscript keyword with a space

character.

For example, the message loadscript MyScript will instruct the TSPTM-

enabled instrument to begin gathering command messages that will be used to

create a script named MyScript. After sending the command messages, the

endscript message is still used to indicate the end of the script. Upon receipt

of the endscript message, the instrument will compile the script. If there are

no errors, the script will be made available as the global variable MyScript,

because that is the name we used in the loadscript MyScript message.

After a named script has been successfully sent to the instrument, you can run it

at any time by sending either the MyScript() or

script.user.scripts.MyScript() command.

Named script key points:

 Create different script names using loadscript.

 Sending a new script with the same name will overwrite (replace) the

previous version.

 Sending new scripts with different names will not remove previously sent

scripts.

 Using named scripts, any number of scripts can be made available

simultaneously within the limits of the memory available to the run-time

environment.

 Named scripts are stored as global variables in the run-time environment.

Therefore, like all other global variables, they are lost when the unit is

powered off.

 Nonvolatile storage can be used to store downloaded scripts across power

cycles. See Saving a user script (on page 2-22) for more information.

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-6 3700S-901-01 Rev. C / July 2008

Programming overview

Chunk defined

A chunk is a single programming statement or a sequence of statements that

are executed sequentially (that is, sent to Lua as a single line). There are non-

scripted and scripted chunks.

Single statement chunk

The following programming statement is a chunk:

print ("This is a chunk")

When the above chunk is executed, it returns the following string:

This is a chunk

Multiple-statement chunk

A chunk can contain multiple statements. Each statement in the line of code

must be separated by white space. The following chunk contains two

statements:

print ("This is a chunk") print ("that has two statements")

When the above chunk is executed, the two statements are executed

sequentially, and the following strings are returned:

This is a chunk
that has two statements

Multiple chunks

Each of the following lines of code is a separate chunk. The first chunk sets the

ASCII precision to 10 for readings. The second chunk turns on ASCII readings.

format.asciiprecision = 10
format.data = format.ASCII

Scripted chunk

In a script environment, the chunk is the entire listing of test programming code.

If the two statements in Multiple chunks (on page 2-6) were created as a script,

then those two lines of code would be assembled as one chunk. The instrument

internally constructs a chunk out of a series of messages sent between

loadscript and endscript. Also see Script defined (on page 2-7) for more

details.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-7

Script defined

The Series 3700 utilizes a Test Script Processor (TSP) to process and run

individual chunks or scripts. A script is a collection of instrument control

commands and programming statements. The TSP test script example (on page

2-7) shows an example of how to create and load a script. When this script

(named "test") is run, the message "This is a test" will be displayed on the Series

3700 and sent to the computer.

As shown, a script consists of a chunk of programming code framed by shell

commands. The first shell command in the TSP script example loads the script

named "test." The last shell command marks the end of the script. The chunk in

the TSP script example consists of three lines of code. When the chunk is

executed, the test messages are sent and displayed. The following command

executes the chunk test().

NOTE It is common practice to say that a script is run. In actuality, it is the

chunk in the script that is being run (executed).

Figure 2-1: TSP test script example

A script is loaded into the Series 3700, where it can be run. Running a script

using this method is faster than running a test program from the control

computer because it eliminates the piecemeal transmission process from the

control computer.

A user script is created using your own program or the Test Script Builder

Integrated Development Environment (IDE), which is a supplied software tool

(see Using Test Script Builder (TSB) (on page 2-13)). The user script is loaded

into the Series 3700 and can be saved in nonvolatile memory. These are the

scripts referenced as a "user script" throughout the manual.

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-8 3700S-901-01 Rev. C / July 2008

Run-time environment

The run-time environment is a collection of global variables (scripts) that you

have created. After scripts are placed into the run-time environment, they are

then ready to be run and/or managed. Scripts are placed in the run-time

environment as follows:

 Scripts saved in nonvolatile memory of the Series 3700 are automatically

recalled into the run-time environment when the instrument is turned on.

 Named scripts that you have created and loaded are also placed in the run-

time environment. A named script resides in volatile memory and must be

saved to nonvolatile memory to retain it after power-off.

 An unnamed script that you have created and loaded is also placed in the

run-time environment. Remember that only one unnamed script, referred to

as the "anonymous script," can be in the run-time environment. If another

unnamed script is created and loaded, it will replace the old unnamed script

in the run-time environment. An unnamed script resides in volatile memory

and must be saved to nonvolatile memory to retain it after power-off.

Nonvolatile memory

New or modified user scripts loaded into the Series 3700 reside in the run-time

environment and are lost when the unit is turned off. To save a script after

power-down, you must save it in nonvolatile memory. When the Series 3700 is

turned back on, all saved scripts will load into the run-time environment.

NOTE Do not confuse the run-time environment with the nonvolatile memory

of the Series 3700. Making changes to a script in the run-time

environment does not affect the stored version of that script. After

making changes, saving the script will overwrite the old version of the

script in nonvolatile memory.

TSPTM programming levels

Instrument control library (ICL) commands and Test Script Language (TSL)

programming statements are used to program and control the Series 3700.

There are two levels of programming:

 Sending commands and statements (on page 2-15): Non-scripted chunks

are executed one line at a time by the PC.

 User scripts (on page 2-16): A program script is run after you have created

and loaded it into the Series 3700. An interactive script is a type of script

that interacts with the operator. It provides user-defined messages on the

Series 3700 display to prompt the operator to enter parameters from the

front panel.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-9

Programming model for scripts

User-created scripts can be stored in nonvolatile memory. When the Series

3700 is turned on, all user script functions are recalled into the run-time

environment from nonvolatile memory. If any user scripts have been

programmed to run automatically, they will run after all the scripts are loaded.

Any script in the run-time environment can be run from the Test Script Builder or

the user‟s own program. Test data (for example, a reading) is returned from the

Series 3700 to the computer. A user script can be created using the Test Script

Builder or the user‟s own program. Once the user script is loaded into the run-

time environment, it is ready to be run. Scripts that are not saved are lost when

the Series 3700 is turned off.

Script management includes commands for the following operations:

 Retrieve scripts from nonvolatile memory so they can be modified.

 Delete user scripts from nonvolatile memory.

 Restore scripts in the run-time environment from nonvolatile memory.

The fundamental programming model for scripts is shown in the following figure.

Figure 2-2: Programming model for scripts

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-10 3700S-901-01 Rev. C / July 2008

Installing the TSPTM software

To install the TSP software:

1. Close all programs.

2. Place the CD (Keithley Instruments part number KTS-850B01 or greater)

into your CD-ROM drive.

3. Follow the on-screen instructions.

If your web browser does not start automatically and display a screen with

software installation links, open the installation file (index.html) found on the CD

to initiate automatic installation.

System connections

Up to 64 TSPTM instruments can be used in a test system. The host interface for

the test system can be the GPIB, Ethernet, or USB. For the GPIB, an IEEE-488

cable is used to connect the computer to one of the Series 3700 instruments.

USB and Ethernet also require the appropriate cables. Note that only one cable

is needed to connect to one of the Series 3700 instruments because

communication to the other Series 3700 instruments or TSP-enabled products

can be accomplished using the TSP-LinkTM.

Rear panel summary

Figure 2-3: Rear panel features

Item Description

1 Analog backplane fuse

2 Slots (6 places)

3 TSP-LinkTM connectors (2 places)

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-11

Item Description

4 Instrument fuse

5 Power connector

6 Digital I/O port

7 GPIB connector

8 Ethernet connector

9 USB connector

10 Analog backplane connector

GPIB interface connection

Use a shielded IEEE-488 cable to connect the Series 3700 IEEE-488 connector

to the GPIB connector on the control computer. Connect one end of the cable to

the host computer and the other end to Series 3700. Both cable connections

(see item 1 in GPIB cable (on page 2-11)) are identical. The GPIB cable

connectors are stackable. For additional non-Series 3700 GPIB instruments in

the test system, daisy-chain a GPIB cable from one instrument to another.

NOTE To minimize interference caused by electromagnetic radiation, use

only shielded GPIB cables. Available shielded cables from Keithley

Instruments are the Model 7006 and Model 7007.

Figure 2-4: GPIB cable

Refer to Rear panel summary (on page 2-10) for connector location.

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-12 3700S-901-01 Rev. C / July 2008

GPIB address

At the factory, the GPIB is set to address value 16. The address value can be

set to any address value between 0 and 30. However, the address cannot

conflict with the address assigned to other instruments in the system.

Change the GPIB address from the GPIB menu. To access the menu, press the

MENU key and select GPIB. The GPIB address is saved in nonvolatile memory.

The address value will not change when power is cycled or a reset command

(reset) is sent. For units without a front panel, use the gpib.address (on page

13-187) ICL command to change the GPIB address setting remotely.

Standard RJ-45 (Ethernet) interface connection

The Series 3700 uses a standard Ethernet connection configuration. It is

designed for a 10/100BaseTX network using standard RJ-45 connectors. This is

an eight-wire connector, but only two sets of wire pairs are used: one pair to

transmit and one pair to receive data.

A 10BaseT network can accommodate transmission speeds up to 10Mbit per

second, where a 100BaseTX network operates at speeds of up to 100Mbit per

second. Both types of networks usually require Ethernet hubs to make

connections.

The exception is a one-to-one connection using a crossover cable, which may

be a 10BaseT or 100BaseTX, depending on the computer‟s Ethernet interface

card and which category of cable is used (the Series 3700 can be directly

connected to a computer's NIC card using an Ethernet crossover cable). Refer

to Rear panel summary (on page 2-10) for connector location.

LAN address

Change or view the LAN address from the LAN menu. To access the menu,

press the MENU key and select LAN. The LAN address is saved in nonvolatile

memory. The address value will not change when power is cycled or a reset

command is sent. For units without a front panel, use the lan.config and

lan.status ICL commands to change or view the LAN settings remotely. See

LAN functions and attributes (on page 13-190) for more information.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-13

USB connection

Connect a computer controller to the Series 3700 rear panel USB (from host)

connector (connect USB flash drive devices to the Series 3700 front panel

USB). Refer to Rear panel summary (on page 2-10) for connector location.

NOTE For your Series 3700 to be recognized by your computer over the

USB interface, the proper driver must be installed. Installing the Test

Script Builder application also installs the applicable USB driver (it

becomes available after installing this software). To complete the USB

driver installation, after installing the Test Script Builder application,

connect the Series 3700 USB connector (rear panel) to the computer.

Using Test Script Builder (TSB)

Test Script Builder is a supplied software tool that can be used to perform the

following operations:

 Send ICL commands and TSL statements

 Receive responses (data) to commands and scripts

 Create and run user scripts

The following figure shows an example of the Test Script Builder. As shown, the

Workspace is divided into three window panes:

 Project Navigator (on page 2-14)

 Script Editor (on page 2-14)

 Programming interaction (on page 2-15)

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-14 3700S-901-01 Rev. C / July 2008

Figure 2-5: Using Test Script Builder (TSB)

Project Navigator

The Project Navigator resides in the window pane on the left side of the

workspace. The navigator consists of project folders and the script files (.tsp)

created for each project. Each project folder can have one or more script files.

The navigator shown in the graphic in Using Test Script Builder (TSB) (on page

2-13) contains a project named KE37XX_Example_Scripts, which has one script

file, called KE37XX_DMM_Advance_Scan.tsp.

Script Editor

The script chunk is written and/or modified in the Script Editor. Notice that there

is a tab available for each opened script file. A script project is then downloaded

to the Series 3700, where it can be run.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-15

Programming interaction

Up to seven tabs can be displayed in the lower pane of the workspace (the

script editor) to provide programming interaction between the Test Script Builder

and the Series 3700. The instrument console shown in Using Test Script Builder

(TSB) (on page 2-13) is used to send commands to the connected Series 3700.

Retrieved data (for example, readings) from commands and scripts appear in

the instrument console.

Sending commands and statements

Using your own program or the Test Script Builder, non-scripted chunks can be

executed one line at a time. Responses (for example, readings) are then

transmitted back to the computer.

Measure voltage

The digital multimeter (DMM) of the Series 3700 is capable of measuring various

functions. The following code fragment programs the DMM to measure DC

voltage at a specified NPLC and range.

Return the Series 3700 to default settings.

reset()

Set the DMM function to DC volts

dmm.func = 'dcvolts'

Set the NPLC for DC volts

dmm.nplc = 0.1

Set the range for DC volts

dmm.range = 10

Take the DC volts measurement

reading = dmm.measure()

Displays measure voltage reading

print(reading)

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-16 3700S-901-01 Rev. C / July 2008

Read and write to the digital I/O port

The digital I/O port of the Series 3700 is used to control external circuitry (such

as a component handler for binning operations). The I/O port has 14 input/output

bits (lines) that can be at TTL logic state 1 (high) or 0 (low). See the pinout in the

graphic in Rear panel summary (on page 2-10) for the Digital I/O port for

additional information.

There are ICL commands to read and/or write to each individual bit, and

commands to read and write to the entire port. Use the following code fragment

to write to one bit of the Digital I/O port. The I/O bit is then read and the state is

returned to the PC, where it is displayed.

Command Description

digio.writebit(4,0) Writes a 0 to bit 4

data=digio.readbit(4) Reads value at bit 4

print(data) Displays data on PC

Display user-defined messages

The operator can define and display messages on the front panel display of the

Series 3700. The following code fragment displays the "Test in Process"

message on the Series 3700 display:

Command Description

display.clear() Clears the display

display.settext('Test in
Process')

Displays user message

Displayed messages and input prompts are used in scripts to prompt the

operator to enter parameter values from the front panel. See Interactive script

(on page 2-19) for more information.

User scripts

User scripts can be written using your own program or the Test Script Builder.

User scripts are loaded into the Series 3700 and can be saved in nonvolatile

memory. Scripts not saved in nonvolatile memory will be lost when the Series

3700 is turned off.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-17

Script examples

Script using commands and statements only

The following script closes Channels 1-10 on Slot 3 and measures voltage on

each channel. The ten voltage readings are returned to the host computer, as

well as being stored in a voltage table on the instrument, using the channel

numbers as keys to index the table.

Example exclusive close and measure scripts follow:

User script created in Test Script Builder

voltage = { }
reset()

for j = 3001,3010 do

channel.exclusiveclose('3911,' .. j)
voltage[j] = dmm.measure()

print(voltage[j])

end

User script created in user's own program

loadscript

voltage = { }
reset()
for j = 3001,3010 do

channel.exclusiveclose('3911,' .. j)
voltage[j] = dmm.measure()

print(voltage[j])

end

endscript

NOTE When creating a script using the Test Script Builder, only the chunk is

typed in as shown in the Test script builder example. See Using Test

Script Builder (TSB) (on page 2-13) for details on creating, loading,

and running the script. When creating a script using a programming

language (the User's program script example), shell commands must

be included to manage interactions between the host computer and

TSPTM. The loadscript command starts loading the script into the

Series 3700 and endscript signifies the end of the script.

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-18 3700S-901-01 Rev. C / July 2008

Script using a function

TSL facilitates grouping commands and statements using the function

keyword. Therefore, a script can also consist of one or more functions. Once a

script has been run, the host computer can then call a function in the script

directly.

The following script contains an ICL command to reset the DMM and a function

(named MyDcv), which takes one parameter to represent the speed of the

measurement. When this script is run, the DMM will be reset and the function

MyDcv will be available for calling.

Example scripts using a function:

Test script builder example

dmm.reset('all')
function MyDcv(speed)

dmm.func = 'dcvolts'

dmm.nplc = speed
dmm.range = 10
reading = dmm.measure()
print(reading)

end

User’s program script example

loadscript

dmm.reset('all')
function MyDcv(speed)

dmm.func = 'dcvolts'
dmm.nplc = speed
dmm.range = 10
reading = dmm.measure()
print(reading)

end

endscript

When calling the function, you must specify the measurement speed in the

argument for the function. For example, to set the measurement speed to 0.5,

call the function as follows:

MyDcv(0.5)

This will set the DMM function to DCV, NPLC to 0.5, and range to 10V. The

voltage reading is sent to the host computer and displayed.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-19

Interactive script

An interactive script prompts the operator (on the Series 3700 display) to input

test parameters (using the Series 3700 front panel). The chunk fragment in the

following table uses display messages to prompt the operator to select a

measure function (DCV or 2-wire) and a range based on function, and to input

the measurement speed. When an input prompt is displayed, the script will wait

until the operator inputs the parameter and/or presses the ENTER key.

The display.prompt command in the following script prompts the user to

input a measurement speed. If a value is not entered, the default level (1) will be

set when ENTER is pressed. The operator will not be able to input values that

are not within the limits (minimum of 0.01 and maximum of 3).

Example of an interactive script chunk fragment (Test Script Builder or user‟s

program):

-- Prompt operator to select function:

myfunc = display.menu ('Select function', 'dcvolts
twowireohms')

-- Now prompt for range based on function selected

if (myfunc == 'dcvolts') then

myrange = display.menu('Select range', '10 100')
if (myrange == '10') then

range_value = 10

else

range_value = 100

end

else

myrange = display.menu('Select range', '1000 10000')
if (myrange == '1000') then

range_value = 1000

else

range_value = 10000

end

end

-- Prompt operator to set (input) measurement speed

speed = display.prompt('0.00', 'NPLC', 'Enter measure
speed', 1, 0.01, 3)

-- Wait for operator to set the measurement speed

dmm.reset('all')
dmm.func = myfunc
dmm.range = range_value
dmm.nplc = speed
print(dmm.measure())

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-20 3700S-901-01 Rev. C / July 2008

Creating a user script

To create a script and load it, the test program (chunk) must be framed by the

following shell commands: loadscript or loadandrunscript, and

endscript.

Load only

The following scripts will load only into the run-time environment of the Series

3700. The script on the left is unnamed (anonymous script), while the one on the

right is named (where name is the user-defined name):

loadscript loadscript name

(chunk) (chunk)

endscript endscript

Load and run

The following scripts will load into the run-time environment and then run.

Remember that when a script is run, only the chunk is executed. The script on

the left is unnamed (anonymous script), while the one on the right is named

(where name is the user-defined name):

loadandrunscript loadandrunscript name

(chunk) (chunk)

endscript endscript

Details about loadscript and loadandrunscript are provided as follows:

loadscript
loadscript name

Where: name is the user-assigned name for the script.

The loadscript shell command loads the script into the run-time environment.

The script can be assigned a name or it can be left nameless. If you are

assigning a name that already exists for another loaded script, the old script will

be overwritten with the new script.

If a script is not named when it is loaded into the run-time environment, it will be

lost when another nameless script (anonymous script) is loaded or when the

Series 3700 is turned off. After loading the unnamed script (anonymous), use

the run(), script.run(), script.anonymous(), or

script.anonymous.run() commands to run it.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-21

A script saved in nonvolatile memory named autoexec has special properties

that cause it to run automatically after the Series 3700 is powered on and all

autorun scripts have been executed. For details, see Autoexec script (on page

2-26) and Autorun scripts (on page 2-26).

loadandrunscript
loadsandrunscript name

Where: name is the user-assigned name for the script.

These commands are similar to the loadscript commands, except that the

script will execute (run) after it is loaded into the run-time environment. Also, the

autorun attribute for a named script will be set to "yes" (see Autorun scripts (on

page 2-26)).

Creating a user script (alternative)

An alternate way to create a script is to use script.new, which creates a script

from a chunk of Lua code, using the following command:

myscript = script.new(code, name)

Where:

 myscript is the created script or nil, if an error occurred. If the name

parameter is an empty string, this is the only handle to the created script.

 code is the string representing a chunk of Lua code, which will be used as

the script body.

 name (optional) is the name of the script to be created. The script's name

attribute is initialized to this value, which (if not the empty string) also serves

as the key used to access the script through the script.user.scripts

table. The default is the empty string.

If the name of the script.new script conflicts with the name of an existing

script in the script.user.scripts table, the existing script will be unnamed

(that is, its name attribute will be set to the empty string) before it is replaced in

the script.user.scripts table by the newly-created script.

Example:

To create a new global script called MyTest8 and assign the name attribute to

MyTest8 that displays "Hello from MyTest8" on the display, use the following

command:

MyTest8 = script.new("display.clear()
display.settext('Hello from MyTest8')", 'MyTest8')

To run this script:

MyTest8()

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-22 3700S-901-01 Rev. C / July 2008

Get or change the name attribute of a script

The following commands are used to get or change the name attribute of a

script:

val = myscript.name -- read the name of myscript
myscript.name = val -- change the name of myscript

Where:

 myscript is the script

 val is the name of the script

This attribute may optionally be initialized when the script is created. See

Loading a user script (on page 2-24) (script.load) and Creating a user script

(alternative) (on page 2-21) (script.new) for details.

This attribute must be either a valid Lua identifier or the empty string. Changes

to its value are reflected in the script.user.scripts table. Setting the

attribute to the empty string will remove the script from the table completely.

For example, a new script can be created without naming it, such as:

MyTest7 = script.new("display.clear()
display.settext('Hello from my test')")

To run this script, type:

MyTest7()

If print(MyTest7.name) is executed, it will print a blank line because the

name is an empty string.

To name the script "MyTest7" and read the name, send:

MyTest7.name = 'MyTest7'
print(MyTest7.name) --> MyTest7 is displayed

Saving a user script

A created and loaded script does not have to be saved in the nonvolatile

memory of the Series 3700 before it can be run. However, an unsaved script will

be lost when the Series 3700 is turned off.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-23

Saving a named script

Only a named script can be saved in nonvolatile memory of the Series 3700.

After creating and loading a named script, use one of the following commands to

save it.

myscript.save() -- To save script in internal
memory

myscript.save('filename') -- To save script on flash drive

Where:

 myscript is the user-defined name of the script.

 filename is a filename for the script to save it on a user-supplied USB

flash drive.

The save command will save the script to internal nonvolatile memory if no

filename is specified. If a script is not saved in nonvolatile memory, the script will

be lost when the Series 3700 is turned off.

The myscript.save() command saves the script under the original name that

was created and loaded. The myscript.save('filename') shell command

is used to save the script to a user-supplied USB flash drive. If you save the

script to a filename that already exists, it will be overwritten. The filename may

have an absolute or relative path to the current working directory. If using an

absolute path, include "/usb1/" at the beginning to denote the flash drive. Also, if

the filename includes an extension, it must be ".tsp"; otherwise, an error occurs.

If no extension is specified, the ".tsp" extension will be added.

Examples:

 Assume a script named "test1" has been created and loaded. The following

command saves the script in nonvolatile memory:

test1.save()

 To save the script named "test1" under a filename ("test2") on a user-

supplied USB flash drive, send the following command:

test1.save('/usb1/test2.tsp')

 To save the anonymous script, provide a valid name for the name attribute

of the anonymous script. Once the anonymous script is named, it can be

saved. For example, to save the anonymous script as "MyTest":

script.anonymous.name = 'MyTest'
script.anonymous.save()

 To execute anonymous script that was just saved as 'MyTest':

script.user.scripts.MyTest()

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-24 3700S-901-01 Rev. C / July 2008

 The anonymous script may be saved to the flash drive without setting the

name attribute. For example, to save the anonymous script on the flash

drive as "MyAnonTest.tsp":

script.anonymous.save('/usb1/MyAnonTest.tsp')

Loading this file ('MyAnonTest.tsp') back into the unit from the flash drive will

cause an existing anonymous script to be overwritten.

Loading a user script

The following command is used to create a script from a specified file:

myscript = script.load(file, name)

Where:

 myscript is the created script, or nil if an error occurred. If the name

parameter is an empty string, or if the name is absent or nil, and the script

name cannot be extracted from the file, this will be the only handle to the

created script.

 file is the absolute or relative path and filename of the script file to import.

 name (optional) is the name of the script to be created. The script's name

attribute is initialized to this value, which (if not an empty string) also serves

as the key used to access the script through the script.user.scripts

table.

If the name parameter is present (not nil), any script name embedded in the file

is ignored. Also, if name conflicts with the name of an existing script in the

script.users.scripts table, the existing script will be unnamed (that is, its

name attribute will be set to the empty string) before it is replaced in the

script.user.scripts table by the newly-created script.

If the name parameter is absent or nil, the command attempts to extract the

script's name from the file. Any conflict between the extracted name and that of

an existing script in the script.user.scripts table generates an error. If the

script name cannot be extracted, the created script's name attribute is initialized

to the empty string, and must be set to a valid non-empty string before saving

the script to internal memory.

The file to be uploaded must contain the loadscript or loadandrunscript

keywords, the script's body, and the endscript keyword.

Examples:

To load a file called "MyUserList.tsp" from the USB flash drive and name the

script "myuserlist," send the following command:

mylist = script.load('MyUserList.tsp', 'myuserlist')

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-25

To execute the myuserlist script:

script.user.scripts.myuserlist()

mylist()

Running a user script

Running an unnamed script

There can only be one unnamed (anonymous) script in the run-time

environment. If another anonymous script is created and loaded, the previous

anonymous script will be removed from the run-time environment. On the front

panel, an unnamed script appears as <anonymous>. Use one of the following

commands to execute the chunk of the last loaded anonymous script. The

following four commands perform the same operation.

run()
script.run()
script.anonymous()

script.anonymous.run()

Running a named script

Any named script that is in the run-time environment can be run using one of the

following commands. The following four commands perform the same operation.

myscript()
myscript.run()
script.user.scripts.myscript()
script.user.scripts.myscript.run()

Where: myscript is the user-defined name of the script.

Example:

Assume a script named "test3" has been loaded into the run-time environment.

The following commands execute the chunk of the script.

test3()
script.user.scripts.test3()

Running scripts automatically

Scripts can be set to run automatically when the Series 3700 is turned on. You

can assign one or more Autorun scripts (on page 2-26) and one Autoexec script

(on page 2-26).

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-26 3700S-901-01 Rev. C / July 2008

Autorun scripts

When a saved script is set to autorun, it will automatically load and run when the

Series 3700 is turned on. Any number of scripts can be set to autorun. The run

order for these scripts is arbitrary, so make sure the run order is not important.

To set a script for autorun, set one of the following autorun attributes to "yes."

Setting it to "no" disables autorun.

myscript.autorun
script.user.scripts.myscript.autorun

Where: myscript is the user-defined name of the script.

Make sure to save the script in nonvolatile memory after setting the autorun

attribute.

Example:

Assume a script named "test5" is in the run-time environment. Set the script to

autorun as follows:

test5.autorun = "yes" or script.user.scripts.test5.autorun
= "yes"

test5.save()

The next time the Series 3700 is turned on, the "test5" script will automatically

load and run.

NOTE The loadandrunscript name command sets the autorun attribute

for that script to "yes." To cancel it, set the autorun attribute to "no"

and save the script.

Autoexec script

One script can be designated as the autoexec script. When the Series 3700 is

turned on, the autoexec script will start after all the autorun scripts have run.

loadscript autoexec
loadandrunscript autoexec

Form an autoexec script by creating a new script and naming it autoexec (as

shown above using loadscript or loadandrunscript). After loading the

new script, send the autoexec.save() command to save it in nonvolatile

memory. See Creating a user script (on page 2-20) for details on creating a

script.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-27

Running a user script from the Series 3700 front panel

Use the following commands to enter or delete a name in the User menu option

from the LOAD key:

display.loadmenu.add(displayname, chunk)
display.loadmenu.delete(displayname)

Where:

 displayname is the name to be added to (or deleted from) the User menu.

 chunk is the name of the chunk (Lua executable code).

It does not matter what order the items are added to the User menu, as they will

be displayed in alphabetical order when the menu is selected.

Example:

Assume a user script named "Test9" has been loaded into the run-time

environment. Add the script name to the User menu for the chunk as follows:

display.loadmenu.add("Test9", "Test9()")

To run the chunk from the front panel:

1. Press the LOAD key.

2. Select USER and press the ENTER key.

3. Select the user chunk from list and press the ENTER key. The chunk is

loaded for front panel execution.

NOTE If you're used to using print in Test Script Builder, note that the

output of the prints using this procedure will not function the same

as when you're in Test Script Builder. You may find that it makes

more sense to use Test Script Builder to get the output you need.

4. Press the RUN key to execute.

To run a script directly without adding it to the USER menu:

1. Press the LOAD key.

2. Select SCRIPTS and press the ENTER key. There may be a short pause

before a menu is displayed that represents the scripts in the instrument.

3. Select the script from the list and press the ENTER key. Now the script is

loaded for front panel execution.

NOTE If you're used to using print in Test Script Builder, note that the

output of the prints using this procedure will not function the same

as when you're in Test Script Builder. You may find that it makes

more sense to use Test Script Builder to get the output you need.

4. Press the RUN key to execute.

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-28 3700S-901-01 Rev. C / July 2008

Loading a script from the Series 3700 front panel

To load a script from a USB flash drive:

1. Press the MENU key to open the main menu.

2. Select the SCRIPT option.

3. Select the LOAD option. A menu is displayed that includes the USB option.

4. Select the USB option. A menu is displayed that lists the .tsp files and

directories on the flash drive. If you select a directory, a new menu is

displayed that lists the .tsp files and directories in that directory.

5. Selecting a .tsp file will cause the system to attempt to load the file.

 If the file is not a valid script file, an error message is posted and no

further action is taken.

 Loading an anonymous script will overwrite the existing anonymous

script.

 A file that does not contain loadscript and endscript shell

keywords will be loaded as an anonymous script.

 The display will indicate if a named script already exists in memory. If it

does, you will be prompted to overwrite the script. The display returns to

step 4 if an error occurs or if you select "No" when prompted to

overwrite the script. Otherwise, the display proceeds to step 6 after

indicating that the script loaded successfully.

 The script is loaded using the name that follows the loadscript shell

keyword instead of filename. Also, the script is loaded into the

script.user.scripts table.

6. The SCRIPT ACTION menu lists the options of ACTIVE_FOR_RUN or

SAVE_INTERNAL. Proceed to step 7 if ACTIVE_FOR_RUN is selected or

step 8 if SAVE_INTERNAL is selected.

7. ACTIVE_FOR_RUN associates the script with the RUN button if you

selected YES. The script replaces the active executable chunk selected

under the LOAD button. If NO is selected, the display returns to step 6.

8. If you select SAVE_INTERNAL, you will be prompted to save the script into

internal memory. The ICL equivalent is myscript.save() with no

parameters. If you select YES, proceed to step 5 of Saving a script from the

Series 3700 front panel (on page 2-29). If NO is selected, the display returns

to step 6. Note that anonymous scripts cannot be saved internally.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-29

Saving a script from the Series 3700 front panel

To save a script to internal memory or a USB flash drive:

1. Press the MENU key to bring up the Main Menu.

2. Select the SCRIPT option.

3. Select the SAVE option to bring up a menu listing the scripts available to

save from the script.user.scripts table. This may take several

seconds before displaying.

4. Select the script that you want to save. It may be the anonymous script or

one of the user-named scripts.

5. Select where you want to save the script, either in internal memory or on the

USB flash drive. You cannot save the anonymous script to internal memory.

Only named scripts can be saved internally.

 Select INTERNAL to save the script to internal memory using the

script's name attribute.

 Select USB, and a prompt will display for a filename using the first 13

characters of the name attribute as a default name followed by a

modifiable 3-digit number. If the filename exists, the word (overwrite)

appears on the display. The file is automatically saved with a .tsp

extension.

Modifying a user script

You can modify a user script stored in nonvolatile memory by retrieving the

script listing, which can then be modified, loaded, and saved in nonvolatile

memory. See Retrieving a user script (on page 2-30) for details.

NOTE If you are using the Test Script Builder to modify a user script stored in

nonvolatile memory, retrieve the script listing from the Project

Navigator.

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-30 3700S-901-01 Rev. C / July 2008

Script management

Retrieving a user script

You can retrieve the source code contained in a user script from nonvolatile

memory, which can then be modified and saved as a user script under the same

name or a new name.

NOTE You can load a modified user script into the Series 3700 using the

same name or a new name.

The following command returns a catalog listing of the user scripts stored in the

Series 3700:

script.user.catalog()

Example:

To retrieve the catalog listing for user scripts:

for name in script.user.catalog() do

print (name)

end

The following function retrieves the source code of a saved script. The script

chunk is returned, along with the shell keywords (loadscript or

loadandrunscript, and endscript):

myscript.list()

Where: myscript is the user-defined name of the script.

Example:

To retrieve the source of a saved script named "test7":

userscriptlist = test7.list()
print (userscriptlist)

NOTE To see the contents of the anonymous script, use the

script.list.anonymous.list() command.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-31

Deleting a script from the system

To completely remove a script from the system, all references to the script will

need to be deleted from the run-time environment. A script may be removed

from the run-time environment by assigning it to nil. For example, to remove

the script named "test8" from the run-time environment, send the following code

to set test8 to a nil value:

test8 = nil

To delete a script from the script.user.scripts table, set the name

attribute to an empty string(""), which makes the script nameless. This does not

make the script become the anonymous script. For example, to remove the

script named "test8" from the script.user.scripts table, send the following

code to set the name attribute for test8 as an empty string:

script.user.scripts.test8.name = ""

Replacing, changing, or deleting a script from the run-time environment does not

remove the script from nonvolatile memory. A script can be permanently

removed from nonvolatile memory sending either of the following commands:

script.delete("name")
script.user.delete("name")

Where: name is the user-defined name of the script.

Example:

To delete a user script named "test8" from nonvolatile memory:

script.delete("test8")

Restoring a script in the run-time environment

A script is inherently a global variable that can be replaced by assigning a new

value or by loading a new script with the same name. It can also be removed

from the run-time environment by assigning it the nil value. A script can be

restored from nonvolatile memory back into the run-time environment using

either of the following commands:

script.restore("name")
script.user.restore("name")

Where: name is the user-defined name of the script to be restored.

Example:

To restore a user script named "test9" from nonvolatile memory:

script.restore("test9")

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-32 3700S-901-01 Rev. C / July 2008

Differences: Remote versus local state

The Series 3700 can be in either the local state or the remote state.

 When it is in the local state (REM annunciator off), the instrument is

operated using the front panel controls.

 When it is in the remote state (REM annunciator on), instrument operation is

controlled by the computer.

When the instrument is powered-on, it is in the local state.

Remote state

The following actions will place the instrument in the remote state:

 Sending a command from the computer to the instrument

 Running a script (a USER test) from the front panel; after the test is

completed, the instrument will return to the local mode

 Opening communications between the instrument and Test Script Builder

 Web-control (logging in to the Series 3700 web interface)

While the instrument is in the remote state, front panel controls are disabled.

However, the LOCAL key will be active unless it has not been explicitly locked

out by the user program. When an interactive script is running, use the activated

front panel controls to input parameter values.

Local state

The following actions will cancel the remote state and return the instrument to

the local state:

 Cycling power for the instrument

 Pressing front panel LOCAL key (if it is not locked out)

 Sending the abort command from the PC

 Clicking the Abort Execution icon on the toolbar of the Instrument Console

for Test Script Builder

After a front panel script (a USER test) is completed, the instrument will return to

the local state.

TSP-LinkTM system

A test system can be expanded to include up to 64 instruments that are enabled

using TSP-Link. The system can be stand-alone or PC-based.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-33

Stand-alone system

A script can be run from the front panel of any node (instrument) in the system.

When a script is run, all nodes in the system go into remote operation (REM

annunciators turn on). The node running the script becomes the primary node

and can control all of the other nodes, which become its subordinates. When the

script is finished running, all the nodes in the system return to local operation

(REM annunciators turn off), and the primary/subordinate relationship between

nodes is dissolved.

PC-based system

When using a computer, the GPIB, LAN, or USB interface to any single node

becomes the interface to the entire system. When a command is sent through

one of these interfaces, all nodes go into remote operation (REM annunciators

turn on).

The node that receives the command becomes the primary node and can

control all of the other nodes, which become its subordinates. In a PC-based

system, the primary/subordinate relationship between nodes can only be

dissolved by sending an abort command.

Test Script Language (TSL) Reference

Introduction

A script is a program written using the Test Script Language (TSL) that the Test

Script Processor (TSP) executes. TSL is an efficient language, with simple

syntax and extensible semantics. TSL is derived from the Lua programming

language. See the website for the Lua Programming Language

(http://www.lua.org) for more information. Another source of useful information is

lua-users (http://lua-users.org), created for and by users of Lua programming

language.

Lua programming language reserved words:

and function return

elseif nil until

for repeat else

local true false

then do in

break if or

end not while

http://www.lua.org/
http://lua-users.org/

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-34 3700S-901-01 Rev. C / July 2008

Variables and types

TSL has six basic types: nil, boolean, number, string, function, and

table. TSL is a dynamically typed language, which means variables do not

need to be declared as a specific type. Instead, variables assume a type when a

value is assigned to them. Therefore, each value carries its own type.

If a variable has not been assigned a value, the variable defaults to the type

nil. All numbers are real numbers. There is no distinction between integers and

floating-point numbers in TSL.

var = nil var is nil.

var = 1.0 var is now a number.

var = 0.3E-12 var is still a number.

var = 7 var is still a number.

var = "Hello world!" var is now a string.

var = "I said, Hello world!" var is still a string.

var = function(a, b) return(a+b)
end

var is now a function that adds two

numbers.

var = {1, 2., 3.00e0} var is now a table (in other words, an

array) with three initialized members.

nil is a type with a single value, nil, whose main property is to be different

from any other value. Global variables have a nil value by default before a first

assignment, and you can assign nil to a global variable to delete it. TSL uses

nil as a non-value that represents the absence of a useful value.

Operators

Arithmetic operators:

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

- (negation)

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-35

Relational operators:

< (less than)

> (greater than)

<= (less than or equal)

>= (greater than or equal)

~= (not equal)

== (equal)

Logical operators:

and

or

not

Functions

TSL allows you to define functions which can take a pre-defined number of

parameters and return multiple parameters. Functions are first-class values in

TSL, which means that they can be stored in variables, passed as arguments,

and returned as results if desired.

This is a function called "add_two":

function add_two(parameter1, parameter2)

return(parameter1 + parameter2)

end
print(add_two(3, 4))

This is an alternate syntax for defining a function, called "add_three":

add_three = function(parameter1, parameter2, parameter3)

return(parameter1 + parameter2 + parameter3)

end
print(add_three(3, 4, 5))

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-36 3700S-901-01 Rev. C / July 2008

This function returns multiple parameters (sum, difference, and ratio of the two

numbers passed to it):

function sum_diff_ratio(parameter1, parameter2)

psum = parameter1 + parameter2
pdif = parameter1 – parameter2
prat = parameter1 / parameter2

return psum, pdif, prat

end
sum, diff, ratio = sum_diff_ratio(2,3)
print(sum)
print(diff)

print(ratio)

The function's output is:

7
12
5
-1

0.66666

Tables/arrays

TSL makes extensive use of the data type "table," which is a very flexible array-

like data type.

To define a table:

-- A table with four elements, which are numbers.

atable = {1, 2, 3, 4}

Send the following commands to print it:

-- Tables are indexed on one, NOT zero. atable[index] is
true if there is an element at that index. nil is
returned otherwise. 0 does NOT evaluate to false, only
nil does.

i = 1

Index into table using a number.

while atable[i] do

print (atable[i])
i = i + 1

end

The command's output is:

1
2
3

4

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-37

Tables can be indexed using element names instead of numeric indices.

Because functions are first-class variables, tables can be used to create

"pseudoclasses." Classes are often used in object-oriented programming.

Below is a table used to create a circle pseudoclass. It has 3 elements:

clr A string containing the color of the circle

diam A number containing the diameter of the circle

setdiam A function, or method, used to change the diameter

circle = {clr = 'red', diam = 1, setdiam = function(d)

circle['diam']=d end}

-- Index using a string; print the clr property.

print(circle['clr'])

-- Index using a string; print the diam property.

print(circle['diam'])

-- Change the diam element by calling setdiam.

circle['setdiam'](2)

-- Print the diameter of the circle; circle['diam'] is a
simpler syntax of circle.diam

print(circle.diam)

-- Change the diameter of the circle again.

circle.setdiam(3)

-- Print diam property again using simple syntax.

print(circle.diam)

Output of code above:

red
1
2
3

Precedence

Operator precedence in TSL follows the table below, from higher to lower

priority:

^

not - (unary)

* /

+ -

.. (concatenation)

< <= >= ~= ==

and

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-38 3700S-901-01 Rev. C / July 2008

or

All operators are left associative, except for "^" (exponentiation) and "..", which

are right associative. Therefore, the following expressions on the left are

equivalent to those on the right:

a+i < b/2+1 (a+i)< ((b/2)+1)

5+x^2*8 5+((x^2)*8)

a < y and y <= z (a < y) and (y <= z)

-x^2 -(x^2)

x^y^z x^(y^z)

Logical operators

The logical operators are and, or, and not. Like control structures, all logical

operators consider false and nil as false and anything else as true.

The operator and returns its first argument if it is false, otherwise it returns its

second argument.

The operator or returns its first argument if it is not false; otherwise it returns its

second argument:

print(4 and 5)
print(nil and 13)
print(false and 13)
print(4 or 5)

print(false or 5)

Output of code above:

5
nil
false
4

5

Both and and or use short-cut evaluation; that is, they evaluate their second

operand only when necessary. A useful TSL construct is x = x or v, which is

equivalent to:

if not x then x = v end

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-39

For example, it sets x to a default value v when x is not set (provided that x is

not set to false).

To select the maximum of two numbers x and y, use the following statement

(note the and operator has a higher precedence than or):

max = (x > y) and x or y

When x > y is true, the first expression of the and is true, so the and results in

its second argument x (which is also true, because it is a number), and then the

or expression results in the value of its first expression, x. When x > y is false,

the and expression is false and so are the or results in its second expression,

y.

The operator not always returns true or false:

print(not nil)
print(not false)
print(not 0)
print(not not nil)

Output of code above:

true
true
false
false

Concatenation

TSL denotes the string concatenation operator by ".." (two dots). If any of its

operands is a number, TSL converts that number to a string:

print("Hello ".."World")
print(0 .. 1)

Output of code above:

Hello World
01

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-40 3700S-901-01 Rev. C / July 2008

Branching

TSL uses the if keyword to do conditional branching.

--
--------------- IF blocks ---------------

--

-- This is if expression 1. Zero is true in Lua language;
this is a contrast to C language, where 0 evaluates

false. In TSL, nil is false and everything else is true.

if 0 then

print("Zero is true!")

else

print("Zero is false.")

end
x = 1

y = 2

-- This is if expression 2.

if (x and y) then

print("' if ' expression 2 was not false.")

end

-- This is if expression 3.

if (x or y) then

print("' if ' expression 3 was not false.")

end

-- This is if expression 4.

if (not x) then

print("' if ' expression 4 was not false.")

else

print("' if ' expression 4 was false.")

end

This is if expression 5.

if x == 10 then

print("x = 10")

elseif y > 2 then

print("y > 2")

else

print("x is not equal to 10, and y is not less than 2.")

end

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-41

Output of code above:

Zero is true!
' if ' expression 2 was not false.
' if ' expression 3 was not false.
' if ' expression 4 was false.

x is not equal to 10, and y is not less than 2.

Loop control

TSL has familiar constructs for doing things repetitively or until an expression

evaluates to false.

The following code contains an example iteration:

list = {"One", "Two", "Three", "Four", "Five", "Six"}

--

--------------- For loop ---------------

--

print("Counting from one to three:")
for element = 1, 3 do

print(element, list[element])

end
print("Counting from one to four,")
print("in steps of two:")
for element = 1, 4, 2 do

print(element, list[element])

end

--

--------------- WHILE loop ---------------

--

-- Will exit when list[element] = nil

print("Counting elements in list")
print("on numeric index")
element = 1
while list[element] do

list[element] = nil

print(element, list[element])
element = element + 1

end

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-42 3700S-901-01 Rev. C / July 2008

--

--------------- REPEAT loop ---------------

--

print("Counting elements in list")
print("using repeat")
element = 1
repeat

print(element, list[element])
element = element + 1

until not list[element]

Output of code above:

Counting from one to three:
1 One
2 Two
3 Three
Counting from one to four,
in steps of two:
1 One
3 Three
Counting elements in list
on numeric index
1 One
2 Two
3 Three
4 Four
5 Five
6 Six

Counting elements in list
using repeat
1 One
2 Two
3 Three
4 Four
5 Five
6 Six

Standard libraries

In addition to the standard programming constructs above, TSL includes

standard libraries that contain useful functions for string manipulation,

mathematics, and more. TSL also includes instrument control extension

libraries, which provide programming interfaces to the instrumentation

accessible by the TSPTM. These libraries are automatically loaded when the TSP

starts and do not need to be managed by the programmer.

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-43

Base library functions

print(x) Prints the argument x to the active host interface, using

the tostring() function to convert x to a string.

collectgarbage([limit]) Sets the garbage-collection threshold to the given limit (in

Kbytes) and checks it against the byte counter. If the new

threshold is smaller than the byte counter, then TSL

immediately runs the garbage collector. If the limit

parameter is absent, it defaults to 0 (thus forcing a

garbage-collection cycle). See NOTE below for more

information.

gcinfo() Returns the number of Kbytes of dynamic memory that

TSPTM is using.

tonumber(x [,base]) Returns x converted to a number. If x is already a

number, or a convertible string, then the number is

returned; otherwise, it returns nil.

An optional argument specifies the base to interpret the

numeral. The base may be any integer between 2 and

36, inclusive. In bases above 10, the letter A (in either

upper or lower case) represents 10, B represents 11, and

so forth, with Z representing 35. In base 10, the default,

the number may have a decimal part, as well as an

optional exponent. In other bases, only unsigned integers

are accepted.

tostring(x) Receives an argument of any type and converts it to a

string in a reasonable format.

type(v) Returns the type of its only argument, coded as a string.

The possible results of this function are: nil, number,

Boolean, table, or function.

NOTE TSL does automatic memory management, which means you do not have to allocate

memory for new objects and free it when the objects are no longer needed. TSL

manages memory automatically by occasionally running a garbage collector to

collect all "dead" objects (that is, those objects that are no longer accessible from

TSL). All objects in TSL are subject to automatic management: tables, variables,

functions, threads, and strings.

 TSL uses two numbers to control its garbage-collection cycles. One number counts

how many bytes of dynamic memory TSL is using; the other is a threshold. When

the number of bytes crosses the threshold, TSL runs the garbage collector, which

reclaims the memory of all "dead" objects. The byte counter is adjusted, and then

the threshold is reset to twice the new value of the byte counter.

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-44 3700S-901-01 Rev. C / July 2008

String library functions

This library provides generic functions for string manipulation, such as finding

and extracting substrings. When indexing a string in TSL, the first character is at

position 1 (not 0 as in ANSI C). Indices may be negative and are interpreted as

indexing backward from the end of the string. Thus, the last character is at

position 1, and so on.

-- Returns the internal numerical code of the i-th

character of string s, or nil if the index is out of
range.

string.byte(s [,i])

-- Receives 0 or more integers. Returns a string with
length equal to the number of arguments, in which each
character has the internal numerical code equal to its
corresponding argument.

string.char(i1, i1, …)

-- Returns a formatted version of its variable number of
arguments following the description given in its first
argument, which must be a string. The format string
follows the same rules as the print family of ANSI C
functions. The only differences are that the

options/modifiers *, l, L, n, p, and h are not supported.

The options c, d, E, e, f, g, G, I, o, u, X, and x all

expect a numeric argument, where s expects a string

argument. String values to be formatted with %s cannot
contain embedded zeros.

string.format(fs, e1, e2, …)

-- Returns the length of the strings.

string.len(s)

-- Returns a copy of the string s with all uppercase
letters changed to lowercase.

string.lower(s)

-- Returns a string that is the concatenation of n copies

of the string s.

string.rep(s, n)

-- Returns the substring of s that starts at i and continues

until j. i and j may be negative. If j is absent, then it
is assumed to be equal to –1, which is the same as the

string length. In particular, the call string.sub(s,1,j)

returns a prefix s with length j, and string.sub(s, -i)

returns a suffix s with length i.

string.sub(s, i [,j])

-- Returns a copy of the string s with all lowercase
letters changed to uppercase.

string.upper(s)

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP Programming Fundamentals

3700S-901-01 Rev. C / July 2008 2-45

Math library functions

This library is an interface to most of the functions of the ANSI C math library. All

trigonometric functions work in radians. The functions math.deg() and

math.rad() convert between radians and degrees.

Function Definition

math.abs(x) Returns the absolute value of the argument x.

math.acos(x) Returns the principal value of the trigonometric arc cosine function

of x.

math.asin(x) Returns the principal value of the trigonometric arc sine function of

x.

math.atan(x) Returns the principal value of the trigonometric arc tangent

function of x.

math.atan2(y,x) Returns the principal value of the trigonometric arc tangent

function of y/x.

math.ceil(x) Returns the smallest floating-point number not less than x whose

value is an exact mathematical integer.

math.cos(x) Returns the trigonometric cosine function of x.

math.deg(x) Returns the value of x in degrees, where x is in radians.

math.exp(x) Returns the exponential function of x; that is, ex, where e is the

base of the natural logarithms.

math.floor(x) Returns the largest floating-point number not greater than x

whose value is an exact mathematical integer.

math.log(x) Returns the natural logarithm function of x.

math.log10(x) Returns the base-10 logarithm function of x.

math.max(x, y, …) Returns the maximum value of its numeric argument(s).

math.min(x, y, …) Returns the minimum value of its argument(s).

math.mod(x, y) Returns an approximation to the mathematical value f such that f

has the same sign as x, the absolute value of f is less than the

absolute value of y, and there exists an integer k such that

k*y+f = x.

math.pi Variable containing the value of (3.141592654).

math.pow(x, y) Returns xy.

math.rad(x) Returns the value of x in radians, where x is in degrees.

math.sin(x) Returns the trigonometric sine function of x.

math.sqrt(x) Returns the non-negative square root of x.

math.tan(x) Returns the trigonometric tangent function of x.

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

2-46 3700S-901-01 Rev. C / July 2008

Function Definition

math.frexp() Splits x into a fraction f and exponent n, such that f is 0.0 or

0.5 <= | f | <= 1.0, and f * 2n is equal to x. Both f

and n are returned: f,n = math.frexp(x).

math.ldexp(x, n) Returns the inverse of the math.frexp() function; it computes the

value x * 2n.

math.random([x],[
y])

When called without an argument, returns a pseudo-random real

number in the range [0, 1].

When called with number x, returns a pseudo-random integer in

the range [1,n].

When called with two arguments, x and y, returns a pseudo-

random integer in the range [x, y].

math.randomseed(x
)

Sets a "seed" for the pseudo-random generator. Equal seeds

produce equal sequences of numbers.

In this section:

Introduction ... 3-1

Using groups to manage nodes on TSP-LinkTM network . 3-4

Running parallel test scripts .. 3-6

Using the data queue for real-time communication 3-8

Copying test scripts across the TSP-LinkTM network 3-8

Removing stale values from the reading buffer 3-9

Commands related to TSP advanced features 3-10

Introduction

Use the TSP advanced features to run test scripts in parallel, to manage

resources allocated to test scripts running in parallel, and to use the data queue

to facilitate real-time communication between nodes on the TSP-Link network.

Running test scripts in parallel improves functional testing, provides higher

throughput, and expands system flexibility.

There are two methods you can use to run test scripts in parallel:

 Create multiple TSP-Link networks

 Use a single TSP-Link network with groups

The following figure displays the first method, which consists of multiple

TSP-Link networks. Each TSP-Link network has a master node and a GPIB

connection to the PC.

Section 3

TSP Advanced Features

Section 3: TSP Advanced Features Series 3700 System Switch/Multimeter Reference Manual

3-2 3700S-901-01 Rev. C / July 2008

Figure 3-1: Multiple TSP-Link networks

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

3700S-901-01 Rev. C / July 2008 3-3

The second method to run parallel test scripts is to use groups with a single

TSP-Link network. A group consists of one or more nodes with the same group

number. Each group on the TSP-Link network can run different test scripts at the

same time (in parallel).

The following figure displays a TSP-Link network with groups. This method

requires one TSP-Link network and a single GPIB connection to the PC.

Figure 3-2: Single TSP-Link network with groups

Section 3: TSP Advanced Features Series 3700 System Switch/Multimeter Reference Manual

3-4 3700S-901-01 Rev. C / July 2008

The following table describes the functions of a single TSP-Link network. Each

group in this example runs multiple test scripts at the same time or in parallel

(see the previous figure).

TSP-Link network group functions

Group

number
Group members Current function

0 Master node

 Initiates and runs a test script on

Node 2

 Initiates and runs a test script on

Node 5

 Initiates and runs a test script on

Node 6

1

Group leader

Node 2

 Runs the test script initiated by the

master node

 Initiates remote operations on Node 3

Node 3
 Performs remote operations initiated

by Node 2

2

Group leader

Node 5

 Runs the test script initiated by the

master node

 Initiates remote operations on Node 4

Node 4
 Performs remote operations initiated

by Node 5

3
Group leader

Node 6

 Runs the test script initiated by the

master node

TSP-LinkTM has three synchronization lines that function similar to the Digio

synchronization lines. See digio functions and attributes (on page 13-11) and

Hardware trigger modes (on page 8-18) for more detailed information.

Using groups to manage nodes on TSP-LinkTM network

The primary purpose of a group is to assign each node to run different test

scripts at the same time (in parallel). Each node must belong to a group; a group

can consist of one or more members. Group numbers are not assigned

automatically; you must use the Instrument Control Library (ICL) (on page 12-1)

commands to assign each node to a group.

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

3700S-901-01 Rev. C / July 2008 3-5

Master node overview

The master node is always the node that coordinates activity on the TSP-Link

network. All nodes assigned to group 0 belong to the same group as the master

node.

The following list describes the functionality of the master node:

 The only node that can send the execute command on a remote node

 Cannot initiate remote operations on any node in a remote group if any node

in that remote group is performing an overlapped operation

 Sends the waitcomplete command to wait for the local group that the

master node belongs to, to wait for a remote group, or to wait for all nodes

on the TSP-Link network to complete overlapped operations

Group leader overview

Each group has a dynamic group leader. The last node in a group running any

operation initiated by the master node is the group leader.

The following list describes the functionality of the group leader:

 Runs operations initiated by the master node

 Initiates remote operations on any node with the same group number

 Cannot initiate remote operations on any node with a different group number

 Can send the waitcomplete command without a parameter to wait for all

nodes assigned to the same group number

Assigning groups

Group numbers can range from 0 (zero) to 64. The default group number is 0.

You can change the group number at any time.

Use the following code to dynamically assign nodes to a group.

Note the following:

 Each time the node powers off, the group number for that node changes to 0

 Replace N with the node number

 N represents the node number that runs the test scripts and the TSL code

 Each time the node powers off, the group number for that node changes to 0

 Replace G with the group number

-- Assigns the node to a group.

node[N].tsplink.group = G

Section 3: TSP Advanced Features Series 3700 System Switch/Multimeter Reference Manual

3-6 3700S-901-01 Rev. C / July 2008

Reassigning groups

Use the following code to change group assignment. You can add or remove a

node to a group at anytime.

-- Assigns the node to a different group.

node[N].tsplink.group = G

Running parallel test scripts

You can issue the execute command from the master node to initiate test

script and TSL code on a remote node. The execute command places the

remote node in the overlapped operation state. As a test script runs on the

remote node, the master node continues to process other commands in parallel.

Note the following:

 Use the following code to send the execute command on a remote node.

 N represents the node number that runs the test script

 Replace N with the node number

To set the global variable on Node N equal to 2.5:

node[N].execute ("setpoint = 2.5")

The following code is an example of how to run a test script on a remote node.

NOTE For this example, myscript is defined on the local node.

To run myscript on Node N:

node[N].execute(myscript.source)

The following code demonstrates how to run a test script defined on a remote

node.

NOTE For this example, myscript is defined on the remote node.

To execute a script defined on the remote node:

node[N].execute("myscript()")

It is recommended that you copy large scripts to a remote node to improve

system performance. See Copying test scripts across the TSP-LinkTM network

(on page 3-8) for more information.

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

3700S-901-01 Rev. C / July 2008 3-7

Coordinating overlapped operations in remote groups

Errors occur if you send a command to a node in a remote group running an

overlapped operation. All nodes in a group must be in the overlapped idle state

before the master node can send a command to the group.

Use the waitcomplete command to:

 Group leader and master node: To wait for all overlapped operations

running in the local group to complete

 Master node only: To wait for all overlapped operations running on a

remote group to complete on the TSP-LinkTM network

 Master node only: To wait for all groups to complete overlapped operations

For additional information, see waitcomplete() (on page 3-16).

The following code is an example on how to issue the waitcomplete

command from the master node:

-- Waits for each node in group N to complete all
overlapped operations.

waitcomplete(N)
-- Waits for all groups on the TSP-Link network to complete

overlapped operations.

waitcomplete(0)

The group leader can issue the waitcomplete command to wait for the local

group to complete all overlapped operations.

 The following code is an example of how to issue the waitcomplete

command:

-- Waits for all nodes in a local group to complete all
overlapped operations.

waitcomplete()

Section 3: TSP Advanced Features Series 3700 System Switch/Multimeter Reference Manual

3-8 3700S-901-01 Rev. C / July 2008

Using the data queue for real-time communication

You cannot access the reading buffers or global variables from any node in a

remote group while a node in that group is performing an overlapped operation.

You can use the data queue to retrieve data from any node in a group

performing an overlapped operation. In addition, the master node and the group

leaders can use the data queue as a way to coordinate activities.

The data queue uses the first-in, first-out (FIFO) structure to store data. Nodes

running test scripts in parallel can store data in the data queue for real-time

communication. Each Series 3700 has an internal data queue. You can access

the data queue from any node at any time.

You can use the data queue to post numeric values, strings, and tables. Tables

in the data queue consume one entry. A new copy of the table is created when

the table is retrieved from the data queue. The copy of the table does not

contain any references to the original table or any subtables.

To add or retrieve values from the data queue and view the capacity, see the

Instrument Control Library (ICL) (on page 12-1).

Copying test scripts across the TSP-LinkTM network

To run a large script on a remote node, it is highly recommend that you copy the

test script to the remote node to increase the speed of test script initiation.

Use the code below to copy test scripts across the TSP-Link network. This

example creates a copy of a script on the remote node with the same name:

Note the following:

 Replace N with the number of the node that receives a copy of the script

 Replace myscript with the name of the script that you want to copy from

the local node

-- Adds the source code from myscript to the data queue.
node[N].dataqueue.add(myscript.source)
-- Creates a new script on the remote node
-- using the source code from myscript.
node[N].execute(myscript.name.." =

script.new(dataqueue.next(),

[["..myscript.name.."]])")

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

3700S-901-01 Rev. C / July 2008 3-9

Removing stale values from the reading buffer

The node that acquires the data stores the data for the reading buffer. To

optimize data access, all nodes can cache data from the node that stores the

reading buffer data.

Running TSL code remotely can return stale values from the reading buffer to

the cached data. If the values in the reading buffer change while the TSL code

runs remotely, another node can hold stale values. Use the clearcache

command to clear the cache.

The following code demonstrates how stale values occur and how to use the

clearcache command to clear the cache.

Note the following:

 Replace N with the node number

 Replace G with the group number

-- Creates a reading buffer on a node in a remote group.
node[N].tsplink.group = G
node[N].execute("rbremote = dmm.makebuffer(20) " ..
 "dmm.measure.count = 20 " ..
 "dmm.measure(rbremote)")

-- Creates a variable on the local node to

-- access the reading buffer.
rblocal = node[N].getglobal("rbremote")

-- Access data from the reading buffer.
print(rblocal[1])

-- Runs code on the remote node that updates the reading

buffer.
node[N].execute("dmm.measure(rbremote)")

-- Use the clearcache command if the reading buffer

contains cached data.
rblocal.clearcache()

-- If you do not use the clearcache command, the data

buffer values will never update. Every time the print
command is issued after the first print command, the
same data buffer values will print.

print(rblocal[1])

Section 3: TSP Advanced Features Series 3700 System Switch/Multimeter Reference Manual

3-10 3700S-901-01 Rev. C / July 2008

Commands related to TSP advanced features

dataqueue.add()

Function Store an item of data in the data queue.

Usage success = dataqueue.add(value[, timeout])

value: The data item to add.

timeout: Maximum amount of time in seconds to wait for room in the queue if it is full.

success: Success indication.

Remarks This function will add one entry to the data queue. If the queue is full, this function will

wait up to timeout seconds for room to be made available. This function will return

true if the value was added to the data queue. It will return false if the queue is full and

the item could not be added before the timeout expires.

The timeout value may only be specified when called from the local node. If a timeout

value is not given, the function will not wait for room in the queue if it is full.

NOTE If value is a table, this function will make a deep copy of it rather than

storing a reference to it. This will make a complete copy of all entries within

the table, including all nested tables.

dataqueue.CAPACITY

Attribute The maximum number of entries the data queue can hold.

Usage capacity = dataqueue.CAPACITY

capacity: Maximum number of entries in the data queue.

Remarks This constant indicates the maximum number of values that can be stored in the data

queue.

dataqueue.clear()

Function Clear the data queue.

Usage dataqueue.clear()

Remarks This function will remove all entries from the data queue. If any nodes are waiting to

add data to the queue, this method will force them to fail as if they timed out.

dataqueue.count

Attribute The number of entries currently stored in the data queue.

Usage count = dataqueue.count

count: Number of entries in the data queue.

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

3700S-901-01 Rev. C / July 2008 3-11

dataqueue.count

Remarks This attribute is a read-only attribute that indicates how many entries are in the data

queue.

dataqueue.next()

Function Retrieve an entry from the data queue.

Usage value = dataqueue.next([timeout])

timeout: Maximum amount of time in seconds to wait for data if the queue is empty.

value: The next entry from the data queue.

Remarks This function will remove the next entry from the data queue and return its value. If the

queue is empty, this function will wait up to timeout seconds for data to arrive. If no

data arrives before the timeout expires, this function will return nil.

The timeout value may only be specified when called from the local node. If a timeout

value is not given, the function will not wait for data to be put in the queue if it is empty.

NOTE If the entry is a table, this function will return a deep copy of its contents at

the time the table was added to the data queue rather than returning a

reference to the original table.

localnode.execute()

Function Execute TSL code.

Usage localnode.execute(chunk)

chunk: Source TSL code to execute.

Remarks This function will execute the given TSL code.

NOTE This command cannot actually be used on the local node. It is provided for

the sole purpose of executing scripts on this node from a remote master

node. The localnode prefix to the command is an artifact of command

organization and how remote commands are shared between nodes.

localnode.getglobal()

Function Get a the value of a global variable.

Usage value = localnode.getglobal(name)

name: The global variable name.

value: The value of the variable.

Section 3: TSP Advanced Features Series 3700 System Switch/Multimeter Reference Manual

3-12 3700S-901-01 Rev. C / July 2008

localnode.getglobal()

Remarks This function will return the value of the given global variable. This function is provided

to allow code running on a remote master node to retrieve values of variables from

that node. This function should not be used to retrieve the value of a global variable on

the local node when using the local node as the master. Accessing the variable

directly is far more efficient.

NOTE This command is provided for the sole purpose of accessing variables on

this node from a remote master node. The localnode prefix to the

command is an artifact of command organization and how remote

commands are shared between nodes.

localnode.setglobal()

Function Set a the value of a global variable.

Usage localnode.setglobal(name, value)

name: The global variable name to create.

value: The value to assign to the variable.

Remarks This function will assign the given value to a global variable. This function is provided

to assign values to variables from a remote master node. This function should not be

used to assign values to global variables on the local node when using the local node

as the master, assigning the value directly is far more efficient.

NOTE This command is provided for the sole purpose of accessing variables on

this NOTE from a remote master node. The localnode prefix to the

command is an artifact of command organization and how remote

commands are shared between nodes.

tsplink.group

Attribute The group number of a TSP-LinkTM node.

Usage groupnumber = tsplink.group

tsplink.group = groupnumber

groupnumber: The TSP-Link group number for the node.

Remarks This attribute controls the TSP-Link group number used for DTNS. Set this attribute to

zero to remove the node from all subgroups.

tsplink.master

Attribute The node number of the master node.

Usage master = tsplink.master

master: The node number of the master node.

Remarks This read-only attribute indicates which node is the master node.

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

3700S-901-01 Rev. C / July 2008 3-13

tsplink.trigger[N].assert()

Function Simulates the occurrence of the trigger and generates the corresponding event id.

Usage tsplink.trigger[N].assert()

N: The trigger line to assert (1–3).

Remarks This function will generate a trigger pulse on the given TSP-LinkTM trigger line.

Also see tsplink.trigger[N].clear() (on page 3-13)

tsplink.trigger[N].mode (on page 3-13)

tsplink.trigger[N].overrun (on page 3-15)

tsplink.trigger[N].release() (on page 3-15)

tsplink.trigger[N].stimulus (on page 13-298)

tsplink.trigger[N].wait() (on page 3-15)

tsplink.trigger[N].clear()

Function Clear the event detector for a trigger.

Usage tsplink.trigger[N].clear()

N: The trigger line (1–3).

Remarks A trigger‟s event detector remembers if an event has been detected since the last

tsplink.trigger[N].wait call. This function clears a trigger‟s event detector

and discards the previous history of the trigger line.

Also see tsplink.trigger[N].mode (on page 3-13)

tsplink.trigger[N].overrun (on page 3-15)

tsplink.trigger[N].release() (on page 3-15)

tsplink.trigger[N].stimulus (on page 13-298)

tsplink.trigger[N].wait() (on page 3-15)

tsplink.trigger[N].mode

Attribute The trigger operation/detection mode.

Usage To read trigger operation/detection mode:

mode = tsplink.trigger[N].mode

To write trigger operation/detection mode:

tsplink.trigger[N].mode = mode

N: The trigger line (1–3).

mode: Trigger mode.

Section 3: TSP Advanced Features Series 3700 System Switch/Multimeter Reference Manual

3-14 3700S-901-01 Rev. C / July 2008

tsplink.trigger[N].mode

Remarks This attribute controls the mode in which the trigger event detector as well as the

output trigger generator will operate on the given trigger line. mode can be one of the

following values:

tsplink.TRIG_BYPASS

Allow direct control of the line.

tsplink.TRIG_EITHER

Detect rising or falling edge triggers as input. Assert a TTL-low pulse for output.

tsplink.TRIG_FALLING

Detect falling edge triggers as input. Assert a TTL-low pulse for output.

tsplink.TRIG_RISING

Use digio.TRIG_RISINGA if the line is in the high output state. Use

digio.TRIG_RISINGM if the line is in the low output state.

tsplink.TRIG_RISINGA

Detect rising edge triggers as input. Assert a TTL-low pulse for output.

tsplink.TRIG_RISINGM

Assert a TTL-high pulse for output. Input edge detection is not possible in this mode.

tsplink.TRIG_SYNCHRONOUS

Detect falling edge triggers as input and latch them low. Assert a TTL-low pulse for

output.

tsplink.TRIG_SYNCHRONOUSA

Detect falling edge triggers as input and automatically latch and drive them low when

detected. Release a latched line for output.

tsplink.TRIG_SYNCHRONOUSM

Detect rising edge triggers as input. Assert a TTL-low pulse for output.

Remarks,

continued

The default trigger mode for a line will be TRIG_BYPASS. In this mode, the line can be

directly controlled as a digital I/O line. When programmed to any other mode, the

output state of the I/O line is controlled by the trigger logic and the user-specified

output state of the line will be ignored.

For compatibility with older firmware, when the trigger mode is set to TRIG_RISING,

the user specified output state of the line will be examined. If the output state selected

when the mode is changed is high, the actual mode used will be TRIG_RISINGA. If

the output state selected when the mode is changed is low, the actual mode used will

be TRIG_RISINGM.

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

3700S-901-01 Rev. C / July 2008 3-15

tsplink.trigger[N].mode

Also see tsplink.trigger[N].assert (on page 3-12)

tsplink.trigger[N].clear() (on page 3-13)

tsplink.trigger[N].overrun (on page 3-15)

tsplink.trigger[N].release() (on page 3-15)

tsplink.trigger[N].stimulus (on page 13-298)

tsplink.trigger[N].wait() (on page 3-15)

tsplink.trigger[N].overrun

Attribute Event detector overrun status.

Usage overrun = tsplink.trigger[N].overrun

overrun: Trigger overrun state.

N: The trigger line (1–3).

Remarks This attribute is a read-only attribute. It indicates if an event was ignored due to the

event detector being in the detected state when the event occurred. This is an

indication of the state of the event detector built into the synchronization line itself.

This attribute does not indicate if an overrun occurred in any other part of the trigger

model or in any other construct that is monitoring the event.

Also see tsplink.trigger[N].assert (on page 3-12)

tsplink.trigger[N].clear() (on page 3-13)

tsplink.trigger[N].mode (on page 3-13)

tsplink.trigger[N].release() (on page 3-15)

tsplink.trigger[N].stimulus (on page 13-298)

tsplink.trigger[N].wait() (on page 3-15)

tsplink.trigger[N].release()

Function Release a latched trigger.

Usage tsplink.trigger[N].release()

N: The trigger line (1–3).

Remarks This function will release a latched trigger on the given TSP-LinkTM trigger line.

Also see tsplink.trigger[N].assert (on page 3-12)

tsplink.trigger[N].clear() (on page 3-13)

tsplink.trigger[N].mode (on page 3-13)

tsplink.trigger[N].overrun (on page 3-15)

tsplink.trigger[N].stimulus (on page 13-298)

tsplink.trigger[N].wait() (on page 3-15)

Section 3: TSP Advanced Features Series 3700 System Switch/Multimeter Reference Manual

3-16 3700S-901-01 Rev. C / July 2008

tsplink.trigger[N].wait()

Function Wait for a trigger.

Usage triggered = tsplink.trigger[N].wait(timeout)

N: The trigger line (1–3).

timeout: Maximum amount of time in seconds to wait for the trigger.

triggered: Trigger detection indication.

Remarks This function will wait for an input trigger. If one or more trigger events were detected

since the last time tsplink.trigger[N].wait() or tsplink.trigger[N].clear() (on page 3-13)

was called, this function will return immediately.

After waiting for a trigger with this function, the event detector will be automatically

reset and rearmed. This is true regardless of the number of events detected.

waitcomplete()

Function Wait for all overlapped commands to complete.

Usage waitcomplete([group])

group: Optional TSP-LinkTM group on which to wait.

Remarks This function will wait for all overlapped operations within given group to complete. A

group number may only be specified from the master node. If no group is specified,

the local group will be used. If zero is given for the group, this function will wait for all

nodes in the system.

NOTE Any nodes that are not assigned to a group (their group number is zero) will

be considered to be part of the master's group.

This function will wait for all previously started overlapped commands to complete.

Currently the Series 3700 has no overlapped commands implemented. However,

other TSPTM-enabled products like the Series 3700 has overlapped commands.

Therefore, when the Series 3700 is a TSP master to a slave device with overlapped

commands, use this function to wait until all overlapped operations are completed.

In this section:

Front panel introduction .. 4-1

Display .. 4-4

Special keys and power switch 4-11

Operation keys .. 4-17

Range keys, cursor keys, and navigation wheel 4-32

Action keys .. 4-33

Front panel introduction

This section describes the Keithley Instruments Series 3700 System

Switch/Multimeter front panels.

The menu options under the CHAN key and CONFIG CHAN menus vary,

depending on the channel type of the selected channel. When selecting a range

of channels, all channel types might need to match for some operations like read

and write of a Digital I/O channel or opening and closing of Switch channels.

Some operations, like reset(), work with a range of mix channel types.

NOTE Not all models will have a digital multimeter (DMM) installed. All

DMM-related documentation is not applicable to those models.

If your model does not have a front panel, see the following sections to make the

appropriate changes.

 GPIB address with gpib.address (on page 13-187) command.

 LAN configuration using LAN functions and attributes (on page 13-190).

Use the menu system to scan channels, with the following limitations:

 You can add digital I/O and totalizer channels to a front panel scan list for

reading by using the INSERT key (ICL equivalent of scan.add() (on page

13-230)).

 You cannot add digital I/O and totalizer channels to a front panel scan list for

writing (ICL equivalent of scan.addwrite() (on page 13-231)).

 You cannot add DAC channels to a front panel scan list for writing or

reading.

 Pressing the INSERT key with a DAC channel selected generates an error

message.

Section 4

Using the Front Panel

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-2 3700S-901-01 Rev. C / July 2008

NOTE Only widths of one are supported by the front panel when reading or

writing to a Digital I/O channel.

Figure 4-1: Model 3706 System Switch/Multimeter

Item Description

1 Special keys and power switch (on page 4-11)

2 Operation keys (on page 4-17)

3 Range keys, cursor keys, and navigation wheel (on page 4-32)

4 Action keys (on page 4-33)

5 Display (on page 4-4)

6 USB connector

Figure 4-2: Model 3706-S System Switch (no DMM)

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-3

NOTE To see current settings for LAN, see the applicable lan.status.*

commands (for example, to see the present IP address of the Series

3700, send the following command: lan.status.ipaddress (on

page 13-201).

Figure 4-3: Model 3706-NFP System Switch/Multimeter

Figure 4-4: Model 3706-SNFP System Switch (no DMM)

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-4 3700S-901-01 Rev. C / July 2008

Display

The Series 3700 display provides visual information on the present active

channel, including the channel selected (or range or pattern), channel state, last

DMM measurement reading (where applicable), DMM settings (where

applicable), and error indications. The display and the navigation wheel provide

a way to change the active channel or channel ranges, as well as access, view,

and edit the various menus and menu items.

The Series 3700 has three LEDs on the front panel; these LEDs represent 1588

status, LAN status, and power.

 When you turn on the unit, the power LED is illuminated.

 When the instrument is connected through the Ethernet with no errors, the

LAN status LED is illuminated. However, the LAN status LED is off when the

instrument is not connected through the Ethernet or there is a connection

problem.

 When you press the identify option (ID button) on the home web page for

the Series 3700, the LAN status LED blinks.

 The 1588 status LED indicates 1588 operation. When this LED is off, the

1588 feature is disabled or improperly configured.

 The LED blinks at a one-second rate when the instrument is the 1588

master. If the instrument is a slave, the LED will not blink.

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-5

See the following figure (labeled "Active channel display example") for an active

channel example. The 4W and AUTO range annunciators are lit (1). Also, the

active channel is 1004 (Slot 1, Channel 004) (2). The present state of the

channel is open and it has two poles (3). The present state of the attributes for

this channel (4) are:

 4W function set for AUTO range

 Dry-circuit ohms disabled (DRY-)

 Offset compensation off (OC-).

Other attributes, such as NPLC, are available for this specific active channel

(1004) as indicated by arrow (5) being lit. View them by turning the navigation

wheel (6) to scroll through the attribute list.

NOTE Access attribute and menu lists that are larger than the display by

turning the navigation wheel (6). Displayed arrows (5) indicate

additional attributes or menu items (as applicable) that are available

by turning the navigation wheel (6) in the direction the arrow points. If

an arrow (5) is not displayed, there are no additional menu choices in

that direction. Switch-only systems have none of these features.

Figure 4-5: Active channel display example

The top line of the display (1) contains the following annunciators:

Annunciator Description

* (asterisk) Readings are being stored in the selected reading buffer. This is OFF when no buffer

is selected or the selected buffer is full.

4W Displays 4-wire resistance or RTD temperature reading.

AUTO Auto range enabled for the selected DMM function.

EDIT Unit in edit mode (for front panel).

FILT Filter enabled for the selected DMM function.

LSTN Instrument addressed to listen over GPIB.

MATH mX+b, percent, or reciprocal (1/X) calculation enabled for the selected DMM

function.

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-6 3700S-901-01 Rev. C / July 2008

Annunciator Description

REL Relative enabled for selected DMM function.

REM Instrument in bus remote mode or web interface control mode (all interfaces, LAN,

GPIB, or USB).

SRQ Service request over GPIB.

TALK Instrument addressed to talk over GPIB bus.

TRIG ON when the front panel has requested a reading from the DMM. OFF when the

reading is finished.

The bottom left line of the display (4) contains the DMM attribute symbols. The

symbols that appear are dependent on whether the attribute exists for the

selected function. The following table indicates the DMM attribute symbols that

may appear on the front panel. If the symbol has a value associated with it, the

third column in the table indicates the value definition.

Front panel DMM attribute Symbol Values

range R= AUTO or n, where n equals the range

nplc N= n, where n equals the NPLC

auto delay AD + for ON, 1 for ONCE, or 0 for OFF

auto zero AZ + for ON or – for OFF

line sync LS + for ON or – for OFF

limit LIM + for a limit enabled or – for limits disabled

detector bandwidth DBW 3, 30, or 300

threshold THR= n, where n indicates the threshold

aperture A= n, where n indicates the aperture setting

dry circuit DRY + for ON or – for OFF

offset compensation OC + for ON or – for OFF

thermocouple sensor K K_T/C N/A

thermocouple sensor T T_T/C N/A

thermocouple sensor E E_T/C N/A

thermocouple sensor R R_T/C N/A

thermocouple sensor S S_T/C N/A

thermocouple sensor B B_T/C N/A

thermocouple sensor N N_T/C N/A

thermistor THRM N/A

three-wire RTD 3RTD N/A

4-wire RTD 4RTD N/A

simulated reference junction RJ_SIM N/A

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-7

Front panel DMM attribute Symbol Values

internal reference junction RJ_INT N/A

external reference junction RJ_EXT N/A

NOTE To access the main menu, press the MENU key.

See the following figure for a menu example. In the example, the MAIN MENU is

displayed. Turn the navigation wheel (6) or press the CURSOR keys to scroll

through the available menu items. In the following figure's first display, there is a

right arrow indicator. This indicates there are additional menu items to the right.

In the figure's second display, both right and left arrows are active, indicating

that there are additional items in both directions. To select the highlighted

(flashing) menu item, press the navigation wheel or press the ENTER key.

Figure 4-6: MAIN MENU display

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-8 3700S-901-01 Rev. C / July 2008

Channel type indication

When selecting channels, the following information is displayed, which indicates

the channel type on the front panel.

 For switch channels, the name of the assigned DMM configuration (for

example, “nofunction”, “dcvolts”, “my4wire”, and so on) is displayed and

below it, the channel state (for example, OPN or CLS, along with 2 or 4 for

pole setting) is displayed.

 For digital I/O channels, DIGITAL IO appears and below the channel

number is DIG IN or DIG OUT to indicate the channel mode.

 For totalizer channels, TOTALIZER appears and below the channel number

is Fall Ed or Rise Ed to indicate mode edge.

 For DAC channels, DAC OUTPUT appears and below the channel number

is pv1, off, and so on to indicate protection, function, and output enable.

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-9

Using the front panel with non-switch channels

To read a value from the main front panel screen, select the channel and press

TRIG. To see a digital I/O channel in hex format (instead of normal binary) use

CONFIG+TRIG.

A star symbol (*) or exclamation point symbol (!) may appear after the reading.

The meaning of the symbol depends on channel type.

 A star symbol (*) appears after the reading to indicate that the reading

matches the MATCH setting for digital I/O and totalizer channels.

 An exclamation point symbol (!) appears after the reading to indicate an

overload state condition on that channel for digital I/O and DAC channels.

 An exclamation point symbol (!) appears after the reading to indicate an

overflow state condition on a totalizer channel.

 If the power state is OFF for totalizer or DAC channels, the display shows

“DISABLED” instead of any readings.

The following table lists the front panel channel attributes that indicate the

various channel mode settings (ICL equivalent channel.setmode() (on page

13-77)), channel output enable (ICL equivalent

channel.setoutputenable() (on page 13-78)), and channel label (ICL

equivalent channel.setlabel() (on page 13-74)). Some of the attributes

have alternate symbols, depending on the operation performing on front panel

and whether it is being used with the 6 or 12 character label symbol.

 For digital I/O and totalizer channels, the label symbol is listed first, followed

by a comma and then mode symbols. If the label is the factory default

setting, then only the mode is listed.

 For DAC channels, the label symbol is listed first, followed by a comma and

then mode symbols, followed by another comma and the output enable

symbol. If the label is the factory default setting, then only the mode and

output enable symbols are listed.

Front Panel

Channel Setting

Symbol Definition Symbol meaning

Channel label XXXXXX First 6 characters of

label

Used with single letter

symbols

 XXXXXXXXXX

XX

First 12 characters of

label

Used with the non-single

letter symbols

Digital I/O mode

settings

DIG IN Digital input mode Used with 12-character

label or no label

 DIG OUT Digital output mode Used with 12-character

label or no label

 DIG pOUT Digital output

protected mode

Used with 12 character

label or no label

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-10 3700S-901-01 Rev. C / July 2008

Front Panel

Channel Setting

Symbol Definition Symbol meaning

 I (uppercase

"i")

Digital input mode Used with 6-character

label

 O Digital output mode Used with 6-character

label

 P Digital output

protected mode

Used with 6-character

label

Totalizer mode

settings

Rise Ed Totalizer rising edge

mode

Used with 12-character

label or no label

 Fall Ed Totalizer falling edge

mode

Used with 12-character

label or no label

 Rise-TTL Totalizer rising edge

TTL level mode

Used with 12-character

label or no label

 Fall-TTL Totalizer falling edge

TTL level mode

Used with 12-character

label or no label

 Rise-RST Totalizer rising edge

read reset mode

Used with 12-character

label or no label

 Fall-RST Totalizer falling edge

read reset mode

Used with 12-character

label or no label

 RiseTRST Totalizer rising edge

TTL read reset mode

Used with 12-character

label or no label

 FallTRST Totalizer falling edge

TTL read reset mode

Used with 12-character

label or no label

 R Totalizer rising edge

mode

Used with 6-character

label

 F Totalizer falling edge

mode

Used with 6-character

label

DAC mode settings V Voltage function

mode

Used with 6-character

label

 I (uppercase

"i")

Current function

either 1 or 2 mode

Used with 6-character

label

 V1 Voltage function 1

mode

Used with 12-character

label or no label

 I1 Current function 1

mode

Used with 12-character

label or no label

 I2 Current function 2

mode

Used with 12-character

label or no label

 pV1 Protected voltage

function 1 mode

Used with 12-character

label or no label

 pI1 Protected current

function 1 mode

Used with 12-character

label or no label

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-11

Front Panel

Channel Setting

Symbol Definition Symbol meaning

 pI2 Protected current

function 2 mode

Used with 12-character

label or no label

DAC output enable

settings

Off Output enable is

disabled

Used with 6 or 12

character label

 On Output enable is

enabled

Used with 6 or 12

character label

Special keys and power switch

CONFIG key

Press the CONFIG key to access an attribute menu that enables you to

configure channels, channel patterns, DMM functions or settings, reading

buffers, scans, and other operations. Refer to the following for more information:

 CHAN key configuration (see "CONFIG CHAN key - SWITCH channel type"

on page 4-11)

 PATT key configuration (on page 4-30)

 SCAN key configuration (on page 4-31)

 DMM key configuration (on page 4-21)

 LIMIT key configuration (on page 4-27)

 REL key configuration (on page 4-30)

 FILTER key configuration (on page 4-25)

CONFIG CHAN key

CONFIG CHAN key - SWITCH channel type

Press the CONFIG key and then the CHAN key to open the CHANNEL

ATTRibute menu. If you press the CHAN key when a pattern is selected, the

unit goes into channel selection mode.

When changing attribute settings for a range of channels, the menu option for

the first channel specified in the range is highlighted. For example, selecting

Channels 3 to 5 on Slot 3 on the front panel (3003:3005) as a range shows the

current attribute setting for 3003 when an attribute menu is displayed. When the

attribute setting is selected for a range, the entire range of channels is updated

to that value. To view or set an individual attribute setting for only one channel,

be sure to select a single channel range. For example, 3003:3003 would only

affect Channel 3 on Slot 3, which is displayed as 3003 with the channel state

and poles setting below it.

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-12 3700S-901-01 Rev. C / July 2008

The CHAN ATTR menu contains:

 LABEL: Sets the label associated with the specified channel. From the front

panel, the label can be up to 12 characters. Remotely, the label may be up

to 20 characters. This option will not be displayed if multiple channels are

selected. Related ICL command: channel.setlabel() (on page 13-74).

 BACKPLANE: Opens the BACKPLANE menu. Use this menu to add or

remove backplane channels from the specified channels. Related ICL

command: channel.setbackplane() (on page 13-70).

 FORBID: Allows or prevents the closing of the specified channels. Related

ICL commands: channel.setforbidden() (on page 13-73) and

channel.clearforbidden() (on page 13-36).

 POLE: Sets the number of poles for the specified channels. Related ICL

command: channel.setpole() (on page 13-79).

 DELAY: Sets additional delay time for the specified channels. Related ICL

command: channel.setdelay() (on page 13-72).

 COUNT: Displays closure cycles for the specified channel. This option is not

displayed if multiple channels are selected. Related ICL command:

channel.getcount() (on page 13-48).

 DMM_CONFIG: Sets the DMM configuration associated with the specified

channels. Related ICL command: dmm.setconfig() (on page 13-168).

CONFIG CHAN key - DIGIO channel type

Press the CONFIG CHAN key to open the DIGIO ATTR menu. The DIGIO

ATTR menu is not available when a range of channels is selected. If a range is

selected, pressing CONFIG CHAN displays the following:

 DIGIO ATTR MENU

 <No Edit by Range, Use EXIT>

Therefore, to see the following options, select a single DIGIO channel.

LABEL

Enter up to 12 characters for the label for a channel. Related ICL command:

channel.setlabel() (on page 13-74).

DELAY

Enter the value for the delay in 1ms steps from 0 to 60 seconds for a channel.

Related ICL command: channel.setdelay() (on page 13-72).

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-13

MODE

Sets the mode attribute on a channel. Select one of the following options:

 INPUT

 OUTPUT

 OUTPUT_PROTECTED

Related ICL command: channel.setmode() (on page 13-77).

MATCH

Sets the match value on a channel. Enter the value as 8-bit binary. Related ICL

command: channel.setmatch() (on page 13-76).

MATCH_TYPE

Sets the match type on a channel. Select one of the following options:

 EXACT

 ANY

 NOT_EXACT

 NONE

Related ICL command: channel.setmatchtype() (on page 13-76).

STATE

Queries for the state of a channel and displays the value in the top line, labeled

by STATE=. Related ICL command: channel.getstate() (on page 13-56).

CONFIG CHAN key - TOTALIZER channel type

Press the CONFIG CHAN key to open the TOTAL ATTR menu. The TOTAL

ATTR menu is not available when a range of channels is selected. If a range is

selected, pressing CONFIG CHAN displays the following:

 TOTAL ATTR MENU

 <No Edit by Range, Use EXIT>

Therefore, to see the following options, select a single Totalizer channel.

LABEL

Enter up to 12 characters for the label for a channel. Related ICL command:

channel.setlabel() (on page 13-74).

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-14 3700S-901-01 Rev. C / July 2008

MODE

Sets the mode attribute on a channel. Select one of the following options:

 EDGE. Indicates the edge for the Totalizer channel to increment its count.

Select from one of the following options:

 FALLING

 RISING

 THRESHOLD. Indicates the threshold range. Select from one of the

following options:

 TTL

 NON_TTL

 RESET. Indicates if the count value gets reset after being read. Select from

one of the following options:

 ON

 OFF

Related ICL command: channel.setmode() (on page 13-77).

MATCH

Sets the match value on a channel. Enter the value between 0 and 65535.

Related ICL command: channel.setmatch() (on page 13-76).

MATCH_TYPE

Sets the match type on a channel. Select one of the following options:

 EXACT

 ANY

 NOT_EXACT

 NONE

Related ICL command: channel.setmatchtype() (on page 13-76).

STATE

Queries for the state of a channel and displays the value in the top line, labeled

by STATE=. Related ICL command: channel.getstate() (on page 13-56).

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-15

POWER

Sets the power state attribute on a channel. Select one of the following options:

 ENABLE

 DISABLE

Related ICL command: channel.setpowerstate() (on page 13-80)

CONFIG CHAN key - DAC channel type

Press the CONFIG CHAN key to open the DAC ATTR menu. The DAC ATTR

menu is not available when a range of channels is selected. If a range is

selected, pressing CONFIG CHAN displays the following:

 DAC ATTR MENU

 <No Edit by Range, Use EXIT>

Therefore, to see the following options, select a single DAC channel.

NOTE If the DAC channel has power set to DISABLE, then the menu choices

change to only show the option to change the power setting, until the

power is set to ENABLE.

LABEL

Enter up to 12 characters for the label for a channel. Related ICL command:

channel.setlabel() (on page 13-74).

DELAY

Enter the value for the delay in 1ms steps from 0 to 60 seconds for a channel.

Related ICL command: channel.setdelay() (on page 13-72).

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-16 3700S-901-01 Rev. C / July 2008

MODE

Sets the mode attribute on a channel. Select one of the following options:

 FUNCTION. Sets the desired function for a channel. Select one of the

following options:

 VOLTAGE

 CURRENT_1

 CURRENT_2

 PROTECT. Indicates if the protection mode for a channel is enabled. Select

one of the following options:

 AUTO

 OFF

Related ICL command: channel.setmode() (on page 13-77).

OUTPUT

Sets the output enable attribute on a channel. Select one of the following

options:

 ENABLE

 DISABLE

Related ICL command: channel.setoutputenable() (on page 13-78)

STATE

Queries for the state of a channel and displays the value in the top line, labeled

by STATE=. Related ICL command: channel.getstate() (on page 13-56).

POWER

Sets the power state attribute on a channel. Select one of the following options:

 ENABLE

 DISABLE

Related ICL command: channel.setpowerstate() (on page 13-80)

DISPLAY key

Press this key to toggle between the main and user display modes.

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-17

POWER switch

Press this switch to turn the Series 3700 on (I). Press it again to turn the Series

3700 off (O).

RESET switch

Use the RESET switch to restore the Series 3700 factory default LAN settings.

Refer to the LAN functions and attributes (on page 13-190) (lan.config.x,

where x represents the specific command) for factory default information.

Operation keys

CHAN key

Different menus are displayed for switch channel types or non-switch channel

types when the CHAN key is pressed.

CHAN key - switch channel type

Press the CHAN key to open the CHANNEL ACTION menu.

The CHANNEL ACTION menu contains the following items:

 OPEN: This menu item opens the specified channels for switching aspects.

Related Instrument Control Library (ICL) command: channel.open() (on

page 13-59).

 CLOSE: This menu item closes specified channels. These closures are

appended to the already closed channels. Related ICL command:

channel.close() (on page 13-37).

 EXCLOSE: This menu item closes the specified channels so that they are

exclusively closed. Related ICL command: channel.exclusiveclose() (on

page 13-41).

 EXSLOTCLOSE: This menu item exclusively closes specified channels on

the specified slots. Related ICL command: channel.exclusiveslotclose() (on

page 13-43).

 RESET: This menu item resets specified channels to factory default

settings. Resetting a channel deletes any channel patterns that contain that

channel. Related ICL command: channel.reset() (on page 13-68).

CHAN key - DIGIO channel type

Press the CHAN key to open the DIGIO ACTION menu. Unless noted, the menu

option supports a range of selected channels.

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-18 3700S-901-01 Rev. C / July 2008

READ

Displays a value from a channel as 8-bit binary. This menu option does not

appear if a range of channels is selected. Related ICL command: channel.read()

(on page 13-67).

NOTE Only widths of one are supported by the front panel when reading or

writing to a Digital I/O channel.

WRITE

Writes a value to a channel. Enter the value as 8-bit binary. Related ICL

command: channel.write() (on page 13-83).

NOTE Only widths of one are supported by the front panel when reading or

writing to a Digital I/O channel.

RESET_STATE

Resets the channel state. Related ICL command: channel.resetstatelatch() (on

page 13-70).

RESET

Restores the factory default settings of selected channels or all channels.

Related ICL command: channel.reset() (on page 13-68).

CHAN key - TOTALIZER channel type

Press the CHAN key to open the TOTAL ACTION menu. Unless noted, the

menu option supports a range of selected channels.

READ

Displays a value from a channel as a number between 0 and 65535. This menu

option does not appear if a range of channels is selected. Related ICL

command: channel.read() (on page 13-67).

WRITE

Writes a value to a channel. Enter the value between 0 and 65535. Related ICL

command: channel.write() (on page 13-83).

RESET_STATE

Resets the channel state. Related ICL command: channel.resetstatelatch() (on

page 13-70).

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-19

RESET

Restores the factory default settings of selected channels or all channels.

Related ICL command: channel.reset() (on page 13-68).

CHAN key - DAC channel type

Press the CHAN key to open the DAC ACTION menu. Unless noted, the menu

option supports a range of selected channels.

NOTE If the DAC channel has power set to DISABLE, then the menu choices

change to only show the option to change the power setting, until the

power is set to ENABLE.

READ

Displays a value from a channel. This menu option does not appear if a range of

channels is selected.

A number is displayed that is dependent on the channel‟s selected mode

function, as well as the card model of the selected channel. For example, a

number from one of the following ranges is displayed for a DAC channel on the

3750, based on the channel‟s selected mode function:

 -12 to +12 for MODE-FUNCTION as VOLTAGE_1

 0 to 20 mA for MODE-FUNCTION as CURRENT_1

 4 to 20 mA for MODE-FUNCTION as CURRENT_2

Related ICL command: channel.read() (on page 13-67).

WRITE

Writes a value from a channel. This menu option does not appear if a range of

channels is selected.

A number is displayed that is dependent on the channel‟s selected mode

function, as well as the card model of the selected channel. For example, a

number from one of the following ranges is displayed for a DAC channel on the

3750, based on the channel‟s selected mode function:

 -12 to +12 for MODE-FUNCTION as VOLTAGE_1

 0 to 20 mA in 1 uA steps for MODE-FUNCTION as CURRENT_1

 4 to 20 mA in 1 uA steps for MODE-FUNCTION as CURRENT_2

Related ICL command: channel.write() (on page 13-83)

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-20 3700S-901-01 Rev. C / July 2008

RESET_STATE

Resets the channel state. Related ICL command: channel.resetstatelatch() (on

page 13-70).

RESET

Restores the factory default settings of selected channels or all channels.

Related ICL command: channel.reset() (on page 13-68).

DELETE key

Press the DELETE key to delete the first occurrence of the selected channel(s)

or channel pattern (including function) from the scan list. If a selected item is not

contained in the scan list, no error is reported.

To remove all occurrences of a channel from the list, keep pressing the DELETE

key.

To view the current scan list after deleting items:

1. Press the SCAN key when on the main display.

2. Select the LIST option and press the ENTER key.

3. Use the navigation wheel or CURSOR keys to scroll through the list.

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-21

DMM key

Press the DMM key to open the DMM ACTION menu.

The DMM ACTION menu contains the following items:

 MEASURE: Takes measurements on the digital multimeter (DMM) without

using the trigger model. Related ICL command: dmm.measure() (on page

13-150).

 COUNT: Indicates the number of measurements to take when a

measurement is requested. Related ICL command: dmm.measurecount (on

page 13-151).

 LOAD: Recalls a user or factory DMM configuration. Use the navigation

wheel to scroll through available configurations. Related ICL command:

dmm.configure.recall() (on page 13-128).

 SAVE: Creates a DMM configuration with the pertinent attributes based on

the selected function, and associates it with the specified name. Related ICL

command: dmm.configure.set() (on page 13-129).

 OPEN: Opens the specified channel and/or channel pattern. Related ICL

command: dmm.open() (on page 13-154).

 CLOSE: Closes the specified channel or channel pattern in preparation for a

DMM measurement. Related ICL command: dmm.close() (on page 13-123).

 RESETFUNC: Returns the DMM aspects of the system for only the active

function to factory default settings. Related ICL command: dmm.reset() (on

page 13-161).

 RESETALL: Returns all DMM functions of the instrument to the factory

default settings. Related ICL command: dmm.reset() (on page 13-161).

DMM key configuration

Press the CONFIG key and then the DMM key to open a DMM attribute menu

for the active function. For example, if the DCV function is active, pressing the

CONFIG key and then the DMM key opens the DC VOLT ATTR menu.

Each function only has access to the applicable attributes for that function. Brief

definitions of the available attributes are contained in the following paragraphs.

Refer to the appropriate ICL for additional attribute information in Instrument

Control Library (ICL) (on page 12-1).

APERTURE

Configures the aperture setting for the active DMM function in seconds. Related

ICL command: dmm.aperture (on page 13-110).

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-22 3700S-901-01 Rev. C / July 2008

AUTODELAY

Configures the auto delay setting for the active DMM function. Related ICL

command: dmm.autodelay (on page 13-112).

AUTORANGE

Configures the auto range setting for the DMM. Related ICL command:

dmm.autorange (on page 13-113).

AUTOZERO

Configures the auto zero setting for the DMM. Related ICL command:

dmm.autozero (on page 13-114).

DBREF

Configures the DB reference setting for the DMM in volts. Related ICL

command: dmm.dbreference (on page 13-131).

DETECTBW

Configures the detector bandwidth setting for the selected DMM function. For

more information, see Bandwidth (on page 5-7). Related ICL command:

dmm.detectorbandwidth (on page 13-132).

DIGITS

Configures the display digits setting for the selected DMM function. For more

information, see Digits ICL programming (on page 5-4). Related ICL command:

dmm.displaydigits (on page 13-132).

DRYCIRCUIT

Configures the dry circuit setting for the selected DMM function. Related ICL

command: dmm.drycircuit (on page 13-133).

FILTER

Opens the FILTER menu for the selected DMM function. See FILTER key

configuration (on page 4-25).

FUNC

Displays a menu that allows you to scroll through the available DMM functions.

Use the navigation wheel or CURSOR keys to scroll the menu options and press

ENTER as soon as the desired function is highlighted. Related ICL command:

dmm.func (on page 13-137).

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-23

INPUTDIV

Enables or disables the 10M input divider. Related ICL command:

dmm.inputdivider (on page 13-140).

LIMIT

Opens the LIMIT menu for the selected DMM function. See LIMIT key

configuration (on page 4-27).

LINESYNC

Enables or disables line sync during measurements.

Related ICL command: dmm.linesync (on page 13-144).

MATH

Selecting the MATH menu item opens the MATH MENU. Items contained in this

menu are:

 ENABLE: Enables or disables math operation on measurements. Related

ICL command: dmm.math.enable (on page 13-147).

 FORMAT: Specifies the math operation to perform on measurements.

Related ICL command: dmm.math.format (on page 13-147).

 BFACTOR: Specifies the offset for the y = mX + b operation. Related ICL

command: dmm.math.mxb.bfactor (on page 13-148).

 MFACTOR: Specifies the scale factor for the y = mX + b operation. Related

ICL command: dmm.math.mxb.mfactor (on page 13-149).

 MXBUNITS: Specifies the unit character for the y = mX + b operation.

Related ICL command: dmm.math.mxb.units (on page 13-149).

 PERCENT: Specifies the constant to use for the percent operation. Related

ICL command: dmm.math.percent (on page 13-150).

For more information, see:

 mX+b (on page 6-4)

 Reciprocal (1/X) (on page 6-7)

 Percent (on page 6-6)

NPLC

Configures the integration rate in line cycles for the DMM. Related ICL

command: dmm.nplc (on page 13-152).

OFFSETCOMP

Configures the offset compensation setting for the DMM. Related ICL command:

dmm.offsetcompensation (on page 13-153).

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-24 3700S-901-01 Rev. C / July 2008

OPENDETECT

Configures the state of the thermocouple or 4-wire ohms open detector that is

being used. Related ICL command: dmm.opendetector (on page 13-155).

RANGE

Configures the range of DMM for the selected function for one channel type. For

more information, see Range (on page 5-1). Related ICL command: dmm.range

(on page 13-156).

REL

Opens the REL menu for the selected DMM function. See REL key configuration

(on page 4-30).

THERMO

Selecting the THERMO menu item opens the THERMO menu. Items contained

in this menu are:

 REFJUNCT: Allows selection of the reference junction to use. Available

choices are: SIMULATED, EXTERNAL, or INTERNAL. Related ICL

command: dmm.refjunction (on page 13-157).

 SIMREF: Specifies the simulated reference temperature for thermocouples.

Related ICL command: dmm.simreftemperature (on page 13-169).

 THERMISTOR: Specifies the type of thermistor. Related ICL command:

dmm.thermistor (on page 13-170).

 THERMOCOUPLE: Specifies the thermocouple type. Related ICL

command: dmm.thermocouple (on page 13-171).

 TRANSDUCER: Selects the transducer type (THERMOCOUPLE,

THERMISTOR, 3RTD, or 4RTD). Related ICL command: dmm.transducer

(on page 13-173).

 THREERTD: Specifies the type of 3-wire RTD. Related ICL command:

dmm.threertd (on page 13-172).

 FOURRTD: Specifies the type of 4-wire RTD. Related ICL command:

dmm.fourrtd (on page 13-137).

 USER: Specifies USER type of RTD (ALPHA, BETA, DELTA, or ZERO).

Related ICL commands: dmm.rtdalpha (on page 13-162), dmm.rtdbeta (on

page 13-163), dmm.rtddelta (on page 13-164), dmm.rtdzero (on page 13-

165).

THRESHOLD

Configures the threshold range. Related ICL command: dmm.threshold (on page

13-173).

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-25

UNITS

Configures the units for voltage and temperature measurements. Related ICL

command: dmm.units (on page 13-174).

ENTER key

Press the ENTER key to accept the current selection or bring up the next menu

options.

NOTE Pressing the navigation wheel performs the same function as the

ENTER key.

EXIT key

Press the EXIT key to:

 Cancel the selection and to return to the previous menu display.

 Exit remote operation.

 Abort a scan that is running.

 Abort a script that is executing.

FILTER key

Press the FILTER key to enable and disable the filter for selected function.

When the filter is enabled, the FILT annunciator will light. See Filter (on page 5-

8) for more information.

FILTER key configuration

Press the CONFIG key and then the FILTER key to open the FILTER menu.

The FILTER menu contains the following menu items:

 ENABLE: Enables or disables filtered measurements for the selected DMM

function. Related ICL command: dmm.filter.enable (on page 13-134).

 COUNT: Indicates the filter count setting for the selected DMM function.

Related ICL command: dmm.filter.count (on page 13-134).

 TYPE: Indicates the filter averaging type for the DMM measurements on the

selected DMM functions (MOVING or REPEAT). Related ICL command:

dmm.filter.type (on page 13-135).

 WINDOW: Indicates the filter window for the DMM measurements (0 to 10%

in 0.1% increments). Related ICL command: dmm.filter.window (on page 13-

136).

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-26 3700S-901-01 Rev. C / July 2008

FUNCtion key

Each press of the FUNC key immediately configures the DMM for the next

function in the list:

 dcvolts: DC voltage

 acvolts: AC voltage

 dccurrent: DC current

 accurrent: AC current

 twowireohms: 2-wire ohm (resistance)

 fourwireohms: 4-wire ohm (resistance)

 commonsideohms: Common-side ohm (resistance)

 frequency: Frequency

 period: Period

 continuity: Continuity

 temperature: Temperature

For example, if the DMM function is configured for dcvolts, pressing the FUNC

key four times will configure the DMM for acvolts, then for dccurrent, then for

accurrent, and then finally for twowireohms, which ends up as the active function

on the DMM. If you do not want the DMM to be momentarily configured for the

other functions while getting to desired one then, press the CONFIG key

followed by the FUNC key. Next, scroll to the desired function and press the

ENTER key when the desired function is highlighted (blinking). Related ICL

command: dmm.func (on page 13-137).

FUNC key configuration

Press the CONFIG key and then the FUNC key to display a menu that allows

you to scroll through the available DMM functions. Turn the navigation wheel or

press the CURSOR keys to scroll through available functions. Press the

navigation wheel or the ENTER key to make the displayed function active when

it is highlighted and blinking. While in the configuration mode of the FUNC key,

the function takes effect for the highlighted function only when the ENTER key is

pressed (the function does not change while scrolling).

INSERT key

Press the INSERT key to append the present channels to the scan list.

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-27

LIMIT key

Press the LIMIT key to cycle through the four combinations of limit state

settings:

 Limit1 and Limit2 off

 Limit1 on and Limit2 off

 Limit1 off and Limit2 on

 Limit1 and Limit2 on

LIMIT key configuration

Pressing the CONFIG key and then the LIMIT key opens the LIMIT menu.

Select LIMIT 1 or LIMIT 2 to open the desired LIMIT 1 or LIMIT 2 menu.

These menus contain the following items:

 ENABLE: Enables or disables limit testing. Related ICL command:

dmm.limit[Y].enable (on page 13-142).

 CLEAR: Clears the test results of the limit. Related ICL command:

dmm.limit[Y].clear() (on page 13-141).

 AUTOCLEAR: Indicates if the limit should be cleared automatically or not.

Related ICL command: dmm.limit[Y].autoclear (on page 13-141).

 LOWVAL: Sets the low limit value. Related ICL command:

dmm.limit[Y].low.value (on page 13-144).

 LOWFAIL: Queries for the low test results of the limit. Related ICL

command: dmm.limit[Y].low.fail (on page 13-143).

 HIGHVAL: Sets the high limit value. Related ICL command:

dmm.limit[Y].high.value (on page 13-143).

 HIGHFAIL: Queries for the high test results of limit. Related ICL command:

dmm.limit[Y].high.fail (on page 13-142).

LOAD key

Press the LOAD key to load scripts along with the Lua chunks added with

display.loadmenu.add() (on page 13-100) for execution. The LOAD TEST menu

is displayed.

The LOAD TEST menu contains the following items:

 USER: Provides access to Lua chunks specified by display.loadmenu.add()

(on page 13-100) (not scripts).

 SCRIPTS: Provides access to scripts created by the user. The scripts can

be directly executed.

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-28 3700S-901-01 Rev. C / July 2008

MENU key

Press the MENU key to open the MAIN menu.

The MAIN menu contains the following items:

 SCRIPT: Opens the SCRIPT menu that contains LOAD and SAVE menu

items.

 SETUP: Opens the SETUP menu that contains SAVE, RECALL,

POWERON, and RESET menu items.

 GPIB: Opens the GPIB menu that contains ADDRESS and ENABLE menu

items.

 LAN: Opens the LAN menu that contains STATUS, CONFIG, APPLY,

RESET, and ENABLE menu items.

 TSPLINK: Opens the TSPLINK menu that contains NODE and RESET

menu items.

 UPGRADE: Upgrades the firmware on the unit and installed cards (see

Upgrade procedure using USB flash drive). This menu includes three

options (YES, NO, and PREVIOUS).

 CHANNEL: Opens the CONNECT menu that allows you to select a rule

(BBM, MBB, or OFF), or to connect sequentially (ON or OFF setting).

Related ICL commands: channel.connectrule (on page 13-39) and

channel.connectsequential (on page 13-40).

 DISPLAY: Opens the DISPLAY menu. Select the TEST item to open the

DISPLAY TESTS menu, which contains KEYS and DISPLAY-PATTERNS

menu items. Use KEYS to verify the operation of the keys. Use DISPLAY-

PATTERNS to verify each segment of the display.

 DIGIO: Opens the DIGIO I/O menu that is used to set DIGIO-OUTPUT and

WRITE-PROTECT menu items.

 BEEPER: Enables or disables the beeper, along with selection KEYCLICK

option.

 SYSTEM-INFO: Opens the SYSTEM INFORMATION menu that can query

FIRMWARE, SERIAL#, and CAL information.

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-29

PATT key

Press the PATT key to open the PATTERN ACTION menu.

 If you press the PATT key, but no patterns have been created or if the unit is

powered up with the factory default settings, the only option that is displayed

is CREATE.

 If you press the PATT key after creating channel patterns, the name of an

existing pattern blinks, and you are in pattern selection mode. Use the

CURSOR keys or navigation wheel to scroll through the available patterns,

and press ENTER to select the one you want to use. The selected pattern is

used with the OPEN and CLOSE action keys, among others.

The PATTERN ACTION menu contains the following items:

 OPEN: Opens the specified channel pattern for switching aspects. Related

ICL command: channel.open() (on page 13-59).

 CLOSE: Closes the specified channel pattern. These closures are

appended to the already closed channels. Related ICL command:

channel.close() (on page 13-37).

 EXCLOSE: Closes the specified channel pattern so that the channels

associated with the pattern are exclusively closed. Related ICL command:

channel.exclusiveclose() (on page 13-41).

 EXSLOTCLOSE: Exclusively closes specified channels in the channel

pattern image for the specified slots. Related ICL command:

channel.exclusiveslotclose() (on page 13-43).

 CREATE: Creates a channel pattern from a snapshot and associates it with

the specified name. From the front panel, only the first 12 characters of the

name are visible. If no patterns exist in the system when the PATT key is

pressed, CREATE is the only menu item that is displayed. Related ICL

command: channel.pattern.snapshot() (on page 13-66).

 VIEW: Shows the channels associated with the pattern. Related ICL

command: channel.pattern.getimage() (on page 13-62).

 DELETE: Deletes a channel pattern. Related ICL command:

channel.pattern.delete() (on page 13-62).

 RESET: Resets the channels representing the image of the selected

channel pattern to the factory default settings. Also, the pattern is deleted

because resetting a channel causes any patterns that contain a channel

being reset to be deleted. Related ICL command: channel.reset() (on page

13-68).

NOTE CREATE is the only item that is displayed unless a pattern has been

selected.

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-30 3700S-901-01 Rev. C / July 2008

PATT key configuration

Press the CONFIG key and then the PATT key to open the PATTERN

ATTRibute menu.

The PATTERN ATTRibute menu contains the following item:

 DMM_CONFIG: Sets the DMM configuration associated with the specified

channel pattern. Use the navigation wheel to scroll through the available

DMM configurations. Related ICL command: dmm.setconfig() (on page 13-

168).

REL key

Press the REL key to enable and disable relative for the selected function.

When enabled, the REL annunciator is lit. See Relative (on page 6-1).

REL key configuration

Press the CONFIG key and then the REL key to open the RELATIVE OFFSET

menu.

The RELATIVE OFFSET menu contains the following menu items:

 ACQUIRE: Acquires an internal measurement to store as the REL level

value. Related ICL command: dmm.rel.acquire() (on page 13-158).

 ENABLE: Enables or disables relative measurement control for the DMM.

Related ICL command: dmm.rel.enable (on page 13-159).

 LEVEL: Sets a specific offset value to use for relative measurements for the

DMM. Related ICL command: dmm.rel.level (on page 13-160).

RUN key

Press the RUN key to run the last selected script or load menu item.

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-31

SCAN key

If the scan list is present, press the SCAN key to open the SCAN ACTION

menu.

The SCAN ACTION menu contains the following items:

NOTE Use the INSERT key to create and add the present active channel to

the scan list.

 BACKGROUND: Runs the scan. Related ICL command: scan.background()

(on page 13-232).

 CREATE: Displays following message: Use <INSERT> key.

 LIST: Displays the scan list (turn the navigation wheel to scroll). Related ICL

command: scan.list() (on page 13-237).

 CLEAR: Clears the scan list. Related ICL command (when sent with an

empty string): scan.create() (on page 13-234).

 RESET: Resets the scan settings to factory default values. Related ICL

command: scan.reset() (on page 13-242).

SCAN key configuration

Press the CONFIG key and then the SCAN key to open the SCAN ATTR menu.

The SCAN ATTR menu contains the following items:

 ADD: Instructs how to add an additional list of channels and/or channel

patterns to scan. When you select ADD from the SCAN ATTR menu, "Use

<INSERT> key" is displayed for a few seconds before going back to the

SCAN ATTR menu options. To add items to an existing scan list, press

INSERT.

NOTE Press the INSERT key when you are not in the SCAN ATTR

menu on the MAIN display.

 BYPASS: Enables or disables bypassing the first item in the scan. Related

ICL command: scan.bypass (on page 13-233).

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-32 3700S-901-01 Rev. C / July 2008

 MODE: Sets the scan.mode value to one of the following:

 OPEN_ALL, which is equivalent to scan.MODE_OPEN_ALL or 0

(default setting)

 OPEN_SELECT, which is equivalent to

scan.MODE_OPEN_SELECTIVE or 1

 FIXED_ABR, which is equivalent to scan.MODE_FIXED_ABR or 2

Related ICL command: scan.mode() (on page 13-239)

 MEAS_CNT: Sets the measure count value. Related ICL command:

scan.measurecount (on page 13-238)

 SCAN_CNT: Sets the scan count value. Related ICL command:

scan.scancount (on page 13-242)

SLOT key

Press the SLOT key to display information about the installed card(s) and the

main system. The information that is displayed includes firmware revisions,

model names, and model numbers. After pressing this key, scroll through all

available instruments, including the internal DMM (if installed), using the

CURSOR keys, navigation wheel, or multiple presses of the SLOT key.

TRIG key

Press the TRIG key to trigger a measurement equivalent to the dmm.measure()

(on page 13-150) command. If the TRIG key is held for more than two seconds,

the unit will go into continuous trigger mode and take measurements every .25

seconds (if possible, as defined by DMM attributes). Press TRIG or EXIT to stop

continuous trigger mode.

The TRIG key can also be tied to the system trigger model and event system

(see Trigger model (on page 8-4)).

Range keys, cursor keys, and navigation wheel

AUTO key

Press the AUTO key to enable or disable autorange for the selected function.

The AUTO annunciator lights when enabled.

CURSOR keys

Press the  CURSOR  keys in a menu to control the cursor position when

making selections or changing values.

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-33

Navigation wheel

Turn the navigation wheel to scroll to the desired menu option or to change the

value of the selected numeric parameter. Pressing the navigation wheel has the

same functionality as pressing the ENTER key. See ENTER key (on page 4-25)

for more information.

When changing a multiple character value, such as an IP address or channel

pattern name, press the navigation wheel to enter edit mode, rotate the

navigation wheel to change the characters value as desired, but do not leave

edit mode. Use the CURSOR keys to scroll to the other characters and use the

navigation wheel to change their value as needed. Press the ENTER key when

finished changing all the characters.

RANGE keys

Press the RANGE keys  to select the next higher or lower measurement

range on the measurement display for the selected function.

If the Series 3700 displays the overflow message on a particular range, select a

higher range until an on-range reading is displayed. Use the lowest range

possible without causing an overflow to ensure best accuracy and resolution.

You can also use these keys when entering a range value from the front panel.

For details, see Auto ranging over the front panel (on page 5-3).

If you select a range of channels, that range must stop when the channel type

changes. Therefore, you can never select a range of channels which includes

different channel types.

For more information, see Range (on page 5-1).

Action keys

CLOSE key

Press the CLOSE key to close specified channels or channel patterns.

OPEN ALL key

Press the OPEN ALL key to open all closed channels.

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

4-34 3700S-901-01 Rev. C / July 2008

OPEN key

Press the OPEN key to open selected channels or channel patterns.

RATE key

Press the RATE key to set the measurement speed (fast, medium, or slow) for

the active or selected function. For more information, see Rate (on page 5-5).

RECall key

Press the RECall key to display stored readings and buffer statistics for selected

reading buffer. Use the  CURSOR  keys or turn the navigation wheel to

navigate through the buffer. For more information, see Recalling readings (on

page 7-5).

STEP key

Press the STEP key to step through the defined scan list, where each press

results in one scan step.

NOTE You cannot use an external trigger event, like digital I/O, for the

channel stimulus setting of the trigger model when using the STEP

key. For more information, see Scanning (on page 7-1) and Trigger

model (on page 8-4).

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

3700S-901-01 Rev. C / July 2008 4-35

STORE key

Press the STORE key to open the RD BUFF ACTION menu or <selected buffer

name> menu. For more information, see Buffer: Data Storage and Retrieval (on

page 7-1).

The RD BUFF ACTION menu contains the following items:

 CREATE: Allows creation of a reading buffer. When a new buffer is created,

you can enter the name and set the number of readings to store. The new

buffer is created with append mode ON and is automatically selected for

front panel use (store readings, clear, delete, save, and so on). Related

Instrument Control Library (ICL) command: dmm.makebuffer() (on page 7-

8).

 SELECT: Allows you to select a previously created reading buffer, which

you can use to store readings taken on the front panel.

 CLEAR: Removes readings from a selected buffer.

 SAVE: Allows you to save a selected reading buffer to a USB flash drive

(the flash drive must be installed and have enough available memory).

 DELETE: Lets you delete a selected reading buffer from the system. All

data associated with the deleted buffer will be lost. This is equivalent to

setting the reading buffer variable name to nil over the bus.

STORE key configuration

With a buffer selected, press the CONFIG key and then the STORE key to open

the RD BUFFER ATTR menu.

This menu contains the following menu items:

 CAPACITY: Displays the maximum number of readings that can be stored.

 COUNT: Displays the actual number of readings that have been stored.

 APPEND: Indicates the append mode setting of the reading buffer. For

buffers created on the front panel or web, this defaults to ON or enabled. For

buffers created over the bus, the default is OFF or disabled.

In this section:

Range ... 5-1

Digits ICL programming .. 5-4

Rate .. 5-5

Bandwidth ... 5-7

Filter .. 5-8

Range

The range setting is "remembered" by each measurement function. Selecting a

function returns the instrument to the last range setting for that function. You

cannot select a range that includes different channel types.

NOTE A power cycle or an instrument will clear "remembered" ranges.

Measurement ranges and maximum readings

The range that is selected affects both measurement accuracy as well as the

maximum measurable level. Input values that exceed the maximum readings

cause an "Overflow" message to be displayed.

Function Ranges Maximum reading

DCV (DC voltage) 100mV, 1V, 10V, 100V, 300V ± 303V

ACV (AC voltage) 100mV, 1V, 10V, 100V, 300V ± 303V

DCI (DC current) 10µA, 100µA, 1mA, 10mA,

100mA, 1A

± 3.1A

ACI (AC current) 1mA, 10mA, 100mA, 1A ± 3.1A

2 (2-wire ohm) 10 , 100 , 1k , 10k ,

100k , 1M , 10M , 100M

120M

4 (4-wire ohm) 1 , 10 , 100 , 1k , 10k ,

100k , 1M , 10M , 100M

120M

4 OC (4-wire ohm offset

compensated)

1 , 10 , 100 , 1k , 10k 12k

4 DRY+ (4-wire ohm dry

circuit)

1 , 10 , 100 , 1k , 10k 2.4k

Section 5

Range, Digits, Rate, Bandwidth, and Filter

Section 5: Range, Digits, Rate, Bandwidth, and Filter Series 3700 System Switch/Multimeter Reference Manual

5-2 3700S-901-01 Rev. C / July 2008

Function Ranges Maximum reading

TMP (temperature) -200°C to 1820°C Sensor dependent

FREQ (frequency) 100mV, 1V, 10V, 100V, 300V 3Hz to 500kHz

PER (period) 100mV, 1V, 10V, 100V, 300V 2µs to 333ms

CNT (continuity) 1k

Threshold adjustable 1 to

1000

CSΩ (common-side ohm) 1 , 10 , 100 , 1k , 10k ,

100k , 1M , 10M , 100M

120M

Temperature

There is no range selection for temperature measurements, which are

performed on a single fixed range. Depending on the sensor, the maximum

temperature readings range from -200°C to 1820°C.

Manual range keys

To change range, press the RANGE ▲ or ▼ key. The instrument changes one

range value of the active function per key press. The selected range is displayed

in the attribute list on the second line of the front panel display.

NOTE The manual range keys have no effect on temperature

measurements.

If the instrument displays the "Overflow" message on a particular range, select a

higher range until an on-range reading is displayed. For best accuracy and

resolution, use the lowest range available that does not cause an overflow.

Series 3700 System Switch/Multimeter Reference Manual Section 5: Range, Digits, Rate, Bandwidth, and Filter

3700S-901-01 Rev. C / July 2008 5-3

Auto ranging over the front panel

To enable auto range, press the AUTO key. The AUTO indicator turns on when

auto ranging is selected. While auto ranging is enabled, the instrument

automatically selects the best range to measure the applied signal. Auto ranging

should not be used when optimum speed is required.

NOTE The AUTO key has no effect on temperature measurements.

Up-ranging occurs at 120% of range. The Series 3700 will down-range when the

reading is <10% of nominal range.

To disable auto ranging, press the AUTO key. This will leave the instrument on

the present range.

You can also disable auto ranging by pressing the ▲ or ▼ key. However, this

may cause a range change.

Scanning

Each channel of scan configuration can be associated with a unique digital

multimeter (DMM) configuration (which includes a range setting). When a scan

completes, the DMM remains in the configuration associated with the last

completed measurement step. For remote programming, the <ch_list>

parameter is used to configure channels for a scan (see dmm.configure.set() (on

page 13-129), dmm.setconfig() (on page 13-168), scan.create() (on page 13-

234), and scan.add() (on page 13-230) commands, and the Scanning (on page

7-1) section for more details, including front panel operation).

Range remote programming (ICL)

Instrument control library (ICL) commands are sent to the Series 3700 when

controlling it over the bus. See Instrument Control Library (ICL) (on page 12-1)

for detailed information.

Selecting a manual range

The range is selected by specifying the expected reading as an absolute value

using the <n> parameter for the dmm.range (on page 13-156) command. The

Series 3700 will then go to the most sensitive range for that expected reading.

For example, if you expect a reading of approximately 3V, let the parameter

(<n>) equal 3 (dmm.range = 3) to select the 10V range.

Section 5: Range, Digits, Rate, Bandwidth, and Filter Series 3700 System Switch/Multimeter Reference Manual

5-4 3700S-901-01 Rev. C / July 2008

Selecting an auto range

Auto range is enabled by setting the dmm.autorange attribute (see

dmm.autorange (on page 13-113)) to either dmm.ON or 1. When auto range is

enabled, the range is changed automatically for the selected range value. When

auto range is disabled, the instrument remains at the selected range. To disable

auto range, either set the dmm.autorange attribute to dmm.OFF or 0, or send

a valid dmm.range attribute (see dmm.range (on page 13-156)).

Digits ICL programming

Set the dmm.displaydigits (on page 13-132) attribute to change the display

resolution for the Series 3700 from 3½ to 7½ digits. Each mainframe input

function can have its own unique digits setting. Digits has no effect on the

remote reading format. The number of displayed digits does not affect accuracy

or speed.

Scanning

When a scan is configured, each channel can have its own unique digits setting.

Setting digits

Even though the parameters for the dmm.displaydigits attribute (see

dmm.displaydigits (on page 13-132) for remote control or DIGITS under the

function attribute menu on front panel) are expressed as integers (3 to 7), you

can specify resolution using a real number. For example, to select 3½ digit

resolution, let <n> = 3.5. Internally, the instrument rounds the entered parameter

value to the nearest integer. Each mainframe input function can have its own

unique digits setting.

Series 3700 System Switch/Multimeter Reference Manual Section 5: Range, Digits, Rate, Bandwidth, and Filter

3700S-901-01 Rev. C / July 2008 5-5

Rate

The RATE key sets the integration time (measurement speed) of the A/D

converter. This controls how long the input signal is measured (also known as

aperture). The integration time affects the amount of reading noise, as well as

the ultimate reading rate of the instrument.

The integration time is specified in parameters based on a number of power line

cycles (NPLC), where 1 PLC for 60Hz is 16.67msec (1/60) and 1 PLC for 50Hz

is 20msec (1/50).

In general, the fastest integration time (0.1 PLC using the front panel RATE key,

or 0.0005 PLC from the bus or through the DMM > CONFIG NPLC menu)

results in increased reading noise and fewer usable digits, while the slowest

integration time (5 PLC using the front panel RATE key, or 15 PLC from the bus

or through the DMM > CONFIG NPLC menu) provides the best common-mode

and normal-mode rejection. In-between settings are a compromise between

speed and noise. To set the NPLC from 0.0005 to 15 on the front panel, press

the CONFIG key, and then press the DMM key to open the function attribute

menu. From the function attribute menu, select NPLC to dial in a specific value

for NPLC.

The Series 3700 has a parabola-like shape for its speed versus noise

characteristics. The Series 3700 is optimized for the 1 PLC to 5 PLC reading

rate. At these rates (lowest noise region in graph), the Series 3700 will make

corrections for its own internal drift and will still be fast enough to settle a step

response <100ms.

Figure 5-1: Speed versus noise characteristics

Section 5: Range, Digits, Rate, Bandwidth, and Filter Series 3700 System Switch/Multimeter Reference Manual

5-6 3700S-901-01 Rev. C / July 2008

The front panel RATE settings for all but the AC functions are explained as

follows:

 FAST sets integration time to 0.1 PLC. Use FAST if speed is of primary

importance (at the expense of increased reading noise and fewer usable

digits).

 MEDium sets integration time to 1 PLC. Use MEDium when a compromise

between noise performance and speed is acceptable.

 SLOW sets integration time to 5 PLC. SLOW provides better noise

performance at the expense of speed.

For the AC functions (ACV, ACV dB, and ACI), the RATE key sets integration

time and bandwidth. As listed in the following table, FAST sets NPLC to 1, while

the MEDium and SLOW NPLC settings are ignored.

Function Slow Medium Fast

DCV, DCI NPLC=5 NPLC=1 NPLC=0.1

ACV, ACI NPLC=X,

BW=3

NPLC=X, BW=30 NPLC=1,

BW=300

Ω2, Ω4, CSΩ NPLC=5 NPLC=1 NPLC=0.1

FREQ, PERIOD APER=0.250s APER=0.1s APER=0.01s

Continuity X X NPLC=0.006

NOTES:

 NPLC = Number of power line cycles.

 BW = Bandwidth (in Hz).

 APER = Aperture in seconds.

 X = Setting ignored (fixed NPLC).

You can use unique rate settings for each function when using the front panel or

the remote interface.

NOTE Rate cannot be set for continuity; it is fixed at 0.006PLC.

Series 3700 System Switch/Multimeter Reference Manual Section 5: Range, Digits, Rate, Bandwidth, and Filter

3700S-901-01 Rev. C / July 2008 5-7

Setting Rate from the front panel

The RATE key is used to set measurement speed from the front panel. Press

the RATE key until the desired speed message is displayed. The second line of

the display will contain the NPLC setting. Alternatively, use the NPLC option

under the function attribute menu (press CONFIG > DMM keys to display).

NOTE The Series 3700 uses internal references to calculate an accurate and

stable reading. When the NPLC setting is changed, each reference

will be automatically updated to the new NPLC setting before a

reading is generated. Therefore, frequent NPLC setting changes can

result in slower measurement speed.

Setting measurement speed from a remote interface

Use the dmm.aperture (on page 13-110) or dmm.nplc (on page 13-152)

command to set the measurement speed (integration time) over the bus.

Bandwidth

There are three bandwidth settings for ACV and ACI measurements. The RATE

setting determines the bandwidth setting as follows:

 SLOW: 3Hz to 30Hz

 MEDium: 30Hz to 300Hz

 FAST: 300Hz to 300MHz

When the SLOW bandwidth (3Hz to 30Hz) is chosen, the signal goes through an

analog root-mean-square (RMS) converter. The output of the RMS converter

goes to a fast (1kHz) sampling A/D and the RMS value is calculated from 1200

digitized samples (1.2s).

When the MEDium bandwidth (30Hz to 300Hz) is chosen, the same circuit is

used. However, only 120 samples (120ms) are needed for an accurate

calculation because the analog RMS converter has turned most of the signal to

DC.

Section 5: Range, Digits, Rate, Bandwidth, and Filter Series 3700 System Switch/Multimeter Reference Manual

5-8 3700S-901-01 Rev. C / July 2008

In the FAST bandwidth (300Hz to 300kHz), the output of the analog RMS

converter (nearly pure DC at these frequencies) is measured at 1 PLC (16.6ms).

For remote programming, the integration rate can be set from 0.0005PLC to

12PLC or 15PLC.

To achieve the best accuracy for ACV and ACI measurements, use the

bandwidth setting that best reflects the frequency of the input signal. For

example, if the input signal is 40Hz, then a bandwidth setting of 30 should be

used.

NOTE A rate command (dmm.nplc (on page 13-152) or dmm.aperture (on

page 13-110)) for ACV and ACI is only valid if the bandwidth for that

AC function is set to 300 (300Hz to 300kHz). Bandwidth is set using

the dmm.detectorbandwidth (on page 13-132) ICL command or

the DETECTBW menu option under the function's attribute menu).

Filter

The digital filter is used to stabilize noisy measurements. The displayed, stored,

or transmitted reading is a windowed-average of a number of reading

conversions (from 1 to 100).

The filter setup is retained and can be unique for each measurement function

(DCV, ACV, DCI, ACI, Ω2, Ω4, CSΩ, and TEMP). When you select a function,

the instrument will return to the last filter setup for that function.

NOTE The various instrument operations, including Filter, are performed on

the input signal in a specific, predetermined order. For example, if

both REL and MXB (a math operation) are enabled, the REL

operation will always be performed before MXB.

Filter characteristics

In general, the digital filter places a specified number of A/D conversions ("Filter

Count") into a memory stack. These A/D conversions must occur consecutively

within a selected reading window ("Filter Window"). The readings in the stack

are then averaged to yield a single filtered reading. The stack can be filled using

the moving or repeating average filters. Details about digital filter characteristics

are provided in the following paragraphs.

Digital filter types

There are two digital filter types: moving and repeating.

Series 3700 System Switch/Multimeter Reference Manual Section 5: Range, Digits, Rate, Bandwidth, and Filter

3700S-901-01 Rev. C / July 2008 5-9

Moving average filter

The moving average filter uses a first-in first-out stack, where the newest

reading conversion replaces the oldest. An average of the stacked reading

conversions yields a filtered reading. After the specified number of reading

conversions ("Filter count") fill the stack, the moving filter gives a new reading for

every new conversion.

Figure 5-2: Moving average filter

Repeating average filter

The repeating filter takes a specified number of conversions, averages them,

and yields a filtered reading. It then clears its stack and starts over. This setting

is useful when scanning because readings for other channels are not averaged

with the present channel. The stack is then cleared and the process starts over.

NOTE The moving filter cannot be used when scanning (see Scanning (on

page 7-1)). If a scan channel is set up to use the moving filter, the

filter will not turn on.

Figure 5-3: Repeating average filter

Section 5: Range, Digits, Rate, Bandwidth, and Filter Series 3700 System Switch/Multimeter Reference Manual

5-10 3700S-901-01 Rev. C / July 2008

Digital filter window

The digital filter uses a "noise" window to control the filter threshold. As long as

the input signal remains within the selected window, A/D conversions continue

to be placed in the stack. If the signal changes to a value outside the window,

the filter resets and starts processing again, starting with a new initial conversion

value from the A/D converter.

The noise window, which is expressed as a percentage of range (or maximum

temperature reading), allows a faster response time to large signal step changes

(for example, scanned readings). A reading conversion outside the plus or

minus noise window fills the filter stack immediately.

If the noise does not exceed the selected window, the reading is based on the

average of the reading conversions. If the noise does exceed the selected

window, the reading is a single reading conversion and new averaging starts

from this point. The noise window for the two filter types are compared in the

filter window below.

Series 3700 System Switch/Multimeter Reference Manual Section 5: Range, Digits, Rate, Bandwidth, and Filter

3700S-901-01 Rev. C / July 2008 5-11

Figure 5-4: Filter window

Section 5: Range, Digits, Rate, Bandwidth, and Filter Series 3700 System Switch/Multimeter Reference Manual

5-12 3700S-901-01 Rev. C / July 2008

For both front panel and remote programming, the window can be set to any

value from 0.0% to 10%, where 0.0% represents no window being applied.

For voltage, current, and resistance, the filter window is expressed as a percent

of range. For example, on the 10V range, a 10% window means that the filter

window is ±1V.

For temperature, the filter window is expressed as a percent of the maximum

temperature reading. The maximum temperature depends on which

thermocouple is being used. For example, for a Type J thermocouple, the

maximum reading is 760°C; a 10% window means that the filter window is

±76°C. For temperatures below 0°C, the overflow point is -200ºC, so a 10% filter

window is ±20ºC. If using ºF units, a 20% filter window is calculated as follows:

9/5 x 20 = 36. The filter window for the 20% window is ±36ºC.

In this section:

Relative ... 6-1

Math calculations .. 6-3

dB commands ... 6-10

Relative

Use the REL (relative) function to null offsets or subtract a baseline reading from

present and future readings. When REL is enabled, subsequent readings will be

equal to the difference between the actual input value and the REL value.

You can define a REL value for each function. Once a REL value is established

for a measurement function, the value is the same for all ranges. For example, if

50V is set as a REL value on the 100V range, the REL is also 50V on the

1000V, 10V, 1V, and 100mV ranges.

Therefore, when you perform a zero correction, the displayed offset becomes

the reference value. Subtracting the offset from the actual input zeros the

display, as follows:

Actual input - Reference = Displayed reading

A REL value can be as large as the highest range.

Selecting a range that cannot accommodate the REL value does not cause an

overflow condition, but it also does not increase the maximum allowable input for

that range. For example, on the 10V range, the Series 3700 still overflows for a

12V input.

NOTE The various instrument operations, including REL, are performed on

the input signal in a specific, predetermined order. For example, if

both REL and MXB (a math operation) are enabled, the REL

operation will always be performed before MXB.

Section 6

Relative, Math, and dB

Section 6: Relative, Math, and dB Series 3700 System Switch/Multimeter Reference Manual

6-2 3700S-901-01 Rev. C / July 2008

Basic front panel REL procedure

1. Select the desired measurement function and an appropriate range setting.

2. Apply the signal you want to REL to a switching channel input or to the

Series 3700 inputs.

3. If you are using a switching module, close the input channel. (see Operation

keys (on page 4-17) for basic information about the front panel graphical

user interface).

4. Press the REL key to acquire the REL value. The REL annunciator will turn

on, but the displayed value will not become zero until a new reading is

triggered.

5. Apply the signal to be measured. The relative value will be subtracted from

the next reading that is triggered.

Pressing REL a second time disables the REL function. You also have the

option to manually enter a REL value rather than acquiring a value from an input

signal. To do this, select REL > LEVEL from the front panel and enter the value.

You will still need to enable REL by selecting the ENABLE menu item. You can

also perform a REL acquire from this menu. Note that pressing the REL key is

equivalent to doing an acquire followed by enabling REL.

NOTE You can perform the equivalent of REL manually by using the mX+b

(on page 6-4) math function. Set M for 1and B for any value you want.

REL remote operation

The dmm.rel.level() command specifies the REL value (for the active

function only), while the dmm.rel.acquire() command uses the input signal

as the REL value (again, for the active function only). The

dmm.rel.acquire() command is typically used to zero the display. For

example, if the instrument is displaying a 1µV offset, sending

dmm.rel.acquire() and enabling REL (dmm.rel.enable = dmm.ON)

zeros the display.

The following command sequence is equivalent to pressing the front panel REL

key:

dmm.rel.acquire()
dmm.rel.enable=dmm.ON

To manually set a REL value of 1.5 V, use this command sequence:

dmm.rel.level=1.5e-6
dmm.rel.enable=dmm.ON

For example, if the instrument is on the DCV function, the

dmm.rel.acquire() command is applicable to DCV measurements.

Series 3700 System Switch/Multimeter Reference Manual Section 6: Relative, Math, and dB

3700S-901-01 Rev. C / July 2008 6-3

Scanning

When a scan is configured, each channel can have its own unique REL value.

For remote programming, the <ch_list> parameter is used to configure

channels for a scan.

For example:

To attach a 1µV REL level to a desired configuration, send the following

commands:

-- Select DC volts function.

dmm.func = 'dcvolts'

-- Reset DC volts only.

dmm.reset('active')

-- Set the rel level.

dmm.rel.level=1e-6

-- Enable REL.

dmm.rel.enable = dmm.ON

-- Call the configuration myconfig.

dmm.configure.set('myconfig')

-- Set Channels 1001 to 1030 to use myconfig configuration.

dmm.setconfig('1001:1030', 'myconfig')

-- Create scan list of channels 1001 to 1030 using
myconfig.

scan.create('1001:1030")

Math calculations

The Series 3700 has three built-in math calculations that are accessed from the

MATH menu: mX+b, percent, and reciprocal (1/X). The settings shown in the

menu tree are the factory default settings.

NOTE The various instrument operations, including Math, are performed on

the input signal in a specific, predetermined order. For example, if

both REL and MXB (a math operation) are enabled, the REL

operation will always be performed before MXB.

Section 6: Relative, Math, and dB Series 3700 System Switch/Multimeter Reference Manual

6-4 3700S-901-01 Rev. C / July 2008

mX+b

This math operation lets you manipulate normal display readings (X)

mathematically according to the following calculation:

Y = mX + b

Where:

 X is the normal display reading.

 m and b are the user-entered constants for scale factor and offset.

 Y is the displayed result.

Use dmm.math.mxb.bfactor (on page 13-148) and

dmm.math.mxb.mfactor (on page 13-149) to set the b and m factor for mX+b.

Once all settings are configured, use dmm.math.enable = dmm.ON to enable

math operation.

NOTE The REL'ed reading of the input signal (if using REL) is used by the

mX+b calculation.

mX+b REL

Use the mX+b function to manually establish a REL value. To do this, set the

scale factor (M) to 1 and set the offset (b) to the REL value. Each subsequent

reading will be the difference between the actual input and the REL value

(offset).

Setting mX+b units

The attribute for dmm.math.mxb.units (on page 13-149) must be one

character enclosed in single or double quotes. It can be any letter of the

alphabet, the degrees symbol (°), or the ohms symbol (Ω).

Series 3700 System Switch/Multimeter Reference Manual Section 6: Relative, Math, and dB

3700S-901-01 Rev. C / July 2008 6-5

To set mX+B units from the front panel:

NOTE The following procedure sets MXBUNITS. You can change the other

MATH menu options (BFACTOR and MFACTOR) by changing the b

and m values.

1. Press the CONFIG key.

2. Press the DMM key.

3. Turn the navigation wheel to highlight the MATH menu item.

4. With MATH highlighted, press the ENTER key. The MATH MENU opens.

5. Select the MXBUNITS menu item.

6. With MXBUNITS highlighted, press the ENTER key.

7. Press the navigation wheel to enter EDIT mode.

8. Scroll until the desired character is displayed, and then press the ENTER

key. The MATH MENU will open.

9. From the MATH MENU, turn the navigation wheel to highlight and select the

ENABLE menu item.

10. Select ON and press the ENTER key.

11. Press the EXIT key twice to return to the main display.

To set mX=B units from a remote interface:

The ohms symbol (Ω), the micro symbol (µ), and the degrees symbol (°) are not

ASCII characters and must be substituted with the ']', '[' and '\' characters. Valid

characters are therefore from A to Z, ']' for ohms, '[' for microvolts, and '\' for

degrees.

To use the ohms symbol (Ω) as units designator:

value = ']'
dmm.math.mxb.units = value

To use the micro symbol (µ) as units designator:

value = '['
dmm.math.mxb.units = value

To use the degrees symbol (°) as units designator:

value = '\\'
dmm.math.mxb.units = value

NOTE When sending mxb units remotely, to embed a '\' into a string, precede

the '\' with an additional '\' (see the previous paragraph).

Section 6: Relative, Math, and dB Series 3700 System Switch/Multimeter Reference Manual

6-6 3700S-901-01 Rev. C / July 2008

Percent

This math function determines percent deviation from a specified reference

value. The percent calculation is performed as follows:

Where:

Input: The normal measurement (if using REL, it will be the REL'ed value)

Reference: The user-entered constant (dmm.math.percent)

Percent: The result

NOTE The REL'ed reading of the input signal (if using REL) is used by the

percent calculation.

NOTE The result of the percent calculation is positive when the input

exceeds the reference and negative when the input is less than the

reference. The result of the percent calculation may be displayed in

exponential notation. For example, a displayed reading of

+2.500E+03% is equivalent to 2500% (2.5K%).

The dmm.math.percent attribute (see dmm.math.percent (on page 13-150))

specifies the reference value for the percent calculation, while the

dmm.rel.acquire function (see dmm.rel.acquire (on page 13-158)) uses the

input signal as the reference value.

The acquire function triggers a single reading and uses the result as the new

REL value. When a value is set using dmm.math.percent (on page 13-150), the

dmm.math.percent (on page 13-150) query command returns the programmed

value. When reference is set using dmm.rel.acquire() (on page 13-158), the

dmm.math.percent (on page 13-150) query command returns the acquired

reference value.

Series 3700 System Switch/Multimeter Reference Manual Section 6: Relative, Math, and dB

3700S-901-01 Rev. C / July 2008 6-7

To set a percent value from a remote interface, send the following commands:

-- Set percent to 5

dmm.math.percent = 5

-- Sends 5 to the PC for display

print(dmm.math.percent)

To set a percent value on the front panel:

1. Open the function attribute menu:

 Press the CONFIG key.

 Press the DMM key.

2. Turn the navigation wheel to highlight the MATH menu item.

3. With MATH highlighted, press the ENTER key. The MATH MENU opens.

4. Select the PERCENT menu item.

5. Press the ENTER key to enter edit mode.

6. Turn the navigation wheel to edit the value.

7. Once the desired value is displayed, press the ENTER key. The MATH

MENU opens.

8. From the MATH MENU, turn the navigation wheel to highlight and select the

ENABLE menu item.

9. Select ON and press the ENTER key.

10. Press the EXIT key twice to return to the main display.

REL can be used to set percent (bus-only operation) as follows:

-- Sets percent with REL acquire value.

dmm.math.percent = dmm.rel.acquire()

-- Send the result of REL acquire to a computer.

print(dmm.math.percent)

Reciprocal (1/X)

The reciprocal of a reading is displayed when the reciprocal (1/X) math function

is enabled:

Section 6: Relative, Math, and dB Series 3700 System Switch/Multimeter Reference Manual

6-8 3700S-901-01 Rev. C / July 2008

Where: X is the normal input reading

The displayed units designator for reciprocal readings is "R." You cannot change

this units designator.

Example:

Assume the normal displayed reading is 002.5000Ω. The reciprocal of

resistance is conductance. When the reciprocal math function is enabled, the

following conductance reading will be displayed:

0.400000 R

NOTE The result of the 1/X calculation may be displayed in exponential

notation. For example, a displayed reading of +2.500E+03 R is

equivalent to 2500 R (2.5K R). When using REL, the REL'ed reading

of the input signal is used by the 1/X calculation.

Basic reciprocal operation

1. Select the desired measurement function.

2. Configure and enable the mX+b, percent, or reciprocal (1/X) math function

as previously explained.

3. Apply the signal to be measured to a switching channel input.

4. Close the input channel. The result of the math calculation will be displayed

when a reading is triggered.

Series 3700 System Switch/Multimeter Reference Manual Section 6: Relative, Math, and dB

3700S-901-01 Rev. C / July 2008 6-9

Scanning

When a scan is configured, each channel can have its own unique math setup.

For remote programming, the <ch_list> parameter is used to configure

channels for a scan.

Example:

To perform the reciprocal math operation on DC volt measurements, send the

following commands:

-- Select DC volts function.

dmm.func = 'dcvolts'

-- Reset DC volts only.

dmm.reset('active')

-- Set the math operation to be reciprocal for
measurements.

dmm.math.format = dmm.MATH_RECIPROCAL

-- Enable the math operation for measurements.

dmm.math.enable = dmm.ON

-- Call the configuration mymath.

dmm.configure.set('mymath')

-- Set Channels 1001 to 1030 to use the mymath
configuration.

dmm.setconfig('1001:1030', 'mymath')

-- Create scan list of channels 1001 to 1030 using mymath.

scan.create('1001:1030')

Section 6: Relative, Math, and dB Series 3700 System Switch/Multimeter Reference Manual

6-10 3700S-901-01 Rev. C / July 2008

dB commands

Expressing DC or AC voltage in dB makes it possible to compress a large range

of measurements into a much smaller scope. The relationship between dB and

voltage is defined by the following equation:

Where:

VIN: DC or AC input signal.

VREF: Specified voltage reference level.

The instrument will read 0dB when the reference voltage level is applied to the

input. If a relative value is in effect when dB is selected, the value is converted to

dB, and then REL is applied to dB. If REL is applied after dB has been selected,

dB has REL applied to it.

NOTE The dB calculation takes the absolute value of the ratio VIN / VREF.

The largest negative value of dB is -160dB. This will accommodate a

ratio of VIN = 1µV and VREF = 1000V.

dB configuration

You can select UNITS (V or dB) from the front panel.

To select UNITS from the front panel, while in DCV or ACV:

1. Press the CONFIG key.

2. Press the DMM key.

3. Turn the navigation wheel to scroll to the UNITS menu item.

4. Press the navigation wheel (or the ENTER key) to select.

5. Select units: V for voltage or dB for decibels.

6. Press the navigation wheel (or the ENTER key) to set.

7. Press the EXIT key to close the attribute menu.

Series 3700 System Switch/Multimeter Reference Manual Section 6: Relative, Math, and dB

3700S-901-01 Rev. C / July 2008 6-11

dB scanning

Each channel in a scan may be configured to use dB. Create a configuration

that has the dB enabled for units for the desired function by using the

dmm.configure.set command. Once the configuration exists, use the

dmm.setconfig() (on page 13-168) command to connect the configuration to

the desired channels. Now the channels can be added to scanning (see

scan.create() (on page 13-234) and scan.add() (on page 13-230)

commands). To remotely control the units for AC and DC volts, use the

dmm.units (on page 13-174) command.

In this section:

Buffer overview ... 7-1

Front panel operation .. 7-2

Remote buffer operation ... 7-7

Buffer overview

The Keithley Instruments Series 3700 System Switch/Multimeter uses

synchronous reading acquisitions to take readings for a dynamically-created

reading buffer. The instrument stores the numbered readings that are acquired

during the storage process. Each reading includes reading units with options

that include time stamp and channel information. All routines that return

measurements can return the measurements in a reading buffer. Synchronous

measurements return a single value or both a single value and a reading buffer.

More advanced users can access the additional information stored in the

reading buffer.

You can configure single-point measurement routines to make multiple

measurements where only one would ordinarily be made. Also, the measured

value is not the only component of a reading. The measurement status (for

example, limit or overflow) is also data associated with a particular reading.

Create and configure buffers using the front panel or through a remote interface

using the Instrument Control Library (ICL) commands.

CAUTION Once you create a reading buffer, using that buffer name for

another buffer or variable will cause access to the original data

to be lost.

Reading buffer names are just like any other global variables in the system. For

example, if buf1 is a reading buffer name, then buf1 = 5 will cause the

reading buffer data currently associated with buf1 to be lost and buf1 to equal

5.

NOTE The various instrument operations, including buffer operation, are

performed on the input signal in a specific, predetermined order. For

example, if both REL and MXB (a math operation) are enabled, the

REL operation will always be performed before MXB.

Section 7

Buffer: Data Storage and Retrieval

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

7-2 3700S-901-01 Rev. C / July 2008

Front panel operation

In the following procedures, pressing in the navigation wheel (as a button) will

perform the same function as pressing the ENTER key. Also, you can turn the

navigation wheel instead of using the  CURSOR  keys.

Read Creating and selecting a reading buffer (on page 7-2) or Selecting a

reading buffer (on page 7-3) before performing the following procedures:

 Storing readings (on page 7-3)

 Saving readings (on page 7-3)

 Clearing readings (on page 7-4)

 Deleting a reading buffer (on page 7-5)

 Recalling readings (on page 7-5)

 Buffer configuration (front panel) (on page 7-6)

 Appending readings (on page 7-7)

Creating and selecting a reading buffer

To create a new reading buffer that will be automatically selected after it is

created:

1. Press the STORE key.

2. Select CREATE from the buffer choices and press the ENTER key.

3. Using the navigation wheel and the  CURSOR  keys, scroll through the

characters, changing them until the desired name is shown.

NAME = _ _ _ _ _ _ _ _ _ _ _ _

4. Press the ENTER key. The starting name is:

f p b u f n _ _ _ _ _ _

Where:

fp = front panel

buf = buffer

n = number, sequentially incremented

5. Specify the number of readings to store in the buffer.

6. Press the ENTER key. The append attribute of this buffer is enabled (set

to 1).

NOTE The newly-created buffer is automatically selected as the buffer

for storing front panel readings.

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

3700S-901-01 Rev. C / July 2008 7-3

Selecting a reading buffer

You can only select an existing reading buffer. If necessary, create it first. See

Creating and selecting a reading buffer (on page 7-2) for more information.

NOTE When you create a new reading buffer from the front panel, it is

automatically selected.

To select a reading buffer:

1. Set up the Series 3700 to take measurements.

2. Press the STORE key.

3. Select SELECT from the buffer choices and press the ENTER key.

4. Use the  CURSOR  keys to select the desired buffer.

Storing readings

Before storing readings, make sure you have selected the desired reading

buffer. See Selecting a reading buffer (on page 7-3) for more information.

To store a reading, press the TRIG key or execute a scan. The asterisk (*)

annunciator turns on, which indicates that the buffer is enabled, and turns off

when storage is finished. The annunciator stays on as long as the created

buffer's capacity is less than the number of readings stored.

To stop the buffer, press the EXIT key, or if you are taking continuous readings,

press the TRIG key.

NOTE Stored readings are lost when the instrument is turned off. To save

your stored readings, see Saving readings (on page 7-3).

Saving readings

When saving readings to a USB flash drive, you must select a non-empty

reading buffer. See Selecting a reading buffer (on page 7-3) for more

information.

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

7-4 3700S-901-01 Rev. C / July 2008

To save readings to a USB flash drive:

1. Select a non-empty reading buffer.

2. Press the STORE key. The [BUFFER NAME] MENU is displayed.

3. Select the SAVE menu item, and press the ENTER key. The SAVE RD

BUFFER menu is displayed.

4. Press the ENTER key when USB is highlighted.

5. Using the navigation wheel and  CURSOR  keys, enter the filename

where the data will be saved on the installed USB flash drive. The starting

name is:

<reading buffer name>_nn_ _ _

Where: nn starts at 01 and automatically increments. For example, if the

selected reading buffer is fpbuf1, then the starting name is fpbuf1_01_

_ _.

6. Press the ENTER key to save the data to the installed USB flash drive or the

EXIT key to cancel.

Clearing readings

When clearing readings, you must select a reading buffer. See Selecting a

reading buffer (on page 7-3) for more information.

To clear readings:

1. Select a reading buffer.

2. Press the STORE key. The [BUFFER NAME] MENU is displayed.

3. Select the CLEAR menu item, and press the ENTER key.

4. At the prompt, select YES or NO and press the ENTER key.

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

3700S-901-01 Rev. C / July 2008 7-5

Deleting a reading buffer

To delete a reading buffer:

1. Select the reading buffer you want to delete.

2. Press the STORE key. The [BUFFER NAME] MENU is displayed.

3. Select the DELETE menu item, and press the ENTER key.

4. At the prompt, select YES or NO and press the ENTER key.

 If you select YES, the RD BUFF ACTION MENU is displayed.

 If you select NO, the [BUFFER NAME] MENU is displayed.

NOTE To delete a buffer (including front panel buffers) remotely (over the

bus), set the buffer's name to nil. For example, to delete a buffer

named FPBUF1, send the command: FPBUF1 = nil.

Recalling readings

When recalling readings, you must select a non-empty reading buffer. See

Selecting a reading buffer (on page 7-3) for more information.

Readings stored in the buffer are displayed by pressing the REC key. Turn the

navigation wheel or use the  CURSOR  keys to cycle through the buffer's

contents. A message is displayed if a buffer is empty.

When recalling a buffer, the display contains the following information:

 Measurement reading for each entry is at the top right.

 Buffer location number is at the bottom left.

 Time stamp (on page 7-5) (if used) is positioned at the bottom right.

 Channel display (on page 7-6) or channel pattern (if used) associated with

the reading for each entry is at the top left.

Time stamp

When time stamps are enabled, they are shown in absolute time and stored as

the number of seconds in Universal Coordinated Time (UTC) format. Therefore,

the displayed time stamp will show month, day, and year, as well as hour,

minutes, seconds, and fractional seconds.

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

7-6 3700S-901-01 Rev. C / July 2008

Channel display

The returned value provides different information, based on what is opened or

closed when the reading is acquired:

 If no channel or channel pattern is closed when the reading is acquired,

"None" is displayed.

 If only a single channel or backplane relay is closed, the channel number is

displayed (for example, 5003 or 5915).

 If a channel or backplane relay plus another backplane relay or other

channel is closed, then the channel number is displayed, followed by a +

sign (for example, 3005+ or 3915+). The channel is in the image unless the

last close operation involved only backplane relays.

 If multiple channels and/or backplane relays are closed in a channel list, the

last channel specified is stored. Channels take precedence over backplane

relays when stored. However, if only multiple backplane relays are specified,

then the first one is stored.

 If a channel pattern is closed, then the first eight characters of the channel

pattern name are returned (for example, mypattern1 is shown as

mypatter).

Buffer configuration (front panel)

When configuring the buffer through the front panel, you must select a reading

buffer. See Selecting a reading buffer (on page 7-3) for more information.

1. Press the CONFIG key.

2. Press the STORE key. The RD BUFFER ATTR menu opens.

3. To view the count and capacity of a selected buffer, select the COUNT or

CAPACITY menu choice. To configure the buffer's append mode, select

APPEND, then ON or OFF.

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

3700S-901-01 Rev. C / July 2008 7-7

Appending readings

When the buffer append mode is disabled, the buffer is cleared (readings lost)

before a new storage operation starts.

When buffer append mode is enabled, the buffer is not cleared and each

subsequent storage operation appends the readings to the buffer. When the

buffer is filled to capacity, the storage process stops. The readings must be

cleared before the next storage operation starts.

See dmm.appendbuffer() (on page 13-111) for more information.

NOTE Buffers created on the front panel have the append mode enabled by

default.

Remote buffer operation

Control the Series 3700 buffer over the bus by sending ICL (Instrument Control

Library) commands.

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

7-8 3700S-901-01 Rev. C / July 2008

Data store (buffer) commands

The following commands are associated with data store operation:

 dmm.makebuffer() (on page 7-8)

 dmm.savebuffer() (on page 7-10)

To delete a dynamically allocated buffer, use the command mybuffer = nil.

Command Description

dmm.buffer.catalog() An iterator that can act on all reading buffer names in

the system.

dmm.buffer.info("buffer
name")

Returns the number of stored readings in the specified

buffer, along with the overall buffer capacity. The first

returned value is the stored readings number, while the

second is the capacity.

dmm.buffer.maxcapacity Returns the overall maximum storage capacity of all

reading buffers in the system.

dmm.buffer.usedcapacity Returns the sum storage capacity allocated for all

currently created reading buffers in the system.

To see the current storage number and capacity of all reading buffers in the

system, use the following at a Test Script Processor (TSPTM) prompt or in a

script:

for n in dmm.buffer.catalog() do stored, cap =
dmm.buffer.info(n) print(n, 'stored = ' .. stored,

'capacity = ' .. cap) end

Sample output

buf1 stored = 0 capacity = 1000

buf2 stored = 0 capacity = 2000

buf4 stored = 0 capacity = 4000

buf5 stored = 0 capacity = 5000

buf3 stored = 0 capacity = 3000

As the sample output shows, the system has five reading buffers, but currently

none of them have data stored in them (stored = 0). The storage capacity of

the buffers range from 1000 to 5000. If you send:

print(dmm.buffer.usedcapacity)

The output is 1.500000000e+004.

Overall, the system is allocating 15000 of its max storage capacity for reading

buffers.

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

3700S-901-01 Rev. C / July 2008 7-9

dmm.makebuffer()

Function Creates a user buffer for storing readings.

Usage mybuffer = dmm.makebuffer(buffersize)

buffersize: Maximum number of readings that can be stored.

Remarks These reading buffers are allocated dynamically. This function creates the buffers

where buffersize indicates the maximum number of readings the buffer can store.

These buffers can be deleted by setting mybuffer to nil.

Details Once a buffer is created, the attributes are:

 mybuffer.appendmode = 1 (ON) or 0 (OFF) – default 0 over a bus interface,

but 1 for ones created on the front panel

 mybuffer.basetimeseconds returns the seconds for reading buffer entry 1

(read-only attribute).

 mybuffer.basetimefractional returns the seconds and fractional

seconds for reading buffer entry 1 (read-only attribute).

 mybuffer.capacity for overall buffer size

 mybuffer.collecttimestamps = 1(ON) or 0(OFF) – default 1

 mybuffer.collectchannels = 1(ON) or 0(OFF) – default 1

 mybuffer.n for number of readings stored in buffer currently

 mybuffer.timestampresolution returns the resolution of the time

stamping (read-only attribute).

The following buffer bits indicate buffer statuses:

dmm.buffer.LIMIT1_LOW_BIT or 1

dmm.buffer.LIMIT1_HIGH_BIT or 2

dmm.buffer.LIMIT2_LOW_BIT or 4

dmm.buffer.LIMIT2_HIGH_BIT or 8

dmm.buffer.MEAS_OVERFLOW_BIT or 64

dmm.buffer.MEAS_CONNECT_QUESTION_BIT or 128

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

7-10 3700S-901-01 Rev. C / July 2008

dmm.makebuffer()

Details,

continued

To see readings in buffer:

printbuffer(x, y, mybuffer)

x and y: represent reading numbers desired

To see readings, channels, and units:

printbuffer(x, y, mybuffer, mybuffer.channels,
mybuffer.units)

x and y: represent reading numbers desired

To see time stamps in buffer:

mybuffer.collecttimestamps = 1

print(x, y, mybuffer, mybuffer.timestamps)

x and y: represent readings and time stamps for elements x to y

To see seconds, fractional seconds, and relative time stamps,

mybuffer.collecttimestamps = 1

printbuffer(x,y, mybuffer.seconds)

printbuffer(x,y, mybuffer.fractionalseconds)

printbuffer(x,y, mybuffer.relativetimestamps)

Also see Reading buffers (on page 7-12) for more information on reading buffer aspects in the

system

Example To create a user reading buffer named mybuffer2, with a capacity of 300:

mybuffer2 = dmm.makebuffer(300)

To delete mybuffer2:

mybuffer2 = nil

dmm.savebuffer()

Function Saves data from the specified dynamically-allocated buffer to the USB flash drive

using the specified filename.

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

3700S-901-01 Rev. C / July 2008 7-11

dmm.savebuffer()

Usage dmm.savebuffer('<reading buffer name>', '<filename>',

time_format)

reading buffer name: The name of a previously created DMM reading buffer,

specified as a string. Do not pass the reading buffer name without quotes because this

generates a data type error. For example, if the reading buffer is mybuffer, then the

buffer name should be specified as "mybuffer" and not mybuffer.

filename: The destination filename located on the USB flash drive. The filename must

specify the full path (including /usb1/) and include the name of file with the file

extension .csv. If no file extension is specified, .csv will be added to filename.

time_format: This optional parameter indicates what date and time information should

be saved in the file to the thumb drive. Use the following values for time_format:

 dmm.buffer.SAVE_RELATIVE_TIME, which saves relative time stamps only

 dmm.buffer.SAVE_FORMAT_TIME, which is the default if no time format

specified and saves dates, times and fractional seconds

 dmm.buffer.SAVE_RAW_TIME, which saves seconds and fractional seconds

only

 dmm.buffer.SAVE_TIMESTAMP_TIME, which only saves time stamps

For options that save more than one item of time information, each item is comma

delimited. For example, dmm.buffer.SAVE_FORMAT_TIME will have <date>,

<time>, and <fractional seconds> for each reading.

Remarks The first parameter (reading buffer name) represents the reading buffer to be saved.

The second (filename) is the filename of file to save reading buffer data to on USB

flash drive. The third parameter is optional and indicates how the date and time

information from the buffer should be saved. For options that save more than one item

of time information, each item is comma delimited. For example, the default format will

have <date>, <time>, and <fractional seconds) for each reading.

Errors will be generated if reading buffer does not exist or is not a DMM buffer, or if the

destination filename is not specified correctly. The .csv is appended to the filename

(unless the .csv is specified by user). Any specified file extension other than .csv

will generate errors.

Valid destination filename examples:

dmm.savebuffer('mybuffer', '/usb1/mydata')

dmm.savebuffer('mybuffer', '/usb1/mydata.csv')

Invalid destination filename examples:

dmm.savebuffer('mybuffer', '/usb1/mydata.')

-Invalid extension due to period by no following letters for extension.

dmm.savebuffer('mybuffer', '/usb1/mydata.txt')

-Invalid extension. Use .csv or do not specify (no period)

dmm.savebuffer('mybuffer', '/usb1/mydata.txt.csv')

-invalid extension because 2 periods specified (mydata_txt.csv would be

correct).

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

7-12 3700S-901-01 Rev. C / July 2008

dmm.savebuffer()

Example To save readings from valid DMM buffer named mybuffer with default time information

to a file named mydata.csv on the USB flash drive:

dmm.savebuffer('mybuffer', '/usb1/mydata.csv')

To save readings from mybuffer with relative time stamps to a file named

mydatarel.csv on the USB flash drive:

dmm.savebuffer('mybuffer', '/usb1/mydatarel.csv',
dmm.buffer.SAVE_RELATIVE_TIME)

Reading buffers

A reading buffer is based on a Lua table. The measurements themselves are

accessed by ordinary array notation. If rb is a reading buffer, the first

measurement is accessed as rb[1], the 9th measurement as rb[9], and so

on. The additional information in the table is accessed as additional members of

the table.

Reading buffer designations

To access the buffer, include the buffer attribute in the respective command. For

example, the following commands would store five readings from the DMM into

a buffer named readingbuffer:

-- Sets how many readings to take with the dmm.measure
command.

dmm.measurecount = 5

-- Takes the measurements and stores them in readingbuffer.

dmm.measure(readingbuffer)

NOTE Do not use quotes around the reading buffer name when you send the

dmm.measure (readingbuffer) command from the instrument

front panel, because a data type error message will be logged to the

error queue.

Buffer storage control attributes

Buffer storage attributes are summarized in the following table. To control which

elements are stored in the buffer, enable the desired attribute for the buffer

(which sets it to 1). The following attributes are all available per reading buffer.

For example, to access the appendmode attribute for a buffer named rb, send

rb.appendmode.

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

3700S-901-01 Rev. C / July 2008 7-13

Attribute Description

appendmode When off, a new measurement to this buffer will clear the previous

contents before storing the new measurement. When on, the first new

measurement will be stored at what was formerly rb[n+1].

This attribute is initialized to off when the buffer is created over the bus.

However, the default is on for the front panel or web interface to allow

triggered readings to fill a buffer without clearing the previous ones.

collectchannels When on, channel or channel pattern information is stored with

readings in the buffer. This requires eight extra bytes of storage per

reading.

This value, off or on, can only be changed when the buffer is empty

(cleared). When the buffer is created, this attribute is initialized to on.

collecttimestamps When on, time stamps will be stored with readings in the buffer. This

requires eight extra bytes of storage per reading.

This value, off or on, can only be changed when the buffer is empty

(cleared). When the buffer is created, this attribute is initialized to on.

Buffer read-only attributes

Use buffer read-only attributes to access the information contained in an existing

buffer. The following attributes are available per reading buffer (for example,

rb.basetimeseconds would access basetimeseconds for reading buffer

rb, and the number of readings the reading buffer can store is accessed as

rb.capacity).

Attribute Description

basetimefractional The fractional portion of the time stamp of when the reading at

rb[1] was stored in the reading buffer (in seconds).

basetimeseconds The seconds portion of the time stamp, in whole seconds, when the

reading at rb[1] was stored in the buffer.

capacity The total number of readings that can be stored in the reading buffer.

timestampresolution The time stamp resolution, in seconds. The resolution is fixed at 1e-9

seconds.

Buffer programming examples

Refer to the following for buffer control programming examples. In the example,

the buffer is named readingbuffer.

NOTE You must clear the buffer using the readingbuffer.clear()

command before changing buffer control attributes.

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

7-14 3700S-901-01 Rev. C / July 2008

Command Description

readingbuffer.collectchannels = 1 Enable channel storage.

readingbuffer.appendmode = 1 Enable the buffer append mode.

readingbuffer.collecttimestamps = 0 Disable time stamp storage.

Refer to the following for buffer read-only attribute programming examples. In

the example, the buffer is named readingbuffer.

Command Description

number = readingbuffer.n Request number of readings stored in the

buffer.

buffer_size = readingbuffer.capacity Request the buffer storage capacity.

Buffer reading attributes

The table in Buffer recall attributes (on page 7-14) lists the attributes that control

which elements are recalled from the buffer. To access specific elements,

append the desired attribute to the buffer designation.

For example, the following command line returns 100 readings from

readingbuffer1:

printbuffer(1, 100, readingbuffer1.readings)

Similarly, the following command line returns 100 channel values from

readingbuffer1:

printbuffer(1, 100, readingbuffer1.channels)

The default reading buffer recall attribute is readings, which can be omitted.

Thus, the following command line also returns 100 readings from

readingbuffer1:

printbuffer(1, 100, readingbuffer1)

Buffer recall attributes

The following table lists the attributes that control which elements are recalled

from the buffer. Each is actually a nested table. Related entries are stored at the

same index as the relevant measurement.

NOTE The default attribute is readings and can be omitted. For example,

readingbuffer1 and readingbuffer1.readings will both

return readings from the buffer named readingbuffer1.

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

3700S-901-01 Rev. C / July 2008 7-15

Recall attribute Description

channels An array (a Lua table) of strings indicating the channel or channel

pattern associated with the measurement.

The returned value provides different information, based on what was

opened or closed when the reading was acquired:

 If no channel or channel pattern is closed when the reading was

acquired, "None" is displayed.

 If only a single channel or backplane relay was closed, the

channel number is displayed (for example, 5003 or 5915).

 If a channel or backplane relay plus another backplane relay or

other channel is closed, then the channel number will be displayed

followed by a + sign (for example, 3005+ or 3915+). The channel

will be in the image unless the last close operation involved only

backplane relays.

 If multiple channels and/or backplane relays were closed in a

channel list, the last channel specified will be stored. Channels

take precedence over backplane relays when stored. However, if

only multiple backplane relays are specified, then the first one will

be stored.

 If a channel pattern was closed, then the first eight characters of

the channel pattern name are returned (for example,

mypattern1 is shown as mypatter).

dates An array (a Lua table) of strings, indicating the date of the reading

formatted in month, day, and year.

formattedreadings An array (a Lua table) of strings indicating the formatted reading as

viewed on the display.

ptpseconds An array (a Lua table) of the seconds portion of the time stamp of

when the reading was stored. These seconds are absolute and in

PTP format.

readings An array (a Lua table) of the readings stored in the reading buffer.

This array holds the same data that is returned when the reading

buffer is accessed directly, that is, rb[2] and rb.readings[2]

are the same value.

relativetimestamps An array (a Lua table) of time stamps, in seconds, of when each

reading occurred relative to the time stamp of reading buffer entry

number 1. These are equal to the time that has lapsed for each

reading since the first reading was stored in the buffer. Therefore, the

relative time stamp for entry number 1 in the buffer will equal 0.

statuses An array (a Lua table) of status values for all readings in the buffer.

The status values are floating-point numbers that encode the status

value into a floating-point value (see the table in Buffer status (on

page 7-16)).

times An array (a Lua table) of strings, indicating the time of the reading

formatted in hours, minutes, and seconds.

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

7-16 3700S-901-01 Rev. C / July 2008

Recall attribute Description

timestamps An array (a Lua table) of strings, indicating the time stamp of the

reading formatted in month, day, year, hours, minutes, seconds, and

fractional seconds.

fractionalseconds An array (a Lua table) of the fractional portion of the time stamps, in

seconds, of when each reading occurred. These are absolute

fractional times.

seconds An array (a Lua table) of the seconds portion of the time stamp when

the reading was stored, in seconds. These seconds are absolute and

in UTC format.

units An array (Lua table) of the strings, indicating the unit of measure

stored with readings in the buffer. Units may be designated as one of

the following: „Volts AC‟, „Volts DC‟, „Amps AC‟, „Amps DC‟, „dB VAC‟,

„dB VDC‟, „Ohms 2wire‟, „Ohms 4wire‟, „Ohms ComSide‟, „Fahrenheit‟,

„Kelvin‟, „Celsius‟, „Hertz‟, „Seconds‟, and „Continuity‟.

Example to access recall attributes

To see seconds, fractional seconds, and relative time stamps for entry numbers

2 and 3 in buffer mybuffer2, assuming mybuffer2.collecttimestamps

was set to 1 when the readings were stored

(mybuffer2.collecttimestamps = 1):

printbuffer(2,3, mybuffer2.seconds)
printbuffer(2,3, mybuffer2.fractionalseconds)

printbuffer(2,3, mybuffer2.relativetimestamps)

Time and date values

Time and date values are represented as a number of UTC seconds since 12:00

a.m. Jan. 1, 1970. The os.time() command returns values in this format. Use

os.date() to return values in month, day, year, hours, and minutes format, or

to access the time stamp table. The only exception to this is the use of the

ptpseconds recall attribute, which has the seconds in PTP format.

Buffer status

The buffer reading status attribute can include the status information as a

numeric value shown in the following table. To access status information, send

the following command:

stat_info = readingbuffer.statuses[2]

Buffer status bits

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

3700S-901-01 Rev. C / July 2008 7-17

Bit Name Hex

value

ICL

B0 Low limit 1 0x01 dmm.buffer.LIMIT1_LOW_BIT

B1 High limit 1 0x02 dmm.buffer.LIMIT1_HIGH_BIT

B2 Low limit 2 0x04 dmm.buffer.LIMIT2_LOW_BIT

B3 High limit 2 0x08 dmm.buffer.LIMIT2_HIGH_BIT

B6 Measure

overflow

0x40 dmm.buffer.MEAS_OVERFLOW_BIT

B7 Measure

connect

question

0x80 dmm.buffer.MEAS_CONNECT_QUESTION_BIT

Dynamically-allocated buffers

RAM reading buffers are created and dynamically allocated with the

dmm.makebuffer(n) command, where n is the maximum number of readings

the buffer can store.

Example:

To allocate a buffer named mybuffer that can store 100 readings:

mybuffer = dmm.makebuffer(100)

Example:

To delete an allocated buffer named mybuffer:

mybuffer = nil

Example:

To see if the high limit 1 was exceeded during the reading:

stat_info = readingbuffer.statuses[3]
if (bit.bitand(stat_info, dmm.buffer.LIMIT1_HIGH_BIT) ==

dmm.buffer.LIMIT1_HIGH_BIT) then

print("Limit 1 high exceeded")

else

print("Limit 1 high okay")

end

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

7-18 3700S-901-01 Rev. C / July 2008

Dynamic buffer programming example

The programming example below shows how to store data using a dynamically-

allocated buffer named mybuff.

-- Reset the DMM.

dmm.reset('all')

-- Create a buffer named mybuffer and allocate space for
100,000 readings.

mybuffer = dmm.makebuffer(100000)

-- Enable append buffer mode.

mybuffer.appendmode = 1

-- Set count to 1.

dmm.measurecount = 1

-- Select the DMM function as DC volts.

dmm.func = dmm.DC_VOLTS

-- Start for…do loop. Measure and store readings in buffer.
End loop.

for x = 1, 100 do

dmm.measure(mybuffer)

end

-- Return readings 1-100.

printbuffer(1, 100, mybuffer.readings)

-- Return units 1-100.

printbuffer(1, 100, mybuffer.units)

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

3700S-901-01 Rev. C / July 2008 7-19

Buffer for...do loops

The following examples illustrate the use of for...do loops with respect to

recalling buffer data from a reading buffer called mybuffer. The following code

may be sent as one command line or as part of a script. Sample outputs follow

the line of code. Also see the printbuffer() (on page 13-221) ICL command.

NOTE Buffer mybuffer has time stamp collection enabled in the example

below.

This example loop uses printbuffer to show the reading, units, and relative

time stamps for all readings stored in the buffer. The information for each

reading (reading, units, and relative time stamps) is shown on a single line with

the elements comma-delimited.

for x = 1,mybuffer.n do

printbuffer(x,x,mybuffer, mybuffer.units,
mybuffer.relativetimestamps)

end

Sample comma-delimited output of above code:

3.535493836e-002, Volts DC, 0.000000000e+000

-4.749810696e-002, Volts DC, 5.730966000e-002

-8.893087506e-002, Volts DC, 7.722769500e-002

4.164193198e-002, Volts DC, 1.246876800e-001

-6.900507957e-002, Volts DC, 1.815213600e-001

-8.851423860e-002, Volts DC, 2.009161500e-001

3.891038895e-002, Volts DC, 2.647790700e-001

-7.581630349e-002, Volts DC, 3.032140350e-001

-8.236359060e-002, Volts DC, 3.226125750e-001

-8.551311493e-002, Volts DC, 3.425625900e-001

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

7-20 3700S-901-01 Rev. C / July 2008

The following loop uses the print command instead of the printbuffer

command. This loop shows the same information described in the previous

example (reading, units, and relative time stamps for all readings stored in the

buffer). However, because the print command is used over printbuffer,

each line is tab-delimited (rather than comma-delimited) to produce a columnar

output, as shown below:

for x = 1,mybuffer.n do

print(mybuffer.readings[x], mybuffer.units[x],
mybuffer.relativetimestamps[x])

end

Sample columnar output of above code:

3.535493836e-002 Volts DC 0.000000000e+000

-4.749810696e-002 Volts DC 5.730966000e-002

-8.893087506e-002 Volts DC 7.722769500e-002

4.164193198e-002 Volts DC 1.246876800e-001

-6.900507957e-002 Volts DC 1.815213600e-001

-8.851423860e-002 Volts DC 2.009161500e-001

3.891038895e-002 Volts DC 2.647790700e-001

-7.581630349e-002 Volts DC 3.032140350e-001

-8.236359060e-002 Volts DC 3.226125750e-001

-8.551311493e-002 Volts DC 3.425625900e-001

If data was collected by executing a three-channel scan list with a scan count of

10, the buffer has 30 readings in it. To see the comma-delimited data on the

three-channel boundary:

x = 1
y = 3
for z = 1, 10 do

printbuffer(x, y, mybuffer, mybuffer.channels)
x = x + 3

y = y + 3

end

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

3700S-901-01 Rev. C / July 2008 7-21

The sample output from the above code has six comma-delimited entries per

line (reading, channel, reading, channel, reading, channel):

3.181298825e-002, 2001+, -5.602844334e-002, 2002+, -7.811298360e-002,

2003+

3.228547367e-002, 2001+, -5.299202901e-002, 2002+, -8.676257870e-002,

2003+

3.736769697e-002, 2001+, -3.247188344e-002, 2002+, -5.106155438e-002,

2003+

-6.473406636e-002, 2001+, -9.218081926e-002, 2002+, 3.419026595e-002,

2003+

-3.856921662e-002, 2001+, -6.672781529e-002, 2002+, -7.762540017e-002,

2003+

2.876431571e-002, 2001+, -4.056434134e-002, 2002+, -6.119288115e-002,

2003+

-7.301064720e-002, 2001+, 2.893913659e-002, 2002+, -3.164065858e-002,

2003+

-6.794576932e-002, 2001+, -8.067066262e-002, 2002+, 2.339088329e-002,

2003+

-5.288247880e-002, 2001+, -6.769966949e-002, 2002+, -7.572277347e-002,

2003+

2.618149827e-002, 2001+, -3.164126270e-002, 2002+, -6.306067024e-002,

2003+

If you want to see more information about the readings, add the appropriate

buffer recall attribute to the printbuffer line in the sample code. For example,

to see the relative time stamp with each reading, add

mybuffer.relativetimestamps to the printbuffer command as follows:

printbuffer(x, y, mybuffer, mybuffer.channels,
mybuffer.relativetimestamps)

In the output from this printbuffer command, nine comma-delimited entries

appear on each line. Each line will include the following entries: reading,

channel, relative time stamp, reading, channel, relative time stamp, reading,

channel, relative time stamp.

Exceeding reading buffer capacity

If the reading buffer count is not exceeded, readings are stored as expected. But

if the reading buffer capacity would be exceeded by new readings being added

to the current buffer index, the count is lowered to a new count so it does not

exceed the buffer capacity. Once the buffer is full (to the new count), no more

readings are taken and error message 4915 is displayed, stating that you

attempted to exceed the capacity of the reading buffer. If you attempt to store

additional readings in a full buffer, the same message appears, and no readings

are taken.

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

7-22 3700S-901-01 Rev. C / July 2008

Example:

Create a buffer with:

 A capacity for 50 readings

 Append mode enabled

 Measure count to 30

Tell the instrument to print the current number of buffer elements stored and

take readings to store in the buffer. The following occurs:

1. The first time the measurement is called, the buffer is empty (no readings)

so it stores 30 readings.

2. The second time the measurement is called it stores only 20 readings. This

is because 30 + 30 is 60 readings, which exceeds buffer capacity (50).

Because 30 readings are already stored, only 20 readings are taken and

stored. Error message 4915 is displayed.

3. The third time the measurement is called, the buffer is full (already has 50

readings). Because there is no more room, no readings are taken (nil

response for reading) and error message 4915 is again displayed.

The following listing provides the coding for the previous example:

-- Create a buffer named buf and allocate space for 50
readings.

buf = dmm.makebuffer(50)

-- Enable append buffer mode.

buf.appendmode = 1

-- Set count to 30.

dmm.measurecount = 30

-- Show the current number of readings in the buffer, and
then measure and store readings in the buffer (first
pass).

-- Output from the print command:

-- 0.000000000e+000

-- 5.245720223e-002

print(buf.n, dmm.measure(buf))

-- Show the current number of readings in the buffer, and
then measure and store readings in the buffer (second
pass).

-- Output from the print command:

-- 3.000000000e+001

-- -1.388141960e-001

-- 4915, Attempting to store past capacity of reading
buffer

print(buf.n, dmm.measure(buf))

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

3700S-901-01 Rev. C / July 2008 7-23

-- Show the current number of readings in the buffer, and
then measure and store readings in the buffer (third
pass).

-- Output from the print command:

-- 5.000000000e+001

-- nil

-- 4915, Attempting to store past capacity of reading
buffer

print(buf.n, dmm.measure(buf))

In this section:

Scanning fundamentals ... 8-1

Scan and step counts .. 8-7

Basic scan procedure .. 8-7

Front panel scanning ... 8-10

Bus operation scanning ... 8-12

Hardware trigger modes .. 8-18

Scanning fundamentals

A scan is a series of steps which open and close switches to be optionally

measured. The step-by-step flow is defined by the trigger model.

The Keithley Instruments Series 3700 System Switch/Multimeter can scan

channels with up to six Keithley Instruments switching modules installed. Each

scan channel can have its own unique setup. Aspects of operation that may be

uniquely set for each channel include function, range, rate, AC bandwidth, REL,

filter, digits, math, offset compensation, temperature transducers, limits, volts

dB, and so on.

NOTE If desired, readings for scanned channels may be automatically stored

in a specified reading buffer (see Buffer: Data Storage and Retrieval

(on page 7-1)).

You can configure and execute scans from the front panel, remotely over the

bus, or through the Series 3700 web interface. The steps are executed in the

order that they are added. When adding a range of channels, they are added to

the end of the existing scan list.

For example:

 1003:1005 will add Channels 1003, 1004, and 1005 to the list as three

distinct steps, with Channel 3 added first, Channel 4 added second, and

Channel 5 added third.

 Adding individual channels in the order of 1003, 1005, and 1004 will add the

channels to the list as three distinct steps with Channel 3 added first,

Channel 5 added second, and Channel 4 added last.

Section 8

Scanning

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-2 3700S-901-01 Rev. C / July 2008

Channel assignments

Each switching module has a certain number of channels. For example, the

Model 3720 switching module has 60 channels (1 through 60). When you

encounter a 1- to 3-digit channel number in this manual, the switching module

channel is the point of discussion. A 4-digit channel number includes the slot

number followed by the 3-digit channel number.

A switching module can be installed in any of the mainframe's six slots.

Therefore, to close, open, or scan a channel, you must specify the slot location

and channel number of the switching module by using a four-digit channel

number for the mainframe. The first digit (1, 2, 3, 4, 5, or 6) indicates the slot

number, and the next three digits indicate one of the following:

 The MUX (multiplexer) channel notation

 The row and column of matrix card notation

 The modules' backplane relay notation

Events

Event detectors monitor an event. They have one input signal (the stimulus),

which is the event that they monitor (in some cases, the stimulus is an action in

the system, like a timer expiring or a key press). They have two optional output

signals (see figure below). "Detected" reflects the detection state of the event

detector. If an event was detected, the detected signal is asserted. Event

detectors are usually coupled to something that consumes the events. When an

event is consumed, the detected state of the event detector is reset. Should an

event be detected while the event detector is in the detected state, the overrun

signal will be asserted. You can only clear the overrun signal by sending an ICL

command.

Figure 8-1: Event detector

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-3

Event blenders

Advanced event handling requires a way to wait for one of several events (or all

of several events). An event blender provides for this combining or blending of

events. An event blender can combine up to four events in either an "or" mode

or an "and" mode. When in "or" mode, any one of the input events will cause an

output event to be generated. When in "and" mode, all the input events must

occur before an output event is generated.

When operating in "and" mode, if an event is detected more than once before all

events necessary for the generation of an output event, an action overrun will be

generated. When operating in "or" mode, an action overrun will be generated

when two or more source events are detected simultaneously.

Event blenders each have an associated event detector that can be accessed

through script control. Event blenders can only be accessed over the bus (no

front panel control is available). The following ICL commands provide additional

information on available blenders:

 trigger.blender[N].clear() (on page 13-287)

 trigger.blender[N].orenable (on page 13-287)

 trigger.blender[N].overrun (on page 13-288)

 trigger.blender[N].stimulus[M] (on page 13-288)

 trigger.blender[N].wait() (on page 13-289)

Foreground and background scan execution

You can execute a scan in the foreground or background. Background execution

allows you to query settings or access reading buffer data. If a scan is running in

the foreground, it will need to finish or be aborted before you can query any

settings or access reading buffers.

When a scan is running in the background, you can send ICL commands to be

processed. The commands that you can use include most of the command

messages that you use to query for settings, for example:

print(dmm.func)
print(dmm.scan.state())
printbuffer(1, 5, rb)
print(scan.state())

Most of the commands to change how the instrument is configured will log the

following error message to the error queue, if not allowed:

5522, Scan Running, Must Abort Scan

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-4 3700S-901-01 Rev. C / July 2008

Trigger model

The following flowchart represents a trigger model implemented in the Series

3700. The trigger model is used during a scan only. For front panel operation,

you use the SCAN and STEP keys to perform scan actions. For remote

operation, you use the scan functions and attributes commands, for example,

scan.execute() and scan.mode.

Figure 8-2: Trigger model

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-5

The Series 3700 trigger model has the following events and associated ICL

command attributes. These events, along with other events in the system, may

be used to configure various stimulus settings.

For example, the channel ready event

(scan.trigger.EVENT_CHANNEL_READY) may be set to pulse digital I/O line

3 when it gets generated. The command message for this would be:

digio.trigger[3].stimulus =
scan.trigger.EVENT_CHANNEL_READY

Likewise, you can use the digital I/O line 5 trigger event to satisfy the scan

trigger channel stimulus, which causes the channel action to occur when a

trigger is detected on line 5. The command message for this is:

scan.trigger.channel.stimulus = digio.trigger[5].EVENT_ID

Event Associated ICL attribute

Scan Ready Event scan.trigger.EVENT_SCAN_READY

Scan Start Event scan.trigger.EVENT_SCAN_START

Channel Ready Event scan.trigger.EVENT_CHANNEL_READY

Measure Complete Event scan.trigger.EVENT_MEASURE_COMP

Sequence Complete Event scan.trigger.EVENT_SEQUENCE_COMP

Scan Complete Event scan.trigger.EVENT_SCAN_COMP

Idle Event scan.trigger.EVENT_IDLE

NOTE Scanning operations run through the trigger model, but individual

open, close, and DMM measure commands have no interaction with

the trigger model.

Trigger model components

The individual components of the trigger model are explained in the following

paragraphs.

Idle

When a scan is initiated, the operation leaves the idle state and finalizes aspects

to start scanning. Once everything is ready for scanning, the instrument

generates the Scan Ready Event and waits for the arm stimulus event (see the

Arm Action Trigger in the trigger model figure in Trigger model (on page 8-4)).

After the last channel in the scan is measured, operation returns to the idle

state, where measurements are halted and the last channel in the list is closed.

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-6 3700S-901-01 Rev. C / July 2008

Triggers

The following four action triggers are associated with the trigger model

operation:

 Arm Action Trigger

 Channel Action Trigger (this trigger may be bypassed for the first channel of

the first scan count)

 Sequence Action Trigger

 Measure Action Trigger

STEP operation: When the trigger event is detected, a channel is closed and a

measurement may be taken, if it is configured for one. The step operation, which

is only available over the front panel, processes one step at a time until all steps

are completed.

SCAN operation: When the trigger event is detected, all the channels in the

scan list are scanned. The scan operation processes all steps before finishing.

The channel closing occurs when the channel stimulus event is detected. After

closing the channels, the Channel Ready Event is generated. See the Channel

Action Trigger in the trigger model figure in Trigger model (on page 8-4). Before

the measurement occurs, the sequence and measure stimulus events must be

detected. One or both of these events may be used.

After the measurement is completed, a Measure Event Complete message is

generated. If a sequence of measurements is taken, a Sequence Complete

Event message is generated after all measurements are taken (that is, the

measure count reaches zero). Use the sequence stimulus event if you want

each measurement to be paced by an event. Otherwise, use the measure event

stimulus to have a single event trigger all of the measure count readings.

When all steps are complete, the Scan Complete Event message is generated.

Otherwise, it loops back to the Channel Action Trigger. When all scans are

complete, the Idle Event is generated. Otherwise, it loops back to the Arm Action

Trigger.

Stimulus Description

Arm Action Trigger Affects the "Wait Scan Start Trigger" block of the trigger model. This

trigger is associated with the ICL

scan.trigger.arm.stimulus (on page 13-244).

Channel Action Trigger Affects the "Wait Channel Start Trigger" block of the trigger model.

This trigger is associated with the ICL

scan.trigger.channel.stimulus (on page 13-246).

Sequence Action Trigger Affects the "Wait Sequence Trigger" block of the trigger model. This

trigger is associated with the ICL

scan.trigger.sequence.stimulus (on page 13-249).

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-7

Stimulus Description

Measure Action Trigger Affects the "Wait Measure Trigger" block of the trigger model. This

trigger is associated with the ICL

scan.trigger.measure.stimulus (on page 13-247).

Scan and step counts

When running a scan, it may be necessary to determine the scan progress. Use

scan and step count to determine the point in the scan table being executed.

"Scan count" represents the number of the current iteration through the scan

portion of the trigger model. This number does not increment until after the scan

begins. Therefore, if a unit is waiting for an input to trigger a scan start, the scan

count will represent the previous number of scan iterations. If no scan has yet to

begin, the scan count will be zero.

"Step count" represents the number of times the scan has completed a pass

through the channel action portion of the trigger model. This number does not

increment until after the action completes. Therefore, if the unit is waiting for an

input to trigger a channel action, the step count will represent the previous step.

If no step has yet to complete, the step count will be zero. If the step count has

yet to complete the first step in a subsequent pass through a scan, the scan

count represents the last step in the previous scan pass.

Basic scan procedure

To perform a scan:

1. Configure the channels for scanning as needed. Select (or create, if

necessary) the reading buffer to store measurements (if desired).

2. Build the scan list:

 Front panel: Press the INSERT key.

 Bus: Send the scan.create() or scan.add() command.

3. Configure the scan settings (for example, scan count, bypass, mode, and so

on).

4. To start the scan:

 Front panel: Press the STEP key or the SCAN key and select the

BACKGROUND menu item.

 Bus: Send an ICL command such as scan.execute,

scan.background, scan.nobufferbackground, or other

appropriate scan command.

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-8 3700S-901-01 Rev. C / July 2008

5. The trigger model leaves the idle state and opens channels involved in

scanning, along with channels that would interfere with scanning, such as

AMP channels, analog backplane relays 1 and 2 on all slots, common-side

ohm backplane channels, and other channels in banks involved in scanning.

When you press the STEP key, the Series 3700 leaves the idle state and

performs the channel action associated with the first step in the scan list.

Measurements are then taken (if part of the scan). If a reading buffer was

selected, the result from the measurements are stored there. The

measurement action, if started, is completed. The channel and DMM remain

as previously configured until the next step in the scan is initiated. The DMM

configuration changes to the attribute settings tied to the channel in the next

step.

NOTE While scanning is enabled, pressing most front panel keys will

display the message "ERROR CODE: 5522 Scan Running, Must

Abort Scan."

6. The channels are scanned or stepped in the order they were added to the

list.

 Front panel: If you are stepping through the scan, press the STEP key

to proceed to the next step in the list.

 Bus: You cannot step a scan remotely over the bus.

7. To abort the scan:

 Front panel: Press the EXIT key.

 Bus: Use the scan.abort ICL command.

NOTE Even if the scan is aborted, the DMM remains as configured in the

last completed step of a scan that involved measuring. Channel

states match the aborted state of channels in terms of which are

closed and opened.

The DMM remains as previously configured in the last completed measurement

step of a scan that involved measuring. The function associated with that

configuration will have the associated DMM attributes updated to match. All

other functions will remain as configured prior to scanning.

If programmed to scan the channels in the scan list again, the Series 3700 will

wait at the control source for another trigger event. After all the scan list

channels are measured again, the Series 3700 will output another trigger pulse,

if configured to do so. After all programmed scans are completed, the instrument

returns to the idle state with the channels associated with last scan step closed.

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-9

Buffer

To recall scanned readings stored in the buffer, press the REC key and turn the

navigation wheel to navigate through the buffer. See Recalling readings (on

page 7-5) for details on recalling buffer readings. When finished, make sure to

exit from buffer recall (press the EXIT key). Also see Buffer: Data Storage and

Retrieval (on page 7-1).

Changing channel and DMM attributes of an existing scan

When a scan already exists, changing channel and DMM attributes also causes

the scan to change. Once a scan list has been defined, the Series 3700 will try

to incorporate your changes into the scan. For example, changing a DMM

configuration assigned to a channel used in scanning affects the scan list. But

changing a DMM configuration on a channel not involved in scanning does not

affect the scan list. If the change impacts the ability of the scan to function

properly (such as deleting something referenced by the scan), an error message

is logged.

To see how the scan list may have changed, view the current scan list. On the

front panel, press the SCAN key and select the LIST option, using the

navigation wheel to scroll through the options. For bus operation, use the

scan.list() function. For performance reasons, it is always better to

configure all channel and DMM attributes before creating a scan. Afterward,

changes may cause the scan to take more time to modify the scan list. You can

clear an existing scan list before making any changes after making a scan list.

From the front panel, press the SCAN key and select the CLEAR option. For

bus operation, use the scan.create() function.

Some changes may cause channels to be dropped from the list when they

become paired with another channel for a 4-wire operation. These channels will

not be added back into the list during subsequent changes that free the paired

channel from a 4-wire operation. To get a recently unpaired channel back in the

list, create a new scan list or add it back into the list.

For example, a scan list is comprised of Channels 1 to 60 on a Model 3720 card

with the channels configured to measure DC volts. Changing Channels 1 to 30

to be configured for 4-wire ohms measurements causes the scan list to change.

The scan list changes to contain Channels 1 to 30 measuring 4-wire ohms, and

Channels 31 to 60 are removed because they are paired with Channels 1 to 30.

If you then change Channels 1 to 60 to be configured for measuring DC volts,

the scan list will still only contain Channels 1 to 30, but it will be measuring DC

volts. Channels 31 to 60 are not automatically added back into the list.

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-10 3700S-901-01 Rev. C / July 2008

The ICL commands to simulate this example follow. Assume the Model 3720 is

in Slot 3:

-- Configure Channels 1 to 60 to measure DC volts.

dmm.setconfig('slot3', 'dcvolts')

-- Create a scan list, channels measuring DC volts.

scan.create('slot3')

-- View the scan list, 60 channels measuring DC volts.

print(scan.list())

-- Change Channels 1 to 30 to 4-wire ohms.

dmm.setconfig('slot3', 'fourwireohms')

-- List now has Channels 1 to 30 measuring 4-wire ohms.

print(scan.list())

-- Change back to DC volts on Channels 1 to 60.

dmm.setconfig('slot3', 'dcvolts')

-- List still has Channels 1 to 30, but measures DC volts.

print(scan.list())

Front panel scanning

After channels have been added to the scan list, press the SCAN key to display

the SCAN ACTION MENU. If no scan list exists, pressing the SCAN key will

briefly display "No Scan List. Use INSERT to add selection."

The menu contains the following items:

 BACKGROUND: Runs scan list in the background

 CREATE: Displays Use <INSERT> key (reserved for future enhancements)

 LIST: Displays the current scan list steps. Turn the navigation wheel to

scroll through the list.

 CLEAR: Clears the existing scan list.

 RESET: Resets the unit's scan aspects, which include scan count, clearing

the scan list, and scan stimulus settings like scan trigger arm.

Press the INSERT key to add the selected channels or pattern to the existing

scan list.

Press the DELETE key to remove the selected channels or pattern from the

existing scan list. Only the first occurrence of the selected item will be removed.

For example, if Channel 3003 appears in the list three times and Channel 3003

is selected when the DELETE key is pushed, the first step using Channel 3003

will be removed (the remaining two will stay in the list).

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-11

When removing channels, channel patterns will not be checked to determine if

the channel being removed is associated with its image. To remove a channel

pattern in a scan list, select the channel pattern to be removed, and then press

the DELETE key. Continuing the previous example of Channel 3003, if 'mypat1'

is comprised of Channels '3003, 3033, 3911, and 3922' when the remove

request for Channel 3003 is made, it will not remove 'mypat1' from the list. To

remove 'mypat1' from list, select the channel pattern 'mypat1' and press the

DELETE key, which removes the step and all associated channels.

Press the STEP key to single step through a scan list.

Scan configuration

To configure a scan from the SCAN ATTR MENU, while in an active scan

list:

1. Press the CONFIG key.

2. Press the SCAN key. Modify any of the following menu items as desired:

 ADD: Displays Use <INSERT> key. The related ICL is scan.add,

without the optional DMM configuration.

 BYPASS: Enables (ON) or disables (OFF) bypassing the first step of the

first scan pass. Related ICL command: scan.bypass (on page 13-

233).

 MODE: Sets the scan mode value to one of the following:

 OPEN_ALL (default setting)

 OPEN_SELECT

 FIXED_ABR

Related ICL command: scan.mode() (on page 13-239).

 MEAS_CNT: Sets the measure count value. Related ICL command:

scan.measurecount (on page 13-238).

 SCAN_CNT: Sets the scan count value. Related ICL command:

scan.scancount (on page 13-242).

3. Press the EXIT key to leave the menu.

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-12 3700S-901-01 Rev. C / July 2008

Bus operation scanning

ICL commands

The following list contains ICL commands associated with triggers and bus

operation scanning:

 trigger.blender[N].clear() (on page 13-287)

 trigger.blender[N].orenable (on page 13-287)

 trigger.blender[N].overrun (on page 13-288)

 trigger.blender[N].stimulus[M] (on page 13-288)

 trigger.blender[N].wait() (on page 13-289)

 trigger.timer[N].clear (on page 13-290)

 trigger.timer[N].stimulus (on page 13-292)

 digio.trigger[N].clear() (on page 13-88)

 digio.trigger[N].pulsewidth (on page 13-90)

 digio.trigger[N].stimulus (on page 13-91)

 digio.trigger[N].wait (on page 13-92)

 lan.trigger[N].assert() (on page 13-203)

 lan.trigger[N].clear (on page 13-204)

 lan.trigger[N].overrun (on page 13-206)

 lan.trigger[N].stimulus (on page 13-208)

 lan.trigger[N].wait (on page 13-209)

 scan.add() (on page 13-230)

 scan.background() (on page 13-232)

 scan.bypass (on page 13-233)

 scan.create() (on page 13-234)

 scan.execute() (on page 13-236)

 scan.list() (on page 13-237)

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-13

 scan.measurecount (on page 13-238)

 scan.mode() (on page 13-239)

 scan.nobufferbackground() (on page 13-240)

 scan.reset() (on page 13-242)

 scan.scancount (on page 13-242)

 scan.state() (on page 13-243)

 scan.trigger.arm.clear() (on page 13-244)

 scan.trigger.arm.set() (on page 13-244)

 scan.trigger.arm.stimulus (on page 13-244)

 scan.trigger.channel.clear() (on page 13-245)

 scan.trigger.channel.set() (on page 13-245)

 scan.trigger.channel.stimulus (on page 13-246)

 scan.trigger.clear() (on page 13-247)

 scan.trigger.measure.clear() (on page 13-247)

 scan.trigger.measure.set() (on page 13-247)

 scan.trigger.measure.stimulus (on page 13-247)

 scan.trigger.sequence.clear() (on page 13-248)

 scan.trigger.sequence.set() (on page 13-248)

 scan.trigger.sequence.stimulus (on page 13-249)

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-14 3700S-901-01 Rev. C / July 2008

Scanning examples

The following examples assume a Keithley Instruments Model 3720 module is

installed in Slot 3 of a Series 3700.

NOTE In the examples, to clear a trigger stimulus after setting, set the

stimulus to 0, which returns the stimulus setting back to its factory

default value, which may or may not be 0.

Example 1:

Command list to scan the entire card in a switch-only application (no measuring)

that has digital I/O line 1 initiate a background scan (see the comments for other

specifics).

-- Reset the Series 3700 to factory defaults

reset()

-- Create scan for all channels on the card installed in
Slot 3.

scan.create('slot3')

-- Setup digital I/O line 1 to detect a falling-edge
trigger.

digio.trigger[1].mode = digio.TRIG_FALLING

-- Use a digital I/O event as the ARM layer's stimulus.

scan.trigger.arm.stimulus = digio.trigger[1].EVENT_ID

-- Initiate the scan to execute in the background.

scan.background()

Example 2:

Command list to scan the entire card while measuring DC volts on each channel

and storing readings in a buffer called mybuffer (see the comments for other

specifics).

-- Reset the Series 3700 to factory defaults.

reset()

-- Set the range of DC volts to the 10 volt range.

dmm.range = 10

-- Set NPLC to 0.1 NPLC.

dmm.nplc = .1

-- Save the DMM configuration as "mydcv."

dmm.configure.set('mydcv')

-- Make buffer named "mybuffer" and configure it to store
up to 1000 readings.

mybuffer = dmm.makebuffer(1000)

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-15

-- Set up digital I/O line 1 to detect a falling edge
trigger.

digio.trigger[1].mode = digio.TRIG_FALLING

-- Set each channel so it closes with a digio 1 event
trigger.

scan.trigger.channel.stimulus = digio.trigger[1].EVENT_ID

-- Set bypass to off so that first channel needs to see
trigger before closing.

scan.bypass = scan.OFF

-- Create scan for Channels 1 to 60 on the card installed
in Slot 3.

scan.create('3001:3060', 'mydcv')

-- Initiate the scan to execute in the background and save
readings to a buffer called "mybuffer."

scan.background(mybuffer)

Example 3:

Command list to scan the entire card while measuring 4-wire ohms using a

background scan (see the comments for other specifics).

-- Reset the Series 3700 to factory defaults.

reset()

-- Set the configuration for all channels in Slot 4 to 4-
wire ohms.

dmm.setconfig('slot4', 'fourwireohms')

-- Create scan for all channels on the card installed in
Slot 4.

scan.create('slot4')

-- Set up digital I/O Line 1 to detect a falling-edge
trigger.

digio.trigger[1].mode = digio.TRIG_FALLING

-- Set up digital I/O Line 2 to detect a falling-edge
trigger.

digio.trigger[2].mode = digio.TRIG_FALLING

-- Set each channel so that it will close with a
measurement complete event.

scan.trigger.channel.stimulus =
scan.trigger.EVENT_MEASURE_COMP

-- Set digio 2 to pulse when a channel ready event occurs.

digio.trigger[2].stimulus =
scan.trigger.EVENT_CHANNEL_READY

-- Set each measurement to occur with a digio 1 event
trigger.

scan.trigger.measure.stimulus = digio.trigger[1].EVENT_ID

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-16 3700S-901-01 Rev. C / July 2008

-- Set bypass to ON so first channel closes without taking
a measurement.

scan.bypass = scan.ON

-- Make buffer named "mybuffer" and configure it to store
up to 1000 readings.

mybuffer = dmm.makebuffer(1000)

-- Initiate the scan to execute in the background and save
readings to a buffer called "mybuffer."

scan.background(mybuffer)

Example 4:

Optimizing scanning for speed.

Some cards, such as the Model 3723, use relays that are optimized for

switching speed and reliability. However, these cards still use backplane relays

(EMR) that are slow and have a shorter life. Full speed and reliability of the card

can be realized by avoiding scan modes that intelligently open and close

backplane relays (for example, scan.MODE_OPEN_SELECTIVE). By setting the

scan mode (scan.mode) to scan.MODE_FIXED_ABR, all required backplane

relays will be closed prior to the start of the scan and remain closed until you

program them to open.

Here's an example of a Model 3706 configured for fast scanning with the Model

3723 card. Sixty channels will be scanned ten times on 200V DCV.

-- Reset the Series 3700 to factory defaults.

reset()

-- Select active function as DC volts.

dmm.func= 'dcvolts'

-- Turn auto range off.

dmm.autorange=dmm.OFF

-- Select the range based on 200 volts.

dmm.range='200'

-- Turn autozero off.

dmm.autozero=dmm.OFF

-- Set the NPLC to .006.

dmm.nplc=.006

-- Turn auto delay off.

dmm.autodelay=dmm.OFF

-- Create a reading buffer to hold 600 readings.

reading_buffer=dmm.makebuffer(600)

-- Save the current dmm settings as "mydcvolts"
configuration.

dmm.configure.set('mydcvolts')

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-17

-- Assign that configuration to Channels 1 to 60 on Slot 1.

dmm.setconfig('1001:1060' , 'mydcvolts')

-- Set the scan mode to fixed ABR.

scan.mode=scan.MODE_FIXED_ABR

-- Create a scan list of Channels 1 to 60 on Slot 1.

scan.create('1001:1060')

-- Set the scan count to 10.

scan.scancount=10

-- Scan in the foreground.

scan.execute(reading_buffer)

-- Write the data out to a file on a USB flash drive.

dmm.savebuffer('reading_buffer', '/usb1/mydata.csv')

NOTE The NPLC setting is at .006 in the example, but the fastest NPLC

setting supported in a Series 3700 is .0005. Another speed

improvement option is to set the channel connect rule to OFF

(channel.connectrule = channel.OFF). Using this setting

allows channels to open and close at the same time, provided the

application supports this operation.

Example 5:

Command list to scan the entire Model 3723 card while measuring DC volts on

each channel, and store readings in a buffer called mybuffer (see the

comments for other specifics).

NOTE For the Model 3723, the channels are reed relays, while the analog

backplane relays are EMR relays. Therefore, to have the scan run

faster, set the scan mode to fixed ABR, which closes the backplane

relays before scanning starts and keeps them closed during the entire

scan.

-- Reset the Series 3700 to factory defaults.

reset()

-- Set the range of DC volts to the 10 volt range.

dmm.range = 10

-- Set NPLC to 0.1 NPLC.

dmm.nplc = .1

-- Save the DMM configuration as "mydcv."

dmm.configure.set('mydcv')

-- Make buffer named "mybuffer" and configure it to store
up to 1000 readings.

mybuffer = dmm.makebuffer(1000)

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-18 3700S-901-01 Rev. C / July 2008

-- Set up digital I/O Line 1 to detect a falling edge
trigger.

digio.trigger[1].mode = digio.TRIG_FALLING

-- Set each channel so it closes with a digio 1 event
trigger.

scan.trigger.channel.stimulus = digio.trigger[1].EVENT_ID

-- Set bypass to OFF so that the first channel needs to see
the trigger before closing.

scan.bypass = scan.OFF

-- Set the mode to fixed ABR so that the backplane relays
are closed at the start of scanning and maintained
closed throughout scanning without being opened/closed.

scan.mode = scan.MODE_FIXED_ABR

-- Create scan for Channels 1 to 60 on the card installed
in Slot 3.

scan.create('3001:3060', 'mydcv')

-- Initiate the scan to execute in the background and save
readings to a buffer called "mybuffer."

scan.background(mybuffer)

Hardware trigger modes

Use the hardware trigger modes to integrate Keithley Instruments and non-

Keithley instruments into an efficient test system. The hardware synchronization

lines are classic trigger lines. The Series 3700 contains 14 digital I/O lines and

three TSP-Link synchronization lines that you can use for input or output

triggering. The following table provides a summary for each hardware trigger

mode.

Trigger mode Output Input Notes

 Unasserted Asserted Detects

Bypass N/A N/A N/A Use the writetbit and

writeport commands for

direct line control (Version 1.4.0

and higher)

Either edge High Low Either Short input pulses can cause a

trigger overrun.

Falling edge High Low Falling

Rising edge N/A N/A N/A The programmed state of the

line determines if the behavior

is similar to RisingA or

RisingM

 High similar to RisingA

 Low similar to RisingM

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-19

Trigger mode Output Input Notes

 Unasserted Asserted Detects

Rising A High Low Rising

RisingM Low High None

Synchronous High

latching

Low Falling Behaves similar to

SynchronousA

 Trigger overrun detection is

disabled

 To mirror the SynchronousA

trigger mode, set the pulse

duration to 1µs or any small

nonzero value

SynchronousA High

latching

High Falling Ignores the pulse duration

SynchronousM High Low Rising

Each trigger mode controls the input trigger detection and output trigger

generation. The input detector monitors for and detects all edges, even if the

node that generates the output trigger causes the edge.

A trigger overrun generates if an input trigger is received before the previous

input trigger processes. To determine if a trigger overrun has occurred,

reference the trigger overrun attributes.

For additional information on the hardware trigger modes, see Instrument

Control Library (ICL) (on page 12-1).

NOTE To have direct control of the line state, use the Bypass trigger mode.

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-20 3700S-901-01 Rev. C / July 2008

Falling edge trigger mode

The falling edge trigger mode generates low pulses and detects all falling edges.

The following graphic illustrates the characteristics for the falling edge input

trigger.

Figure 8-3: Falling edge input trigger

Input characteristics:

Detects all falling edges as input triggers

Figure 8-4: Falling edge output trigger

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-21

Output characteristics:

The trigger.assert command generates a low pulse for the programmed

pulse duration.

Rising edge master trigger mode (version 1.4.0 or higher)

Use the rising edge master trigger mode (RisingM) to synchronize with

non-Keithley Instruments that require a high pulse. Input trigger detection is not

available in this trigger mode. You can use the RisingM trigger mode to generate

rising edge pulses.

NOTE The RisingM trigger mode does not function properly if the line is

driven low by an external drive.

Figure 8-5: RisingM output trigger

Output characteristics:

The trigger.assert command causes the physical line state to float high

during the trigger pulse duration.

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-22 3700S-901-01 Rev. C / July 2008

Rising edge acceptor trigger mode (version 1.4.0 or
higher)

The rising edge acceptor trigger mode (RisingA) generates a low pulse and

detects rising edge pulses. The following graphic displays the RisingA input

trigger.

Figure 8-6: RisingA input trigger

Input characteristics:

All rising edges generate an input event.

Figure 8-7: RisingA output trigger

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-23

Output characteristics:

The trigger.assert command generates a low pulse that is similar to the

falling edge trigger mode.

Either edge trigger mode

The either edge trigger mode generates a low pulse and detects both rising and

falling edges.

Figure 8-8: Either edge input trigger

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-24 3700S-901-01 Rev. C / July 2008

Input characteristics:

All rising or falling edges generate an input trigger event

Figure 8-9: Either edge output trigger

Output characteristics:

The trigger.assert command generates a low pulse that is similar to the

falling edge trigger mode.

Understanding synchronous triggering modes

Use the synchronous triggering modes to implement bidirectional triggering, to

wait for one node, or to wait for a collection of nodes to complete all triggered

actions.

All non-Keithley instrumentation must have a trigger mode that functions similar

to the SynchronousA or SynchronousM trigger modes.

To use synchronous triggering, configure the triggering master to the

SynchronousM trigger mode or the non-Keithley equivalent. Configure all other

nodes in the test system to SynchronousA trigger mode or a non-Keithley

equivalent.

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-25

Synchronous master trigger mode

Use the synchronous master trigger mode (SynchronousM) to generate falling

edge output triggers, to detect the rising edge input triggers, and to initiate an

action on one or more external nodes with the same trigger line.

In this mode, the output trigger consists of a low pulse. All non-Keithley

instruments attached to the synchronization line in a trigger mode equivalent to

SynchronousA must latch the line low during the pulse duration.

To use the SynchronousM trigger mode, configure the triggering master as

SynchronousM and then configure all other nodes in the test system as

Synchronous, SynchronousA, or to the non-Keithley equivalent.

NOTE Use the SynchronousM trigger mode to receive notification when the

triggered action on all nodes is complete.

Figure 8-10: SynchronousM input trigger

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-26 3700S-901-01 Rev. C / July 2008

Input characteristics:

 All rising edges are input triggers.

 When all external drives release the physical line, the rising edge is detected

as an input trigger.

 A rising edge cannot be detected until all external drives release the line and

the line floats high.

Figure 8-11: SynchronousM output trigger

Output characteristics:

The trigger.assert command generates a low pulse that is similar to the

Falling Edge trigger mode

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-27

Synchronous acceptor trigger mode

Use the synchronous acceptor trigger mode (SynchronousA) in conjunction with

the SynchronousM trigger mode. The role of the internal and external drives are

reversed in the SynchronousA trigger mode.

Figure 8-12: SynchronousA input trigger

Input characteristics:

The falling edge is detected as the external drive pulses the line low, and the

internal drive latches the line low

Figure 8-13: SynchronousA output trigger

Output characteristics:

 The trigger.assert command releases the line if the line is latched low.

 The physical line state does not change until all drives (internal and

external) release the line.

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

8-28 3700S-901-01 Rev. C / July 2008

Synchronous trigger mode

The synchronous trigger mode is a combination of SynchronousA and

SynchronousM trigger modes. Use the synchronous trigger mode for backwards

firmware compatibility.

The SynchronousA and SynchronousM trigger modes provide additional

flexibility. It is recommended that you use SynchronousA and SynchronousM for

firmware v1.4.0 or higher, and use the synchronous trigger mode for firmware

prior to v1.4.0.

Figure 8-14: Synchronous input trigger

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

3700S-901-01 Rev. C / July 2008 8-29

Input characteristics:

The falling edge generates an input event and latches the internal drive low.

Figure 8-15: Synchronous output trigger

Output characteristics:

 The trigger.assert command generates a low pulse for the

programmed pulse duration If the line is latched low, a falling edge does not

occur.

 When the trigger.assert command is issued and the line is latched

low, the pulse duration is enforced, and then the internal line drive is

released.

 A normal falling edge pulse generates when the internal drive is not latched

low and the trigger.assert command is issued.

In this section:

File formats ... 9-1

Default file extensions ... 9-1

File system navigation ... 9-2

File I/O .. 9-3

Script examples .. 9-4

Command table entries ... 9-9

File formats

Each script, reading buffer, and saved setup is represented on a flash drive as a

separate file.

Directories on a flash drive used with the Series 3700 can only contain a limited

number of files. The top-level directory is limited to approximately 150 files, while

subdirectories are limited to approximately 500 files. Once the limit has been

reached, a "file system full" error message is generated.

Default file extensions

You must specify the full filename, including the extension, when sending

commands. Note, however, that the front panel automatically generates a

generic filename that you can use as a base for naming your files. Also, some

commands (for example, io.open (on page 9-13)) will work with either a

relative or absolute path to the current working directory.

The Series 3700 has the following set of default extensions:

 .tsp (Test Script Processor for scripts

 .csv (Comma Separated Values) for reading buffers

 .set for saved setups

Section 9

Files

Section 9: Files Series 3700 System Switch/Multimeter Reference Manual

9-2 3700S-901-01 Rev. C / July 2008

File system navigation

The Lua FS library provides the command set necessary to navigate the file

system and list the available files on a flash drive. The instrument encapsulates

this command set as an fs logical instrument, so that the file system of any

given node is available to the entire TSP-LinkTM system. For example, the

command node[5].fs.readdir(".") can be used to read the contents of

the current working directory on Node 5.

To allow for future enhancements, the root folder of the USB memory stick has

the absolute path "/usb1/".

NOTE Both slash (/) and backslash (\) are supported as directory separators,

but because backslash is an escape character in Lua, it appears as a

double backslash in this context.

The following Lua FS commands, which support basic navigation and directory

listing, are included for your reference.

 fs.chdir() (on page 9-9)

 fs.cwd() (on page 9-9)

 fs.is_dir() (on page 9-9)

 fs.is_file() (on page 9-9)

 fs.mkdir() (on page 9-9)

 fs.readdir() (on page 9-9)

 fs.rmdir() (on page 9-10)

The following Lua FS commands are not supported at this time:

 fs.chmod

 fs.chown

 fs.stat

Series 3700 System Switch/Multimeter Reference Manual Section 9: Files

3700S-901-01 Rev. C / July 2008 9-3

File I/O

Lua supports file I/O with its io library commands. A subset of these commands

is supported for use with Series 3700 instruments. As with Lua FS, these

commands are encapsulated as an io logical instrument so that the files on any

given node are accessible to the entire TSP-LinkTM system.

Lua organizes its file I/O commands into two groups:

 Commands that reside in the io table, for example: io.open, io.close,

io.input, and io.output. These commands are responsible for opening

and closing file descriptors and performing basic I/O operations on a pair of

default files, one input and one output.

 Commands that reside in the file descriptors themselves, for example:

file:seek, file:write, and file:read. These commands operate

exclusively on the file with which they are associated.

NOTE File descriptor commands for file I/O use a colon (:) to separate the

command parts rather than a period (.) like the io commands.

A file descriptor (similar to a reading buffer) can only be used with the logical

instrument that created it. Therefore, file descriptors cannot be passed between

nodes in a TSP-Link system.

The default input and output files mentioned above allow for the execution of

many file I/O operations without any reference to a file descriptor. Remote

access to the io.open command is not allowed.

The following Lua I/O commands, which support basic file I/O, are included for

your reference:

 file:close() (on page 9-10)

 file:flush() (on page 9-10)

 file:read() (on page 9-10)

 file:seek() (on page 9-11)

 file:write() (on page 9-11)

 io.close() (on page 9-12)

 io.flush() (on page 9-12)

 io:input() (on page 9-12)

 io:open() (on page 9-13)

 io:output() (on page 9-13)

 io:read() (on page 9-13)

 io:write() (on page 9-14)

Section 9: Files Series 3700 System Switch/Multimeter Reference Manual

9-4 3700S-901-01 Rev. C / July 2008

 io.type (on page 9-14) (supported on the local node only when the Series

3700 is a master)

The following standard I/O commands are not supported at this time:

 file:lines

 file:setvbuf

 io.lines

 io.popen

 io.tmpfile

Script examples

The following script will open three different files to help illustrate the differences

between the io commands and file descriptor commands. After opening the

files, the script designates each one as the default output file (using the

io.output command). While each file is the default for file writes (using the

io.write command), the script also uses the file descriptor from the io.open

to write to the file (file:write command).

After all files are closed (using the io.close command), the script will open the

files again for reading. Two files are read by:

 Designating the file the default input file (using the io.input command)

 Being the default read contents of file (using the io.read command)

The third file is read by using the file descriptor from the open (file:read

command). After reading all files, they are closed using the file descriptor and

close option (file:close command).

Series 3700 System Switch/Multimeter Reference Manual Section 9: Files

3700S-901-01 Rev. C / July 2008 9-5

loadscript file_io_test

-- get the current date and time
date_time = os.date('%c', os.time())

-- open the three files for writing
myfile1, myfile1_err, myfile1_errnum =

io.open('/usb1/myfile_io1', 'w')
myfile2, myfile2_err, myfile2_errnum =

io.open('/usb1/myfile_io2', 'w')
myfile3, myfile3_err, myfile3_errnum =

io.open('/usb1/myfile_io3', 'w')

if (io.type(myfile1) == 'file') then

if (io.type(myfile2) == 'file') then

if (io.type(myfile3) == 'file') then

-- make myfile1 the default output file
io.output(myfile1)
-- write some data to the default file
io.write('Using io write to myfile1 to io output\n')
io.write(date_time)
io.write('\n')
-- now write to myfile2 using descriptor rather than

io write command
myfile2:write(' file handle to write to

myfile2\n')
myfile2:write(' while myfile1 is output file for

io\n')
-- make myfile2 the default output file
io.output(myfile2)
-- write some data to the default file
io.write('Using io write to myfile2 to io output\n')
io.write(date_time)
io.write('\n')
-- now write to myfile3 using descriptor rather than

io write command
myfile3:write(' file handle to write to

myfile3\n')
myfile3:write(' while myfile2 is output file for

io\n')
-- make myfile3 the default output file
io.output(myfile3)
-- write some data to the default file
io.write('Using io write to myfile3 to io output\n')
io.write(date_time)
io.write('\n')
-- now write to myfile1 using descriptor rather than

io write command
myfile1:write(' file handle to write to

myfile1\n')
myfile1:write(' while myfile3 is output file for

io\n')
-- use the io close rather than file descriptor

close command
io.close(myfile1)
io.close(myfile2)
io.close(myfile3)

else

print('myfile3 did not open for write')
print('error string is ' .. myfile3_err)

Section 9: Files Series 3700 System Switch/Multimeter Reference Manual

9-6 3700S-901-01 Rev. C / July 2008

print('error number is ' .. myfile3_errnum)

end

else

print('myfile2 did not open for write')
print('error string is ' .. myfile2_err)
print('error number is ' .. myfile2_errnum)

end

else

print('myfile1 did not open for write')
print('error string is ' .. myfile1_err)

print('error number is ' .. myfile1_errnum)

end
-- open the 3 files again for reading
myfile1, myfile1_err, myfile1_errnum =

io.open('/usb1/myfile_io1', 'r')
myfile2, myfile2_err, myfile2_errnum =

io.open('/usb1/myfile_io2', 'r')
myfile3, myfile3_err, myfile3_errnum =

io.open('/usb1/myfile_io3', 'r')
if (io.type(myfile1) == 'file') then

if (io.type(myfile2) == 'file') then

if (io.type(myfile3) == 'file') then

-- make myfile1 the default input file
io.input(myfile1)
-- read the default file
filecontents = io.read('*a')
print('contents of myfile1 are:')

print(filecontents)
print()
-- make myfile2 the default input file
io.input(myfile2)
-- read the default file
filecontents = io.read('*a')
print('contents of myfile2 are:')
print(filecontents)
print()
-- read myfile3 using file descriptor instead of io

read
filecontents = myfile3:read('*a')
print('contents of myfile3 are:')
print(filecontents)
print()
-- use file descriptor close command rather than io

close
myfile1:close()
myfile2:close()
myfile3:close()

else

print('myfile3 did not open for read')
print('error string is ' .. myfile3_err)
print('error number is ' .. myfile3_errnum)

end

else

print('myfile2 did not open for read')

Series 3700 System Switch/Multimeter Reference Manual Section 9: Files

3700S-901-01 Rev. C / July 2008 9-7

print('error string is ' .. myfile2_err)

print('error number is ' .. myfile2_errnum)

end

else

print('myfile1 did not open for read')
print('error string is ' .. myfile1_err)

print('error number is ' .. myfile1_errnum)

end

endscript

After downloading the above script, type file_io_test() to execute the

script:

file_io_test()

The following output is returned after executing the file_io_test() script:

contents of myfile1 are:
Using io write to myfile1 to io output

11/27/07 07:57:23

file handle to write to myfile1
while myfile3 is output file for io

contents of myfile2 are:

file handle to write to myfile2
while myfile1 is output file for io

Using io write to myfile2 to io output
11/27/07 07:57:23

contents of myfile3 are:

file handle to write to myfile3
while myfile2 is output file for io

Using io write to myfile3 to io output
11/27/07 07:57:23

The following script will open a file called myfiletest three times. The first

time it is opened is for writing. Note that opening an existing file for writing

deletes any existing information in the file. The second time it is opened is for

appending more data to the existing data in the file. Opening a file for append

will not delete any existing data; it only adds data to the end of the existing file

contents. The third time the file is opened is for reading the entire contents of the

file (existing data and appended data).

Section 9: Files Series 3700 System Switch/Multimeter Reference Manual

9-8 3700S-901-01 Rev. C / July 2008

loadscript filetest

-- script to write 2 lines to a file
-- append 2 lines to the same file

-- read the entire file contents and print them

-- open the file for writing
myfile = io.open('/usb1/myfiletest', 'w')

if io.type(myfile) == 'file' then

myfile:write('This is my first line WRITING\n')
myfile:write('This is my next line WRITING\n')
myfile:close()

-- open the file for appending
myfile = io.open('/usb1/myfiletest', 'a')

if io.type(myfile) == 'file' then

myfile:write('This is my first APPEND line\n')
myfile:write('This is my next APPEND line\n')
myfile:close()

-- open the file for reading
myfile = io.open('/usb1/myfiletest', 'r')
if io.type(myfile) == 'file' then

filecontents = myfile:read('*a')
print('the file contains:')
print()
print(filecontents)
myfile:close()

else

print('The file did not open correctly for reading')

end

else

print('The file did not open correctly for appending')

end

else

print('The file did not open correctly for writing')

end

endscript

After downloading the above script, type filetest() to execute the script.

Here are the output results:

the file contains:
This is my first line WRITING
This is my next line WRITING
This is my first APPEND line
This is my next APPEND line

Series 3700 System Switch/Multimeter Reference Manual Section 9: Files

3700S-901-01 Rev. C / July 2008 9-9

Command table entries

fs.chdir()

Function Sets the current working directory.

Usage fs.chdir(path)

path: The new working directory path (absolute or relative).

Remarks An error is logged to the error queue if the given path does not exist.

fs.cwd()

Function Returns the absolute path of the current working directory.

Usage path = fs.cwd()

path: The absolute path of the current working directory.

fs.is_dir()

Function Tests whether the specified path refers to a directory.

Usage status = fs.is_dir(path)

status: True if the given path is a directory; otherwise, false.

path: The file system entry path (absolute or relative) to test.

Remarks An error is logged to the error queue if the given path does not exist.

fs.is_file()

Function Tests whether the specified path refers to a file (as opposed to a directory).

Usage status = fs.is_file(path)

status: True if the given path is a file; otherwise, false.

path: The path of the file system entry to test. This path may be absolute or relative to

the current working directory.

Remarks An error is logged to the error queue if the given path does not exist.

fs.mkdir()

Function Creates a directory at the specified path.

Usage fs.mkdir(path)

path: The path of the new directory. This path may be absolute or relative to the

current working directory.

Remarks An error is logged to the error queue if the parent folder of the new directory does not

exist, or if a file system entry already exists at the given path.

Section 9: Files Series 3700 System Switch/Multimeter Reference Manual

9-10 3700S-901-01 Rev. C / July 2008

fs.readdir()

Function Returns a list of all the file system entries within a specified directory.

Usage files = fs.readdir(path)

files: A list containing the names of all the file system entries that reside in the

specified directory.

path: The directory path. This path may be absolute or relative to the current working

directory.

Remarks This command is non-recursive (that is, entries in subfolders are not returned). An

error is logged to the error queue if the given path does not exist, or does not

represent a directory.

fs.rmdir()

Function Removes a directory from the file system.

Usage fs.rmdir(path)

path: The path of the directory to remove. This path may be absolute or relative to the

current working directory.

Remarks An error is logged to the error queue if the given path does not exist, does not

represent a directory, or if the directory is not empty.

file:close()

Function Closes a file after flushing any data that was written to it with io.write() (on page

9-14) or file:write() (on page 9-11).

Usage file:close()

file: The descriptor of the file to close.

Remarks This command is equivalent to io.close(file). It is not remotely accessible.

file:flush()

Function Flush the buffered data for the specified file

Usage file:flush()

file: The descriptor of the file to flush

Remarks Use this command to flush data written to it by file:write() (on page 9-11) or

io.write() (on page 9-14). Using this function removes the need to close a file

after writing to it and allows it to be left open to write more data. Data may be lost if the

file is not closed or flushed before an application ends. To prevent the loss of data if

there is going to be a time delay before more data is written when you want to keep file

open and not close it, flush the file after writing to it.

Series 3700 System Switch/Multimeter Reference Manual Section 9: Files

3700S-901-01 Rev. C / July 2008 9-11

file:read()

Function Reads data from a file.

Usage data = file:read(format)

data: The data read from the file. The number of return values matches the number of

values in format.

file: The descriptor of the file to read.

format: A string or number indicating the type of data to be read. Any number of

format parameters may be passed to this command, each corresponding to a returned

data value. The format attribute is optional; the default is "*l".

Remarks The format parameters may be any of the following:

"*n": Return a number.

"*a": Return the whole file, starting at the current position; return the empty string at

the end of the file.

"*l": Return the next line, skipping the end of line; return nil at the end of file.

n: Return a string with up to n characters; return an empty string if n is zero; return

nil at the end of file.

Any error encountered is logged to the error queue.

This command is not remotely accessible.

file:seek()

Function Sets and gets a file's current position.

Usage position = file:seek(whence, offset)

position: The new file position, measured in bytes from the beginning of the file.

file: The descriptor of the file.

whence: A string indicating the base against which offset is applied. The whence

attribute is optional; the default is "cur".

offset: The intended new position, measured in bytes from a base indicated by

whence. Optional, default is 0.

Remarks The whence parameters may be any of the following:

"set": Beginning of file.

"cur": Current position.

"end": End of file.

If an error is encountered, it is logged to the error queue, and the command returns

nil and the error string.

This command is not remotely accessible.

Section 9: Files Series 3700 System Switch/Multimeter Reference Manual

9-12 3700S-901-01 Rev. C / July 2008

file:write()

Function Buffer data until a flush (file:flush() (on page 9-10) or io.flush()

(on page 9-12)) or close (file:close() (on page 9-10) or io.close() (on

page 9-12)) operation is performed.

NOTE Data may be lost if the file is not flushed or closed before the application

ends. A write function buffers the data until a flush or close operation is

requested.

Usage file:write(data)

file: The descriptor of the file.

data: The data to write to the file. An arbitrary number of data values may be passed

to this command. All parameters must be either strings or numbers.

Remarks Any error encountered is logged to the error queue.

This command is not remotely accessible.

io.close()

Function Closes the specified file.

Usage io.close(file)

file: A file descriptor to flush and close

Remarks This command is equivalent to file:close() (on page 9-10).

io.flush()

Function Flush the buffered data for the current output file.

Usage io.flush()

Remarks Use this command to flush data written to the current default file by file:write()

(on page 9-11) or io.write() (on page 9-14). Using this command removes the

need to close a file after writing to it and allows it to be left open to write more data.

Data may be lost if the file is not closed or flushed before an application ends. To

prevent the loss of data if there is going to be a time delay before more data is written

when you want to keep file open and not close it, flush the file after writing to it.

io.input()

Function Assigns a previously opened file, or opens a new file, as the default input file.

Usage io.input(filein)

fileout = io.input()

filein: A file descriptor to assign or the path of a file to open as the default input file.

The path may be absolute or relative to the current working directory. This parameter

is optional; if absent, the command returns the absolute path to the current default

input file (fileout).

fileout: The absolute path to the default input file.

Series 3700 System Switch/Multimeter Reference Manual Section 9: Files

3700S-901-01 Rev. C / July 2008 9-13

io.input()

Remarks Any error encountered is logged to the error queue.

The remotely-accessible version of this command does not accept a file descriptor

parameter.

io.open()

Function Opens a file for later access.

Usage file, err, errnum = io.open(path, mode)

file: The descriptor of the opened file.

err: A string with an error message an error occurred.

errnum: Number representing the error number.

path: The path of the file to open. This path may be absolute or relative to the current

working directory.

mode: A string representing the intended access mode. The mode attribute is

optional; the default is "r".

Remarks The mode string can be any of the standard C language fopen modes, including:

"r": Read mode.

"w": Write mode.

"a": Append mode.

If an error is encountered, it is logged to the error queue, and the command returns

nil and the error string.

This command is not remotely accessible.

io.output()

Function Assigns a previously opened file or opens a new file as the default output file.

Usage io.output(filein)

fileout = io.output()

filein: A file descriptor to assign, or the path of a file to open, as the default output file.

The path may be absolute or relative to the current working directory. This parameter

is optional; if absent, the command returns the absolute path to the current default

output file (fileout).

fileout: The absolute path to the default output file.

Remarks Any error encountered is logged to the error queue.

The remotely-accessible version of this command does not accept a file descriptor

parameter.

Section 9: Files Series 3700 System Switch/Multimeter Reference Manual

9-14 3700S-901-01 Rev. C / July 2008

io.read()

Function Reads data from the default input file.

Usage data = io.read(format)

data: The data read from the file. The number of return values matches the number of

values in format.

format: A string or number indicating the type of data to be read. Any number of

format parameters may be passed to this command, each corresponding to a returned

data value. Optional; default is "*l".

Remarks The format parameters may be any of the following:

"*n": Return a number.

"*a": Return the whole file, starting at the current position; return an empty string at the

end of file.

"*l": Return the next line, skipping the end of line; return nil at the end of file.

n: Return a string with up to n characters; return an empty string if n is zero; return

nil at the end of file.

Any error encountered is logged to the error queue.

io.type()

Function Checks whether obj is a valid file handle.

Usage io.type(obj)

Remarks Returns "file" if obj is an open file handle, "closed file" if obj is a closed file handle,

and nil if obj is not a file handle.

io.write()

Function Buffer data until a flush (file:flush() (on page 9-10) or io.flush()

(on page 9-12)) or close (file:close() (on page 9-10) or io.close() (on

page 9-12)) operation is performed.

NOTE Data may be lost if the file is not flushed or closed before the application

ends. A write buffers the data until a flush or close operation is requested.

Usage io.write(data)

data: The data to write to the file. An arbitrary number of data values may be passed

to this command. All parameters must be either strings or numbers.

Remarks Any error encountered is logged to the error queue.

In this section:

Overview ... 10-1

TSP-NetTM Capabilities .. 10-1

Using TSP-NetTM with any Ethernet-enabled device 10-2

Using TSP-NetTM vs. TSP-LinkTM for communication with

TSP-enabled devices .. 10-4

Instrument Control Library (ICL) - General device control10-5

Instrument Control Library - TSP-specific device control10-12

Overview

TSP-NetTM allows the Series 3700 to control Ethernet-enabled devices directly

through its LAN port. This enables the Series 3700 to communicate directly with

a non-TSPTM-enabled device without the use of a controlling computer.

TSP-NetTM Capabilities

For both TSPTM and non-TSP devices, the TSP-Net library permits the Series

3700 to control a remote device through the LAN port. Using TSP-Net methods,

you can transfer string data to and from a remote device, transfer and format

data into Lua variables, and clear input buffers. TSP-Net is only accessible using

ICL commands from a remote command interface and is not available from the

front panel.

You can use TSP-Net to communicate with any Ethernet-enabled device.

However, specific TSP-Net commands exist for TSP-enabled devices to allow

for support of features unique to TSP. These features include script downloads,

reading buffer access, wait completion, and handling of TSP prompts.

Using TSP-Net with TSP-enabled instruments, a Series 3700 can download a

script to another TSP-enabled device and have both devices run scripts

independently. The Series 3700 can read the data from the remote device and

either manipulate the data or send the data to a different remote device on the

LAN. You can simultaneously connect to a maximum of 32 devices using

standard TCP/IP networking techniques through the LAN port of the Series

3700.

Section 10

TSP-Net

Section 10: TSP-Net Series 3700 System Switch/Multimeter Reference Manual

10-2 3700S-901-01 Rev. C / July 2008

Using TSP-NetTM with any Ethernet-enabled device

NOTE Refer to the Instrument Control Library (ICL) (on page 12-1) for more

details on the commands presented in this section.

To communicate to a remote Ethernet-enabled device from the Series 3700,

perform the following steps:

1. Connect to the remote device through the LAN port.

Use an Ethernet crossover cable to connect directly from the Series 3700 to

an Ethernet-enabled device.

Use a straight-through Ethernet cable and a hub to connect the Series 3700

to any other device on the LAN.

2. Establish a new connection to a remote device at a specific IP address

using tspnet.connect() (on page 10-5). For non-TSPTM-enabled

devices, you must also provide the port number, or the Series 3700

assumes the remote device to be TSP-capable and enables TSP prompts

and error handling.

If the Series 3700 is not able to make a connection to the remote device, it

generates a timeout error. Use tsp.timeout to set the timeout value. The

default timeout value is 20 seconds.

NOTE Set tspnet.tsp.abortonconnect (on page 10-14) to TRUE

to abort any script currently running on a remote TSP device.

3. Use tspnet.write() (on page 10-7) or tspnet.execute() (on page

10-6) to send strings to a remote device. Using tspnet.write() sends

strings to the device exactly as indicated, and you must supply any needed

termination characters or other lines. Use tspnet.termination() (on

page 10-11) to specify the termination character. If you use

tspnet.execute() (on page 10-6) instead, the Series 3700 appends

termination characters to all strings sent to the command.

4. Retrieve responses from the remote device using tspnet.read() (on

page 10-8). The Series 3700 suspends operation until data is available or a

timeout error is generated. You can check if data is available from the

remote device using tspnet.readavailable() (on page 10-9).

Disconnect from the remote device using tspnet.disconnect() (on page

10-10). Terminate all remote connections using tspnet.reset() (on page 10-

10).

Series 3700 System Switch/Multimeter Reference Manual Section 10: TSP-Net

3700S-901-01 Rev. C / July 2008 10-3

Example script

The following example demonstrates how to connect to a remote non-TSPTM-

enabled device, and send and receive data from this device:

-- Disconnect all existing TSP-NetTM connections.

tspnet.reset()

-- Set tspnet timeout to 5 seconds.

tspnet.timeout = 5

-- Establish connection to another device with IP address
192.168.1.51 at port 1394.

id_instr = tspnet.connect("192.168.1.51",1394, "*rst\r\n")

-- Print the device ID from connect string.

print("ID is: ", id_instr)

-- Set termination character to CRLF. You must do this on a
per connection basis after connection has been made.

tspnet.termination(id_instr, tspnet.TERM_CRLF)

-- Send the command string to the connected device

tspnet.write(id_instr,"*idn?" .. "\r\n")

-- Read the data available, then prints it.

print("instrument write/read returns:: " ,
tspnet.read(id_instr))

-- Disconnect all existing TSP-Net sessions.

tspnet.reset()

Section 10: TSP-Net Series 3700 System Switch/Multimeter Reference Manual

10-4 3700S-901-01 Rev. C / July 2008

Using TSP-NetTM vs. TSP-LinkTM for communication
with TSP-enabled devices

TSP-Link is the preferred communication method when communicating between

the Series 3700 and another TSPTM-enabled instrument. Using TSP-Link has

certain advantages over using TSP-Net, including:

 Error checking: When connected to a TSP-enabled device, all errors that

occur on the remote device are transferred to the error queue of the Series

3700. The Series 3700 indicates errors from the remote device by prefacing

these errors with “Remote Error”.

For example, if the remote device generates error number 4909, the Series

3700 generates the error string “Remote Error: (4909) Reading buffer not

found within device.”

 Digital I/O Triggering: TSP-Link connections have three TSP

synchronization lines that are available to each device on the TSP-Link

network. You can use any one of the TSP synchronization lines to perform

hardware triggering between devices on the TSP-Link network. Refer to

Hardware trigger modes (on page 8-18) for more details.

These advantages make using TSP-Link to control another TSP-enabled device

the best choice for most applications. However, if the distance between the

Series 3700 and the TSP-enabled device is longer than 15 feet, use TSP-Net.

To establish a remote TSP-Net connection with a TSP-enabled device, use

tsp.connect() without specifying a port number. The Series 3700 enables

TSP prompt and error handling for the remote device, which allows you to

successfully use the tspnet.tsp set of commands to load and run scripts and

retrieve reading buffers.

Abort any operation on the remote TSP-enabled device using abort().

Series 3700 System Switch/Multimeter Reference Manual Section 10: TSP-Net

3700S-901-01 Rev. C / July 2008 10-5

Instrument Control Library (ICL) - General device
control

tspnet.connect()

Function Device connection.

Usage To connect to any remote device on the LAN:

<connection id> = tspnet.connect([<ip address>, [<port
number>, <initialize string>]])

To connect to a TSP-enabled remote device on the LAN:

<connection id> = tspnet.connect([<ip address>,
[<password>])

connection id: Integer value used as a handle for other tspnet commands

ip address: String variable for passing the IP address

port number: Optional integer value of the port number

initialize string: String type for the initialization string to send

Remarks This command connects a device to another device by way of the LAN interface (using

the optionally-specified port number). The default port number is 5025. If the port

number is 23, the interface will use the Telnet protocol (and set appropriate

termination characters) to communicate with the device.

If a port number and initialization string are provided, the remote device is assumed to

be non-TSP-enabled. The Series 3700 does not perform any extra processing, prompt

handling, error handling, or sending of commands. Additionally, the tspnet.tsp

commands do not apply for use on this this remote device.

If no port number and initialization string is provided, the remote device is assumed to

be a Keithley Instruments TSP-enabled device. Depending on the state of

tspnet.tsp.abortonconnect (on page 10-14), the Series 3700 sends an

abort() to the remote device upon connection. The Series 3700 also enables TSP

prompts on the remote device and error management. The Series 3700 places remote

errors from the TSP-enabled device in its own error queue and prefaces these errors

with "Remote Error", followed by an error description. Do not manually change either

the prompt functionality (localnode.prompts) or show errors functionality

(localnode.showerrors) on the remote TSP-enabled device, or subsequent

tspnet.tsp.* commands using the connection may fail.

You can simultaneous connect to a maximum of 32 remote devices.

Errors:

 Connection Failed

 Connection Failed, Timeout

 Invalid IP Address or Port Number

Section 10: TSP-Net Series 3700 System Switch/Multimeter Reference Manual

10-6 3700S-901-01 Rev. C / July 2008

tspnet.connect()

Example To connect to a TSP-enabled device:

mytspdevice = tspnet.connect('10.80.64.216')

To connect to a non-TSP-enabled device:

mydevice = tspnet.connect("192.168.1.51",1394, "*rst\r\n")

tspnet.idn()

Function Retrieves response of remote device to '*IDN?'

Usage <idn string> = tspnet.idn(<connection id>)

idn_string: Response as a string type

connection id: Integer value used as a handle for other tspnet commands

Remarks Sends the '*idn?' string to the remote device and retrieves its response.

Errors:

 Invalid Specified Connection

 Connection Not Available

 Connection Failed, Aborted

 Write Failed, Timeout

 Write Failed

 Read Failed, Timeout

 Read Failed

 Read Failed, Aborted

Example Retrieve and print response of 'IDN?*' from the remote device:

print(tspnet.idn(mydevice))

KEITHLEY INSTRUMENTS INC.,MODEL 3706,34345656,01.02a

tspnet.execute()

Function Executes a command string on the remote device.

Usage [variable =] tspnet.execute(<connection id>, <command
string>, [<format string>])

connection id: Integer value used as a handle for other tspnet commands

command string: Command to send to instrument.

format string: Definition of format string for the input field using zeros (0), the decimal

point (.), the polarity sign (+), and 'E' for exponent.

Series 3700 System Switch/Multimeter Reference Manual Section 10: TSP-Net

3700S-901-01 Rev. C / July 2008 10-7

tspnet.execute()

Remarks This command sends the command string to the connection device. A termination is

added to the command string when it is sent to the device (see

tspnet.termination() (on page 10-11)). Optionally, when a format string is

specified, the command waits for a string from the device. The Series 3700 decodes

the output string according to the format specified in the format string and returns this

output string as arguments from the function (see tspnet.read() (on page 10-8)

for format specifiers).

When this command is sent to a TSP-enabled device, the Series 3700 suspends

operation until a timeout error is generated or until the device responds, even if no

format string is specified. The TSP prompt from the remote device is read and thrown

away. The Series 3700 places any remotely-generated errors into its error queue.

When the optional format string is not specified, this command is equivalent to

tspnet.write() (on page 10-7), except that a termination is automatically added

to the end of the line.

Errors:

 Invalid Specified Connection

 Write Failed, Timeout

 Write Failed

 Read Failed, Timeout

 Read Failed, Aborted

 Read Failed

 Remote Error, <remote error generated by command>

Example Command remote device to run script named 'runmyscript()':

tspnet.execute(mydevice, 'runmyscript()')

Command remote device to execute a *idn?:

tspnet.termination(mydevice, tspnet.TERM_CRLF)

tspnet.execute(mydevice, ‘*idn?’)

print("instrument write/read returns:: " ,
tspnet.read(id_instr))

tspnet.write()

Function Write strings to remote device.

Usage tspnet.write(<connection id>, <input string>)

connection id: Integer value used as a handle for other tspnet commands

input string: String type used for writing to the remote instrument

Section 10: TSP-Net Series 3700 System Switch/Multimeter Reference Manual

10-8 3700S-901-01 Rev. C / July 2008

tspnet.write()

Remarks The tspnet.write() command sends the command string to the connection device. It

does not wait for command completion on the remote device.

The Series 3700 sends the input string to the remote device exactly as indicated. The

input string must contain any necessary new lines, termination, or other indicators.

Errors:

 Invalid Specified Connection

 Write Failed, Timeout

 Write Failed

Example Command remote device to run script named 'runmyscript':

tspnet.write(mydevice, 'runmyscript()\n')

Send a *idn? to a remote device:

tspnet.write(id_instr,"*idn?" .. "\r\n")

or

tspnet.write(id_instr,"*idn?\r\n")

tspnet.read()

Function Reads data from remote device.

Usage [variable =] tspnet.read(<connection id>, [<format
string>])

connection id: Integer value used as a handle for other tspnet commands

format string: Definition of format string for the input field using zeros (0), the decimal

point (.), the polarity sign (+), and 'E' for exponent.

Series 3700 System Switch/Multimeter Reference Manual Section 10: TSP-Net

3700S-901-01 Rev. C / July 2008 10-9

tspnet.read()

Remarks This command reads available data from the device (as indicated by the format string)

and returns the number of arguments (as indicated by the format string).

The format string can contain the following identifiers:

%[width]s Read data until the specific length

%[max width]t Read data until the specific length or delimitated by

punctuation

%[max width]n Read data until a newline and/or carriage return

%d Read a number (delimitated by punctuation)

If no format is specified, the command returns a string containing the data until a new

line is reached. If no data is available, the Series 3700 will hold off operation until the

requested data is available or until a timeout error is generated. Use

tspnet.timeout to specify the timeout period.

A maximum of 10 specifiers are allowed in a format string.

When reading from a TSP-enabled remote device, the Series 3700 removes TSP

prompts and places any errors received from the remote device into its own error

queue. The Series 3700 prefaces errors from the remote device with "Remote Error,"

and followed by with the error number and error description.

Errors:

 Invalid Specified Connection

 Read Failed, Timeout

 Read Failed, Aborted

 Read Failed

 Remote Error, <remote error generated by command>

Example Send “*idn?” to remote device:

tspnet.write(id_instr,"*idn?\r\n")

Read and print response from remote device:

print("instrument write/read returns:: " ,
tspnet.read(id_instr))

tspnet.readavailable()

Function Device read output available.

Usage [<num bytes> =] tspnet.readavailable(<connection id>)

connection id: Integer value used as a handle for other tspnet commands

Remarks This command checks to see if any output data is available from the device. No data is

read. It is intended to allow TSPTM scripts to continue to run without waiting on a

remote command to finish.

Errors:

 Invalid Specified Connection

 Read Failed

Section 10: TSP-Net Series 3700 System Switch/Multimeter Reference Manual

10-10 3700S-901-01 Rev. C / July 2008

tspnet.readavailable()

Example x = tspnet.readavailable(mydevice)

tspnet.clear()

Function Device read clear buffer.

Usage tspnet.clear(<connection id>)

connection id: Integer value used as a handle for other tspnet commands

Remarks This command clears any pending output data available from the device. No data is

returned to the caller. No data is processed.

Errors:

 Invalid Specified Connection

Example tspnet.write(mydevice, 'print([[hello]])')

print(tspnet.readavailable(mydevice))

Output

6.00000000e+000

tspnet.clear(mydevice)

print(tspnet.readavailable(mydevice))

Output

0.00000000e+000

tspnet.disconnect()

Function Device disconnection.

Usage tspnet.disconnect(<connection id>)

connection id: Integer value used as a handle for other tspnet commands

Remarks This command disconnects the two devices by closing the connection.

For Keithley Instruments TSPTM devices, this results in any remotely running

commands or scripts being aborted (terminated).

Errors:

 Invalid Specified Connection

Example tspnet.disconnect(mydevice)

tspnet.reset()

Function Device all disconnection.

Usage tspnet.reset()

Series 3700 System Switch/Multimeter Reference Manual Section 10: TSP-Net

3700S-901-01 Rev. C / July 2008 10-11

tspnet.reset()

Remarks This command disconnects the all devices currently connected.

For Keithley Instruments TSPTM devices, this results in any remotely running

commands or scripts being terminated.

Errors:

 <none>

Example tspnet.reset()

tspnet.termination()

Function Device line termination.

Usage <termination type> = tspnet.termination(<connection id>,
[<termination type>])

connection id: Integer value used as a handle for other tspnet commands

termination type: tspnet.TERM_LF, tspnet.TERM_CR,

tspnet.TERM_CRLF, or tspnet.TERM_LFCR

Remarks This setting sets and gets the termination characters used to determine the end of a

line for lines being received by a connection. It also is used to terminate lines being

sent to a connection. Pass the optional set value to set the termination. The current

value is always returned. There are four possible values: LF, CR, CRLF, or LFCR. For

TSPTM devices, the default is LF. For non-TSP devices, the default is CRLF. The

termination character resets to default when a connection is terminated.

Errors:

 Invalid Specified Connection

 Invalid Termination

Example Set termination character:

tspnet.termination(mydevice, tspnet.TERM_LF)

Gets termination character and evaluates if set to LF. Response of "1" means true, set

to <termination type>. Response of "0" means false, not set to

<termination type>:

print(tspnet.termination(mydevice) == tspnet.TERM_LF)

Output:

1.0000000e+000

tspnet.timeout

Attribute Sets timeout value for tspnet.connect(), tspnet.execute(), and

tspnet.read() commands.

Usage tspnet.timeout [= <seconds value>]

seconds value: Value in seconds

Section 10: TSP-Net Series 3700 System Switch/Multimeter Reference Manual

10-12 3700S-901-01 Rev. C / July 2008

tspnet.timeout

Remarks This setting sets the duration the tspnet.connnect, tspnet.read, and

tspnet.execute commands will wait for a response. The time is specified in

seconds. The default value is 5.0 seconds. The timeout may contain fractional

seconds but is only accurate to the nearest 10mS. The timeout may be between 0.0

and 30 seconds.

Errors:

 Invalid Timeout

Example tspnet.timeout = 10.0

Instrument Control Library - TSP-specific device control

tspnet.tsp.runscript()

Function Load and runs a script on a device.

Usage tspnet.tsp.runscript(<connection id>, [<name>,] <script>)

connection id: Integer value used as a handle for other tspnet commands

name: Optional parameter name from a listed group

script: The actual script itself as a string, enclosed in quotes

Remarks This convenience command downloads a script to a device and runs it. It automatically

adds the appropriate loadscript and endscript around the script, captures any errors,

and reads back any prompts. No additional substitutions are done on the text.

The script is automatically loaded, compiled, and run. If there are no runnable lines

(contains only functions), running has no effect.

To load only and run at a later time, simply make sure the script contains only

functions. Use tspnet.execute() to execute those functions at a later time.

This command is appropriate only for TSPTM-enabled devices.

If no name is specified, one will be generated internally.

Errors:

 Invalid Specified Connection

 Write Failed, Timeout

 Write Failed

 Read Failed, Timeout

 Read Failed, Aborted

 Read Failed

 Remote Error, <remote error generated by command>

Example tspnet.tsp.runscript(mytspdevice, 'mytest',
'print([[start]]) for d = 1,10 do print([[work]]) end
print[[end]]')

Series 3700 System Switch/Multimeter Reference Manual Section 10: TSP-Net

3700S-901-01 Rev. C / July 2008 10-13

tspnet.tsp.rbtablecopy()

Function Copies a reading buffer synchronous table from a device.

Usage <array> = tspnet.tsp.rbtablecopy(<connection id>, <name>,
[<start index>, <end index>])

connection id: Integer value used as a handle for other tspnet commands

name: Parameter name from a listed group

start index: Integer start value

end index: Integer end value

Remarks This convenience command reads the data from a reading buffer on a remote device

and returns an array of numbers or a string representing the data. The name argument

identifies the reading buffer name and synchronous table to copy. The optional start

index and end index specify the portion of the reading buffer to read. If no index is

specified, the entire buffer will be copied.

This command is limited to transferring 50,000 readings at a time.

Errors:

 Invalid Specified Connection

 Write Failed, Timeout

 Write Failed

 Read Failed, Timeout

 Read Failed, Aborted

 Read Failed

 Invalid Reading Buffer Table

 Invalid Index Range

 Out of Memory

 Remote Error, <remote error generated by command>

Example table = tspnet.tsp.rbtablecopy(mytspdevice,
'myremotebuffername.readings', 1, 3)

print(table[1], table[2], table[3])

Output:

4.5653423423e-1 4.5267523423e-1 4.5753543423e-1

times = tspnet.tsp.rbtablecopy(mytspdevice,
'myremotebuffername.timestamps', 1, 3)

print(times)

Output

01/01/2008 10:10:10.0000013,01/01/2008
10:10:10.0000233,01/01/2008 10:10:10.0000576

Section 10: TSP-Net Series 3700 System Switch/Multimeter Reference Manual

10-14 3700S-901-01 Rev. C / July 2008

tspnet.tsp.abort()

Function Aborts device execution.

Usage tspnet.tsp.abort(<connection id>)

connection id: Integer value used as a handle for other tspnet commands

Remarks This convenience command simply sends an "abort" string to a device.

Errors:

 Invalid Specified Connection

 Connection Not Available

 Write Failed

Example tspnet.tsp.abort()

tspnet.tsp.abortonconnect

Attribute Abort on connect.

Usage tspnet.tsp.abortonconnect [= <value>]

value: tspnet.TRUE or tspnet.FALSE

Remarks This setting determines if the Series 3700 sends abort() when it attempts to

connect using tspnet.connect() (on page 10-5) to a TSPTM-enabled device. The

default value is tspnet.TRUE (or non-zero).

Sending the abort() command on connection causes any other active interfaces

being used on that device to close to ensure you have obtained access to the remote

device.

Connecting to a TSP device without issuing an abort() command, or when

tspnet.tsp.abortonconnect (on page 10-14) is set to tspnet.FALSE, can

result in the Series 3700 suspending operation until it receives a response back from

the device or until a timeout error generates.

Errors:

 <none>

Example tspnet.tsp.abortonconnect = tspnet.FALSE

In this section:

Introduction to IEEE-1588 based triggering 11-1

IEEE-1588 implementation in the Series 3700 11-1

Correlating PTP to Coordinated Universal Time (UTC) ... 11-2

Configuring and enabling IEEE-1588 11-3

Monitoring alarms with LAN triggers and LXI event log ... 11-6

Introduction to IEEE-1588 based triggering

The Series 3700 uses IEEE-1588 Precision Time Protocol (PTP) to implement

synchronized measurements and initiate time-triggered events over the LAN

(Ethernet) interface. IEEE-1588 is a requirement of the LXI B Functional Class.

Using IEEE-1588, you can schedule instrument-driven actions, such as

measurements, to occur at a specific date and time and synchronize timebases

between instruments on the same network. You can only access these

capabilities through the remote command interfaces.

NOTE You can find detailed information on the syntax and usage of each ICL

command presented in this section in Instrument Control Library (ICL)

(on page 12-1).

IEEE-1588 implementation in the Series 3700

When you enable IEEE-1588 on a Series 3700 on a local network, the Series

3700 communicates with other IEEE-1588 enabled devices on the network

through a dedicated network port called the PTP port. A predetermined

algorithm then automatically selects the network device with the most accurate

clock. This network device becomes the IEEE-1588 master. If multiple devices

have the same clock accuracy, the protocol arbitrarily chooses one device to be

the IEEE-1588 master.

When the protocol selects the Series 3700 as the master clock, the Series 3700

uses the time value stored in its battery-backed real-time clock and updates the

time in all slave devices. When the protocol selects another networked device as

the master clock, the Series 3700 is slave to the more accurate device and

adjusts its time to that of the master clock. Additionally, the Series 3700 updates

its battery-backed clock so that the time is „remembered‟ if the master clock is

removed from the network.

Section 11

LXI Class B Triggering (IEEE-1588)

Section 11: LXI Class B Triggering (IEEE-1588) Series 3700 System Switch/Multimeter Reference Manual

11-2 3700S-901-01 Rev. C / July 2008

At periodic intervals, the master clock synchronizes to all slave clocks through

time-stamped messages over the PTP port. This allows IEEE-1588 to maintain

time synchronization between multiple devices on a network.

Program the synchronization interval in the Series 3700 using

ptp.syncinterval (on page 13-229). The default synchronization interval is

two seconds. Increasing the synchronization interval to values of more than two

seconds increases the amount of time that it takes devices on the LAN to

synchronize. If you change the synchronization interval, you must restart the

clock of the Series 3700 by cycling its power.

Read the current time delay and offset between any slave device and its master

on the LAN using ptp.ds.current (on page 13-223). Synchronization of time

stamps between IEEE-1588 enabled devices to within 150ns can take as long

as 2 minutes.

Correlating PTP to Coordinated Universal Time (UTC)

To ensure synchronization across networked devices, you must be aware of the

time protocol utilized by those other devices on the network.

The most widely accepted time scale is Coordinated Universal Time (UTC); in

many places, it is considered standard time. UTC is nearly the same time as

Greenwich Mean Time (GMT), another very familiar time scale, and for the

purposes of the Series 3700, UTC and GMT are the same. Local time is offset

from UTC according to time zones; additional offsets can occur due to Daylight

Savings Time adjustments.

UTC suffers from discontinuities because of non-periodic adjustments known as

“leap seconds”. These adjustments present problems because they can make

events that occurred at different periods of time appear to occur at the same

time. PTP is a time standard that does not have any discontinuities and has no

adjustments for local time (that is, it is not time-zone aware). PTP is presented

as the number of seconds since January 1, 1970.

The Series 3700 offers two versions of time for most IEEE-1588-related

commands, .seconds and .ptpseconds, representing UTC and PTP

respectively. IEEE-1588 requires that devices are synchronized using UTC or

PTP time, not local time. The Series 3700 does not distinguish UTC, PTP, and

local time; it is not time-zone aware. You must be aware of this when

synchronizing with devices that are time-zone aware.

When IEEE-1588 selects a time-zone aware device to be the master clock, the

Series 3700 accepts the time of that clock. This time may not agree with the

local time of the Series 3700, especially when a network spans multiple time

zones. If you schedule events on the Series 3700 to occur according to your

local time, events will not occur at the time you expect.

Series 3700 System Switch/Multimeter Reference Manual Section 11: LXI Class B Triggering (IEEE-1588)

3700S-901-01 Rev. C / July 2008 11-3

You can avoid confusion by setting the time on the Series 3700 to UTC time

instead of local time. Manage the conversion from UTC to local time in your

software application. For example, assume local time is Eastern Standard Time

in the United States (EST), which is equivalent to GMT-5 (hours). Therefore, if

the current local time is 3:00PM, the UTC time is 8:00PM. Set the time of the

Series 3700 clock to 8:00PM. If it is then synchronized with a time-zone aware

master clock, its time will not change significantly.

NOTE The Series 3700 does not differentiate UTC and PTP time.

ptp.utcoffset (on page 13-229) is zero unless a master clock that

is aware of the difference between UTC and PTP time populates this

value. This value is volatile and not remembered through a power

cycle.

Configuring and enabling IEEE-1588

To configure IEEE-1588, connect the Series 3700 to the LAN, along with any

other IEEE-1588 enabled devices that you want to synchronize to the Series

3700. Refer to Series 3700 Quick Start Guide for information on connecting the

Series 3700 to the LAN. If you want to synchronize multiple Series 3700

instruments on a LAN, each instrument must have the same PTP subdomain

name.

The default PTP subdomain name is _DFLT for all Series 3700 devices. Use the

ptp.subdomain function to change the subdomain name for any Series 3700

on the LAN. After changing the subdomain name, you must power cycle the

Series 3700 to restart its clocks. If you have changed the subdomain name of

any third-party IEEE-1588 enabled device within that subdomain, you must also

restart its clock.

NOTE Cycling the power to the Series 3700 does not return the IEEE-1588-

related parameters to factory default state. To return these to factory

defaults, perform a LAN configuration reset. This can be done using

lan.status.reset() (on page 13-202) on the remote command

interface. You can also perform a reset through the front panel

interface by entering the Main menu, selecting LAN, and selecting

Reset.

Section 11: LXI Class B Triggering (IEEE-1588) Series 3700 System Switch/Multimeter Reference Manual

11-4 3700S-901-01 Rev. C / July 2008

Use ptp.enable() (on page 13-227) to enable IEEE-1588 on the Series 3700.

The IEEE-1588 protocol then determines the master clock. The IEEE-1588

indicator on the front panel of the Series 3700 updates to display the IEEE-1588

status.

 If the indicator is off, then IEEE-1588 is disabled or the device is not

connected to a working network.

 If the network is not working, then the LAN indicator also blinks. If the

indicator is solidly on, the IEEE-1588 is successfully enabled and

synchronized, and the Series 3700 is a slave clock.

 If the network is not working, then the LAN indicator also blinks. If the

indicator is solidly on, the IEEE-1588 is successfully enabled and

synchronized, and the Series 3700 is a slave clock.

 If the indicator blinks once per second, then IEEE-1588 is successfully

enabled and synchronized, and the Series 3700 is the master clock.

 If the indicator blinks once every two seconds, then IEEE-1588 is

successfully enabled and synchronized, and the Series 3700 is the

grandmaster clock.

You can also use ptp.synchronized (on page 13-228) to determine if the

Series 3700 is a master or slave on the LAN.

NOTE ptp.enable is a non-volatile setting. Therefore, if you power off a

Series 3700 with IEEE-1588 enabled and then re-power the Series

3700 on a different network, it attempts to synchronize with any other

IEEE-1588 enabled devices on that new network. You do not need to

re-enable IEEE-1588.

Series 3700 System Switch/Multimeter Reference Manual Section 11: LXI Class B Triggering (IEEE-1588)

3700S-901-01 Rev. C / July 2008 11-5

Scheduling alarms

You can schedule alarms to request the Series 3700 to perform actions at a

specific time and date or at a specific time interval. You can schedule alarms in

UTC or PTP time; however, it is important to be consistent in defining the alarms

using the same time format whether UTC or PTP. Otherwise, the alarms will fire

on the networked devices at different times, with a time difference equal to the

PTP UTC offset.

You can set a maximum of two alarms per Series 3700.

To schedule an alarm, first convert the desired alarm time to UTC seconds. You

can perform this conversion using os.time. If you are specifying alarms in UTC

time, then you can use this value with schedule.alarm[x].seconds (on

page 13-251) to schedule an alarm, where x represents the tag number of the

alarm that you configure.

NOTE os.time is a LUA function that can be used to return the current time

or convert a local date and time to UTC-based seconds elapsed since

January 1, 1970. When used without parameters, os.time returns

the current date and time. When used with parameters, the syntax is
os.time{year = <n>, month = <n>, day = <n>, hour =

<n>, sec = <n>, isdst = }. <n> is a number and is a

Boolean where true is Daylight Savings Time. It is not necessary to

specify all parameters.

The following examples demonstrate how to use os.time:

-- retrieve current UTC time in seconds since 1/1/1970

print(os.time)

-- convert 3:00PM March 1, 2008 to UTC seconds since
1/1/1970:

local l_start_Time
l_start_Time = os.time{year=2008, month=3, day=1, hour=15}

-- create start time to occur 60 seconds after current time

local l_start_Time
l_start_Time = os.time() + 60

If you want to specify alarms in PTP format, convert UTC seconds to PTP

seconds by adding the value returned by ptp.utcoffset (on page 13-229) to

the UTC time. The Series 3700 alone does not differentiate PTP and UTC time.

The ptp.utcoffset is only non-zero if the Series 3700 communicates to a

master clock that is aware of the difference between PTP and UTC time. Use

the converted PTP time in setting values for

schedule.alarm[x].ptpseconds (on page 13-251), where x represents the

tag number of the alarm you configure.

Section 11: LXI Class B Triggering (IEEE-1588) Series 3700 System Switch/Multimeter Reference Manual

11-6 3700S-901-01 Rev. C / July 2008

You can also schedule alarms to occur at a fractional second using either PTP

or UTC format with schedule.alarm[x].fractionalseconds (on page 13-

250).

After defining the alarm, configure the number of times you would like to repeat

this alarm using schedule.alarm[x].repetition (on page 13-251). Use

schedule.alarm[x].period (on page 13-251) to configure the amount of

time, in seconds, between adjacent firings of the alarm. If you want the alarm to

fire just once, set schedule.alarm[x].period to zero. If you want the alarm

to repeat forever, set schedule.alarm[x].period to a non-zero value and

set schedule.alarm[x].repetition to zero.

Enable the alarm by setting schedule.alarm[x].enable (on page 13-250)

to 1. Disable an alarm by setting schedule.alarm[x].enable to 0. Disable

all alarms using schedule.disable() (on page 13-252).

Monitoring alarms with LAN triggers and LXI event log

Use the LXI event log to monitor the firing of scheduled alarms. The LXI event

log in the Series 3700 only captures LAN triggers that occur within its defined

LXI domain. To monitor alarms, configure the alarm to generate a LAN trigger by

using schedule.alarm[x].EVENT_ID (on page 13-250) as the control

source for lan.trigger[N].stimulus (on page 13-208) in the trigger model.

You can define up to eight LAN triggers.

Use lan.lxidomain (on page 13-197) to specify the LXI domain. Additionally,

you can broadcast LAN triggers to all devices on a LXI domain, or you can

transmit LAN triggers between two individual devices. To configure the LAN

trigger broadcast, use lan.trigger[N].protocol (on page 13-207).

The following example demonstrates how to generate a LAN trigger when a

scheduled alarm fires:

-- configure the LXI domain

lan.lxidomain=0

-- configure the LXI trigger to broadcast to all devices in
this LXI domain

lan.trigger[2].protocol=2
lan.trigger[2].connect()

-- associate the firing of the alarm to the generation of a
LAN trigger

lan.trigger[2].stimulus = schedule.alarm[1].EVENT_ID

Series 3700 System Switch/Multimeter Reference Manual Section 11: LXI Class B Triggering (IEEE-1588)

3700S-901-01 Rev. C / July 2008 11-7

LXI event log

The LXI event log of a Series 3700 monitors all LAN triggers that the instrument

receives or generates. The LXI event log has nine comma-delimited fields.

Below is an example entry to a LXI event log and a description of the log fields

in order of appearance.

"17:26:35.690 10 Oct 2007, LAN0, 192.168.1.102, LXI, 0,
1192037132, 1192037155.733269000, 0, 0x0"

Field

Field Value Field Description

1 “17:26:35.690 10 Oct 2007” Formatted UTC time in 24-hour format including

fractional seconds.

2 “LAN0” Event identifier.

NOTE This event identifier is zero-based (LAN0-

LAN7). When specifying the LAN trigger

using lan.trigger[N], the minimum

value for N is 1. Therefore LAN0 to LAN 7

corresponds to lan.trigger[1]

through lan.trigger[8], respectively.

3 “192.168.1.102” IP address of the device that issued the LAN trigger.

4 "LXI" LXI version identifier. Currently only LXI is defined.

5 “0” LXI Domain number.

6 “1192037132” Sequence number provided by the device that issued

the LAN trigger. This number is incremented after

generation of each LAN trigger.

7 "1192037155.733269000” PTP time formatted as a floating point number.

8 “0” The "overflow" from PTP seconds. Currently, this is “0”.

Also referred to as IEEE-1588 Epoch.

9 "0x0" Hex value of the flag field, which is the logical OR of

several conditions (error=1, retransmission=2,

hardware=4, acknowledgement=8).

Example applications of IEEE-1588 in Series 3700-based
systems

This section discusses examples of a few applications that are possible using

IEEE-1588.

Section 11: LXI Class B Triggering (IEEE-1588) Series 3700 System Switch/Multimeter Reference Manual

11-8 3700S-901-01 Rev. C / July 2008

Scheduling alarms on a stand-alone Series 3700

To configure a single Series 3700 to perform an event at a particular date and

time, you must schedule alarms, but you do not need to enable IEEE-1588.

Therefore, you can send these commands over any remote interface and not

just LAN.

To initiate a specific action at the firing of the alarm, you must use the event

identifier for the scheduled alarm, schedule.alarm[x].EVENT_ID (on page

13-250), as the stimulus of one of the control sources defined in the trigger

model. Refer to Scanning (on page 7-1) for more details on the trigger model.

The following example demonstrates how to configure a scan of five channels to

run once every hour starting at 3AM on September 1, 2008:

-- convert to UTC time

Start_time = os.time({year=2008, month=9, day=1, hour=3})

-- convert to PTP time

Start_time = Start_time + ptp.utcoffset

-- configure the alarm

schedule.alarm[1].ptpseconds = Start_time
schedule.alarm[1].fractionalseconds = 0

-- configure the alarm repetition count

schedule.alarm[1].repetition = 5

–- set alarm period to 1 hr = 60 secs x 60 mins

schedule.alarm[1].period = 60*60

--enable the alarm
schedule.alarm[1].enable = 1

--associate a DMM configuration and configure a scan
dmm.setconfig("1001:1005", "dcvolts")

scan.create("1001:1005")

 -- 5 scans of 5 channels

buf = dmm.makebuffer(25)

-–command the scan to start when alarm 1 fires
scan.trigger.arm.stimulus = schedule.alarm[1].EVENT_ID

--set scan count and initiate execution of background scan
scan.scancount = 5

scan.background(buf)

Series 3700 System Switch/Multimeter Reference Manual Section 11: LXI Class B Triggering (IEEE-1588)

3700S-901-01 Rev. C / July 2008 11-9

Synchronizing multiple Series 3700 instruments

NOTE Synchronization only occurs between instruments within the same

PTP subdomain. Use ptp.subdomain to set the subdomain name.

Refer to Configuring and enabling IEEE-1588 (on page 11-3) for

further details.

To execute synchronized actions on multiple Series 3700 instruments, you must

connect these instruments to a network using Ethernet and enable IEEE-1588

protocol. Refer to Configuring and enabling IEEE-1588 (on page 11-3) for details

on how to enable IEEE-1588 protocol.

The protocol aligns the timebases of each of these instruments. You need to

enter a delay in your software application to allow for this synchronization to

complete. Synchronization to within 150ns can take as long as two minutes for

system alignment. You can read the current time delay and offset between any

slave device and its master on the LAN using ptp.ds.current. Refer to

IEEE-1588 Implementation in the Series 3700 (on page 11-1) for information on

the time synchronization process.

After you enable IEEE-1588 and set up alarms, configure the action to occur at

the firing of the alarm. Use the event identifiers for the scheduled alarms,

schedule.alarm[x].EVENT_ID (on page 13-250), as the stimulus for the

control sources in the trigger model.

Coordinating the Series 3700 with a device that is not IEEE-

1588 enabled using scheduled alarms and digital I/O

If you have a network where the Series 3700 is the only IEEE-1588 enabled

device, you can trigger actions on the other networked devices by means of

digital triggers if such devices can process digital triggers. In this way, you can

schedule alarms to execute switch-only or switch with DMM operations on the

Series 3700 and you can also output triggers to other devices at the firing of the

scheduled alarms.

Section 11: LXI Class B Triggering (IEEE-1588) Series 3700 System Switch/Multimeter Reference Manual

11-10 3700S-901-01 Rev. C / July 2008

The following is an example that demonstrates scheduling an alarm to execute a

scan on the Series 3700 and output a trigger from the Series 3700 to another

device:

-- configure a switch with DMM scan operation on a Series
3700

reset()
scan.reset()
buffer=dmm.makebuffer(100)
dmm.autodelay=dmm.OFF
dmm.range=10
dmm.autozero=dmm.OFF
dmm.nplc=.0005
dmm.measurecount=1
dmm.configure.set('mydcvolts')

dmm.setconfig('1001:1010', 'mydcvolts')

scan.create('1001:1010')
scan.measurecount=1

scan.scancount = 10

-- configures falling-edge output trigger pulse as DIO line
1 when generated, this hardware trigger would effect an
action on the device that is not IEEE-1588 enabled

digio.trigger[1].mode = digio.TRIG_FALLING
digio.trigger[1].pulsewidth = 0.010

digio.trigger[1].clear()

-- execute scan to start when alarm fires

scan.trigger.arm.stimulus = schedule.alarm[1].EVENT_ID

-- generate output trigger when alarm fires

digio.trigger[1].stimulus = schedule.alarm[1].EVENT_ID

-- configure alarm to start 15 seconds after current PTP
time

sec,ns=ptp.time()
schedule.alarm[1].ptpseconds=sec+15

schedule.alarm[1].fractionalseconds=0

-- configure alarm to fire 10 times at a period of 500ms

schedule.alarm[1].repetition=10
schedule.alarm[1].period=0.500

-- enable alarm

schedule.alarm[1].enable=1

-- initiate execution of foreground scan

scan.execute(buffer)

In this section:

Status register sets ... 12-1

Status byte and SRQ .. 12-2

System summary and status byte 12-3

System summary registers .. 12-4

Standard event status register and enable 12-5

Operation events registers .. 12-6

Questionable event register .. 12-7

Measurement event register (measurement) 12-8

Status function summary ... 12-8

Clearing registers and queues .. 12-9

Programming enable and transition registers 12-10

Reading registers .. 12-11

Status byte and service request (SRQ) 12-12

Status register set specifics .. 12-16

Queues ... 12-25

The Keithley Instruments Series 3700 System Switch/Multimeter provides a

number of status registers and queues that allow the operator to monitor and

manipulate various instrument events. The heart of the status model is the

status byte register. This register can be read by the user's test program to

determine if a service request (SRQ) has occurred, and what event caused the

SRQ.

Status register sets

A typical status register set is made up of a condition register, an event register,

and an event enable register (many also have negative and positive transition

registers). A condition register is a read-only register that constantly updates to

reflect the present operating conditions of the instrument. When an event

occurs, the appropriate event register bit sets to 1. The bit remains latched to 1

until the register is reset. When an event register bit is set and its corresponding

enable bit is set (as programmed by the user), the output (summary) of the

register will set to 1, which in turn sets another bit in a lower-level register, and

ultimately sets the summary bit of the status byte register.

Section 12

Status Model

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-2 3700S-901-01 Rev. C / July 2008

Negative and positive transition registers

 Negative-transition register (NTR): When a bit in an NTR is set by the

user, the corresponding bit in the event register will set when the

corresponding bit in the condition register transitions from 1 to 0.

 Positive-transition register (PTR): When a bit in a PTR is set by the user,

the corresponding bit in the event register will set when the corresponding

bit in the condition register transitions from 0 to 1.

Status byte and SRQ

The status byte register receives the summary bits of the five status register

sets, a master summary bit, and two queues. The register sets and queues

monitor the various instrument events. When an enabled event occurs, it sets a

summary bit in the status byte register. When a summary bit of the status byte is

set and its corresponding enable bit is set (as programmed by the user), the

RQS/MSS bit will set to indicate that an SRQ has occurred, and the GPIB SRQ

line will be asserted.

Figure 12-1: Status byte and queues

Queues

The Series 3700 uses an output queue and an error queue. The response

messages, such as requested readings, are placed in the output queue. As

various programming errors and status messages occur, they are placed in the

error queue. When a queue contains data, it sets the appropriate summary bit of

the status byte register (EAV for the error queue; MAV for the output queue).

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

3700S-901-01 Rev. C / July 2008 12-3

System summary and status byte

The system summary bit (SSB) is received by the status byte (Bit 1) from the

system summary register (status.system) byte. The summary of system

summary register (status.system) receives its extension bit (Bit 0) from the

system summary register 2 (status.system2).

Figure 12-2: Status byte and system summary register

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-4 3700S-901-01 Rev. C / July 2008

System summary registers

The system summary registers (system5 through system2) provide summary

information through the specific register's extension bit (Bit 0). This in turn is

provided to the system summary register (system) extension bit (Bit 0).

Figure 12-3: System summary registers

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

3700S-901-01 Rev. C / July 2008 12-5

Standard event status register and enable

The summary bit of the standard event status register and event status enable

provide summary information to Bit 5 of the status byte (Status byte and SRQ

(on page 12-2)).

Figure 12-4: Standard event registers and event status enable

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-6 3700S-901-01 Rev. C / July 2008

Operation events registers

The summary bit of the operation status user register provides the user bit

(USER) (Bit 12) to the operation status register. The summary bit of the

operation status register provides the operation summary bit (OSB) (Bit 7) of the

status byte.

Figure 12-5: Operation event registers

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

3700S-901-01 Rev. C / July 2008 12-7

Questionable event register

The questionable event register provides summary information to questionable

summary bit (QSB) (Bit 3) of the status byte.

Figure 12-6: Questionable event register

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-8 3700S-901-01 Rev. C / July 2008

Measurement event register (measurement)

The measurement event register (measurement) provides summary information

to the status byte's measurement summary bit (MSB) (Bit 0).

Figure 12-7: Measurement event register

Status function summary

The following functions control and read the various registers.

NOTE * = .ntr, .ptr, .enable, .event, and .condition. The first three (.ntr, .ptr,

and .enable) are read/write, while the last two (.event and .condition)

are read only.

Type Function

System summary status.reset

status.node_enable

status.request_enable

status.node_event

status.request_event

status.condition

Measurement event status.measurement.*

Operation event status.operation.*

status.operation.user.*

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

3700S-901-01 Rev. C / July 2008 12-9

Type Function

Questionable event status.questionable.*

Standard event status.standard.enable

System event status.system.enable

status.system2.enable

status.system3.enable

status.system4.enable

status.system5.enable

Clearing registers and queues

When the Series 3700 is turned on, various register status elements will be set

as follows:

 The power on (PON) bit in the status.operation.condition register is set.

 All enable registers are set to 0.

 All negative-transition registers (NTRs) are set to 0.

 All used positive transition register (PTR) bits are set to 1.

 The two queues are empty.

Commands to reset the status registers and the error queue are listed in the

following table. In addition to these commands, any programmable register can

be reset by sending the 0 parameter value with the individual command to

program the register.

To reset registers:

-- Reset bits of status registers to 0.

status.reset()

To clear the error queue:

-- Clear all messages from the error queue.

errorqueue.clear()

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-10 3700S-901-01 Rev. C / July 2008

Programming enable and transition registers

The only registers that can be programmed by the user are the enable and

transition registers. All other registers in the status structure are read-only

registers.

To determine the parameter values for the various commands used to program

enable registers, a command to program an event enable or transition register is

sent with a parameter value that determines the desired state (0 or 1) of each bit

in the appropriate register. The bit positions of the register (see the following

figure) indicate the binary parameter value and decimal equivalent. To program

one of the registers, send the decimal value for the bit(s) to be set.

Figure 12-8: 16-bit status register

When using a numeric parameter, registers are programmed by including the

appropriate <mask> value, for example:

*ese <mask>
status.standard.enable = <mask>

To convert from decimal to binary, use the information shown in the figure

above.

For example, to set bits B0, B4, B7, and B10, a decimal value of 1169 would be

used for the mask parameter (1169 = 1 + 16 + 128 + 1024).

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

3700S-901-01 Rev. C / July 2008 12-11

Reading registers

Any register in the status structure can be read by either sending the common

command query (where applicable), or by including the script command for that

register in either the print() or print(tostring()) command. The

print() command returns a numeric value, while the print(tostring())

command returns the string equivalent.

For example, the following commands request the Service Request Enable

register value:

*SRE?
print(tostring(status.request_enable))

print(status.request_enable)

The response message will be a decimal value that indicates which bits in the

register are set. That value can be converted to its binary equivalent. If the

response is a decimal value of 37 (binary value of 100101), bits B5, B2, and B0

are set.

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-12 3700S-901-01 Rev. C / July 2008

Status byte and service request (SRQ)

Service request is controlled by two 8-bit registers; the status byte register, and

the service request enable register.

Figure 12-9: Status byte and service request (SRQ)

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

3700S-901-01 Rev. C / July 2008 12-13

Status byte register

The summary messages from the status registers and queues are used to set or

clear the appropriate bits (B0, B1, B2, B3, B4, B5, and B7) of the status byte

register. These summary bits do not latch, and their states (0 or 1) are solely

dependent on the summary messages (0 or 1). For example, if the standard

event register is read, its register will clear. As a result, its summary message

will reset to 0, which in turn will reset the event summary bit (ESB) bit in the

status byte register.

The bits of the status byte register are described as follows:

 Bit B0, measurement summary bit (MSB): Set summary bit indicates that

an enabled measurement event has occurred.

 Bit B1, system summary bit (SSB): Set summary bit indicates that an

enabled system event has occurred.

 Bit B2, error available (EAV): Set bit indicates that an error or status

message is present in the error queue.

 Bit B3, questionable summary bit (QSB): Set summary bit indicates that

an enabled questionable event has occurred.

 Bit B4, message available (MAV): Set bit indicates that a response

message is present in the output queue.

 Bit B5, event summary bit (ESB): Set summary bit indicates that an

enabled standard event has occurred.

 Bit B6, request service (RQS)/master summary status (MSS): Set bit

indicates that an enabled summary bit of the status byte register is set.

Depending on how it is used, Bit B6 of the status byte register is either the

request for service (RQS) bit or the master summary status (MSS) bit; when

using the GPIB serial poll sequence of the Series 3700 to obtain the status

byte (serial poll byte), B6 is the RQS bit. See Serial polling and SRQ (on

page 12-14) for details about using the serial poll sequence.

When using the *STB? common command or status.condition to read

the status byte, B6 is the MSS bit.

 Bit B7, operation summary bit (OSB): Set summary bit indicates that an

enabled operation event has occurred.

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-14 3700S-901-01 Rev. C / July 2008

Serial polling and SRQ

Any enabled event summary bit that goes from 0 to 1 sets bit B6 and generates

an SRQ (service request). In your test program, you can periodically read the

status byte to check if an SRQ has occurred and what caused it. If an SRQ

occurs, the program can, for example, branch to an appropriate subroutine that

will service the request.

SRQs can be managed by the serial poll sequence of the Series 3700. If an

SRQ does not occur, bit B6 (RQS) of the status byte register will remain cleared,

and the program will simply proceed normally after the serial poll is performed. If

an SRQ does occur, bit B6 of the status byte register will set, and the program

can branch to a service subroutine when the SRQ is detected by the serial poll.

The serial poll automatically resets RQS of the status byte register. This allows

subsequent serial polls to monitor bit B6 for an SRQ occurrence generated by

other event types.

For common and script commands, B6 is the MSS (message summary status)

bit. The serial poll does not clear MSS. The MSS bit stays set until all status byte

summary bits are reset.

Service request enable register

The generation of a service request is controlled by the Service Request Enable

Register. You program this register and use it to enable or disable the setting of

bit B6 (RQS/MSS) by the status summary message bits (B0, B2, B3, B4, B5,

and B7) of the status byte register. The summary bits are logically ANDed (&)

with the corresponding enable bits of the service request enable register. When

a set (1) summary bit is ANDed with an enabled (1) bit of the enable register, the

logic "1" output is applied to the input of the OR gate and, therefore, sets the

MSS/RQS bit in the status byte register. The individual bits of the service

request enable register can be set or cleared by using the *SRE common

command or its script equivalent. To read the service request enable register,

use the *SRE? query or script equivalent. The service request enable register

clears when power is cycled or a parameter value of 0 is sent with the *SRE

command (for example, *SRE 0).

SPE, SPD (serial polling)

For the GPIB interface only, the SPE and SPD general bus command sequence

is used to serial poll the Series 3700. Serial polling obtains the serial poll byte

(status byte). Typically, serial polling is used by the controller to determine which

of several instruments has requested service with the SRQ line.

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

3700S-901-01 Rev. C / July 2008 12-15

Status byte and service request commands

The commands to program and read the status byte register and service request

enable register are listed below. Note that the table includes both common

commands and their script command equivalents. For details on programming

and reading registers, see Programming enable and transition registers (on

page 12-10) and Reading registers (on page 12-11).

To reset the bits of the service request enable register to 0, use 0 as the

parameter value for the command (for example, *SRE 0).

Commands Description

*STB?

or

print(status.condition)

Read status byte register.

*SRE <mask>

or

status.request_enable =
<mask>

Program the service request enable register:

<mask> = 0 to 255

*SRE?

or

print(status.request_enable
)

Read the service request enable register.

Enable and transition registers

In general, there are three types of user-writable registers that are used to

configure which bits feed the register summary and when register summary

occurs. The registers are identified in the command table footnotes as follows:

 Enable register (identified as "enable" in the table footnotes): Allows

various associated events to be included in the summary bit for the register.

 Negative-transition register (NTR; identified as "ntr" in the table

footnotes): A particular bit in the event register will be set when the

corresponding bit in the NTR is set, and the corresponding bit in the

condition register transitions from 1 to 0.

 Positive-transition register (PTR; identified as "ptr" in the table footnotes):

A particular bit in the event register will be set when the corresponding bit in

the PTR is set, and the corresponding bit in the condition register transitions

from 0 to 1.

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-16 3700S-901-01 Rev. C / July 2008

Controlling node and SRQ enable registers

For the attributes to control system node and SRQ enable bits and read

associated registers, refer to:

 status.request_enable (on page 13-276)

 status.request_event (on page 13-278)

 status.node_enable (on page 13-267)

 status.node_event (on page 13-269)

Status register set specifics

There are five status register sets in the status structure of the Series 3700:

 System summary event status

 Standard event status

 Operation event status

 Questionable event status

 Measurement event status

System summary event registers

There are five register sets associated with system event status. These registers

summarize system status for various nodes connected to the TSP-LinkTM. Note

that all nodes on the TSP-Link share a copy of the system summary registers

once the TSP-Link has been initialized. This feature allows all nodes to access

the status models of other nodes, including SRQ. Commands are summarized

below.

For example, either of the following commands will set the extension (EXT)

enable bit:

status.system.enable = status.system.EXT
status.system.enable = 1

The following command will request the system enable register value:

print(status.system.enable)

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

3700S-901-01 Rev. C / July 2008 12-17

The used bits of the system event registers are described as follows:

 EXT: Set bit indicates that an extension bit from a another system status

register is set.

 NODEn: Indicates a bit on TSP-Link node n has been set (n = 1 to 64).

System summary event commands appear in the following table:

Commands Bit

To set register bits:

status.system.enable = status.system.EXTENSION_BIT B0

status.system.enable = status.system.EXT B0

status.system.enable = status.system.NODEn Bn

To read registers:

print(status.system.enable)

print(status.system.condition)

print(status.system.event)

To set register bits:

status.system2.enable = status.system.EXTENSION_BIT B0

status.system2.enable = status.system.EXT B0

status.system2.enable = status.system.NODEn Bn

To read registers:

print(status.system2.enable)

print(status.system2.condition)

print(status.system2.event)

To set register bits:

status.system3.enable = status.system.EXTENSION_BIT B0

status.system3.enable = status.system.EXT B0

status.system3.enable = status.system.NODEn Bn

To read registers:

print(status.system3.enable)

print(status.system3.condition)

print(status.system3.event)

To set register bits:

status.system4.enable = status.system.EXTENSION_BIT B0

status.system4.enable = status.system.EXT B0

status.system4.enable = status.system.NODEn Bn

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-18 3700S-901-01 Rev. C / July 2008

Commands Bit

To read registers:

print(status.system4.enable)

print(status.system4.condition)

print(status.system4.event)

To set register bits:

status.system5.enable = status.system.EXTENSION_BIT B0

status.system5.enable = status.system.EXT B0

status.system5.enable = status.system.NODEn Bn

To read registers:

print(status.system5.enable)

print(status.system5.condition)

print(status.system5.event)

Refer to the following table for available n values:

Command n value

status.system 1 to 14

status.system2 15 to 28

status.system3 29 to 42

status.system4 43 to 56

status.system5 57 to 64

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

3700S-901-01 Rev. C / July 2008 12-19

Standard event register

The bits used in the standard event register are described as follows:

 Bit B0, operation complete: Set bit indicates that all pending selected

device operations are completed and the Series 3700 is ready to accept

new commands. The bit is set in response to an *OPC command. The ICL

function opc() (on page 13-220) can be used in place of the *OPC

command.

 Bit B1: Not used.

 Bit B2, query error (QYE): Set bit indicates that you attempted to read data

from an empty output queue.

 Bit B3, device-dependent error (DDE): Set bit indicates that an instrument

operation did not execute properly due to some internal condition.

 Bit B4, execution error (EXE): Set bit indicates that the Series 3700

detected an error while trying to execute a command.

 Bit B5, command error (CME): Set bit indicates that a command error has

occurred. Command errors include:

 IEEE-488.2 syntax error: Series 3700 received a message that does

not follow the defined syntax of the IEEE-488.2 standard.

 Semantic error: Series 3700 received a command that was misspelled

or received an optional IEEE-488.2 command that is not supported.

 Group execute trigger location error: The instrument received a

group execute trigger (GET) inside a program message.

 Bit B6, user request (URQ): Set bit indicates that the LOCAL key on the

Series 3700 front panel was pressed.

 Bit B7, Power ON (PON): Set bit indicates that the Series 3700 has been

turned off and turned back on since the last time this register was read.

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-20 3700S-901-01 Rev. C / July 2008

Figure 12-10: Standard event register

Commands to program and read the register are summarized in the table below.

Refer to the status.standard ICL command for the attributes to control bits.

Commands Description

*ESR?

or

print(status.standard.event)

Read standard event status register.

*ESE <mask>

or

status.standard.enable = <mask>

Program the event status enable

register: <mask> = 0 to 255

Refer to the status.standard.*

(on page 13-278) ICL command

*ESE?

or

print(status.standard.enable)

Read event status enable register.

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

3700S-901-01 Rev. C / July 2008 12-21

Operation event registers

The Series 3700 has two register sets associated with operation event status.

Commands are summarized in the following table. For example, either of the

following commands will set the CAL enable bit:

status.operation.enable = status.operation.CAL

status.operation.enable = 1

The bits used in the operation event registers are described as follows:

 CAL: Set bit indicates that the instrument is calibrating.

 MEAS: Bit will be set when taking an overlapped measurement, but it will

not set when taking a normal synchronous measurement.

 PRMPT: Set bit indicates that command prompts are enabled.

 USER: Set bit indicates that an enabled bit in the operation status user

register is set.

 PROG: Set bit indicates that a program is running.

Operation event commands appear in the following table:

Commands Bit

To set register bits:

status.operation.* = status.operation.CAL or
status.operation.CALIBRATING

B0

status.operation.* = status.operation.MEAS or
status.operation.MEASURING

B4

status.operation.* = status.operation.PRMT or
status.operation.PROMPTS

B11

status.operation.* = status.operation.USER B12

status.operation.* = status.operation.PROG or
status.operation.PROGRAM_RUNNING

B14

To read registers:

print(status.operation.*)

Where * = .ntr, .ptr, .enable, .event, and .condition

NOTE The first three (.ntr, .ptr, and .enable) are read/write, while the last two

(.event and .condition) are read only.

print(status.operation.condition)

print(status.operation.event)

To set register bits:

status.operation.user.* = status.operation.user.BIT0 B0

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-22 3700S-901-01 Rev. C / July 2008

Commands Bit

status.operation.user.* = status.operation.user.BIT1 B1

status.operation.user.* = status.operation.user.BIT2 B2

status.operation.user.* = status.operation.user.BIT3 B3

status.operation.user.* = status.operation.user.BIT4 B4

status.operation.user.* = status.operation.user.BIT5 B5

status.operation.user.* = status.operation.user.BIT6 B6

status.operation.user.* = status.operation.user.BIT7 B7

status.operation.user.* = status.operation.user.BIT8 B8

status.operation.user.* = status.operation.user.BIT9 B9

status.operation.user.* = status.operation.user.BIT10 B10

status.operation.user.* = status.operation.user.BIT11 B11

status.operation.user.* = status.operation.user.BIT12 B12

status.operation.user.* = status.operation.user.BIT13 B13

status.operation.user.* = status.operation.user.BIT14 B14

To read registers:

print(status.operation.user.*)

Where * = .ntr, .ptr, .enable, .event, and .condition

NOTE The first three (.ntr, .ptr, and .enable) are read/write, while the last two

(.event and .condition) are read only.

print(status.operation.user.condition)

print(status.operation.user.event)

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

3700S-901-01 Rev. C / July 2008 12-23

Questionable event registers

The Series 3700 has five registers associated with questionable event status.

For example, to set the CAL enable bit, use either of the following commands:

status.questionable.enable = status.questionable.CAL
status.questionable.enable = 256

The following command will request the questionable enable register value:

print(status.questionable.enable)

The bits used in the questionable event registers are described as follows:

 SxINL: Set bit indicates the interlock connection of a card in slot x is in

question, where x = 1 to 6.

 DMMCON: Set bit indicates the DMM connection is in question for a

measurement taken.

 CAL: Set bit indicates the calibration of the instrument is in question.

 SxTHR: Set bit indicates the thermal aspect of the card in slot x is in

question, where x = 1 to 6.

Questionable event commands appear in the following table:

Commands Bit

To set register bits:

SLOT1_INTERLOCK or S1INL B1

SLOT2_INTERLOCK or S2INL B2

SLOT3_INTERLOCK or S3INL B3

SLOT4_INTERLOCK or S4IN B4

SLOT5_INTERLOCK or S5INL B5

SLOT6_INTERLOCK or S6INL B6

DMM_CONNECTION or DMMCON B7

DMM_CALIBRATION or CAL B8

SLOT1_THERMAL or S1THR B9

SLOT2_THERMAL or S2THR B10

SLOT3_THERMAL or S3THR B11

SLOT4_THERMAL or S4THR B12

SLOT5_THERMAL or S5THR B13

SLOT6_THERMAL or S6THR B14

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-24 3700S-901-01 Rev. C / July 2008

Commands Bit

To read registers:

print(status.questionable.user.*)

Where * = .ntr, .ptr, .enable, .event, and .condition

NOTE The first three (.ntr, .ptr, and .enable) are read/write, while the last two

(.event and .condition) are read only.

print(status.questionable.user.condition)

print(status.questionable.user.event)

Measurement event registers

The Series 3700 has five registers associated with measurement event status.

For example, to set the buffer available bit, use either of the following

commands:

status.measurement.enable = status.measurement.BAV
status.measurement.enable = 256

The bits used in the measurement event registers are described as follows:

 ROF: Set bit indicates that an overflow reading has been detected.

 BAV: Set bit indicates that there is at least one reading stored in a reading

buffer.

 ULMT1: Set bit indicates that a reading has exceeded the upper limit 1

value.

 LLMT1: Set bit indicates that a reading has exceeded the lower limit 1

value.

 ULMT2: Set bit indicates that a reading has exceeded the upper limit 2

value.

 LLMT2: Set bit indicates that a reading has exceeded the lower limit 2

value.

Measurement event commands appear in the following table:

Commands Bit

To set register bits:

LLMT1 or LOWER_LIMIT1 B0

ULMT1 or UPPER_LIMIT1 B1

LLMT2 or LOWER_LIMIT2 B2

ULMT2 or UPPER_LIMIT2 B3

ROF or READING_OVERFLOW B7

BAV or BUFFER_AVAILABLE B8

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

3700S-901-01 Rev. C / July 2008 12-25

Commands Bit

To read registers:

print(status.measurement.*)

Where * = .ntr, .ptr, .enable, .event, and .condition

NOTE The first three (.ntr, .ptr, and .enable) are read/write, while the last two

(.event and .condition) are read only.

print(status.measurement.condition)

print(status.measurement.event)

Queues

The Series 3700 uses two queues, which are first-in, first-out (FIFO) queues:

Output queue: Used to hold response messages.

Error queue: Used to hold error and status messages.

The Series 3700 status model shows how the two queues are structured with

the other registers.

Output queue

The output queue holds data that pertains to the normal operation of the

instrument. For example, when a print command is sent, the response message

is placed in the output queue and the message available (MAV) bit in the status

byte register sets. A response message is cleared from the output queue when it

is read. The output queue is considered cleared when it is empty. An empty

output queue clears the MAV bit in the status byte register. A message is read

from the output queue by addressing the Series 3700 to talk.

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

12-26 3700S-901-01 Rev. C / July 2008

Error queue

The error queue holds error and status messages. When an error or status

event occurs, a message that defines the error or status is placed in the error

queue and the error available (EAV) bit in the status byte register is set. An error

or status message is cleared from the error queue when it is read. The error

queue is considered cleared when it is empty. An empty error queue clears the

EAV bit in the status byte register.

The commands to control the error queue are listed in the following table. When

you read a single message in the error queue, the oldest message is read and

then removed from the queue. On power-up, the error queue is initially empty. If

there are problems detected during power-on, entries will be placed in the

queue. When empty, the error number 0 and "No Error" are placed in the queue.

Messages in the error queue include a code number, message text, severity,

and TSP-LinkTM node number.

Error queue command Description

errorqueue.clear() Clear error queue of all errors.

errorqueue.count Number of messages in the error/event

queue.

errorcode, message, severity,

 node = errorqueue.next()

Request error code, text message,

severity, and TSP-Link node number.

In this section:

Command programming notes .. 13-1

ICL command list .. 13-11

Command programming notes

Wild characters

For the following command reference, it is necessary to understand the following

conventions. Many commands are expressed in a generic form using wild

characters. A wild character indicates a channel, function, or trigger line.

Remember that wild characters used in the generic form are NOT to be included

in the command sent to the instrument.

X and Y

The X character is used for functions and attributes to indicate the slot (1

through 6) and Y is used to indicate the limit number (1 or 2). For example, the

attribute for the limit 2 number testing is generically expressed as follows:

dmm.limit[Y].enable

To enable limit 2, send the following command statement to the instrument:

dmm.limit[2].enable = dmm.ON

To query for idn information for the card in Slot 1, send the following command

statement to the instrument:

card1_idn = slot[1].idn

NOTE The wild characters X and/or Y are NEVER sent to the instrument.

They are used in this command reference for notational convenience

only.

Section 13

Instrument Control Library (ICL)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-2 3700S-901-01 Rev. C / July 2008

[N]

The N character, enclosed by brackets ([]), is used in functions and attributes

for the digital I/O line (1 to 14). For example, the function to assert an output

trigger is generically expressed as follows:

digio.trigger[N].assert

To program the Series 3700 to assert an output trigger on trigger line 5, the

following command statement is sent to the instrument:

digio.trigger[5].assert()

NOTE The wild character N should NOT to be sent to the instrument.

However, the brackets ([]) must be included in the command. Also,

note that the above command requires that a set of open and closed

parenthesis (()) be appended to the function (see Functions (on page

13-2)).

Functions and attributes

Commands can be function-based or attribute-based.

Functions

Function-based commands are used to control actions or activities. For

example, performing a voltage measurement is a function (action). A function

based command is not always directly related to a Series 3700 operation. For

example, the bit.bitand function will logically AND two numbers.

Each function consists of a function name followed by a set of parenthesis (()).

If the function does not have a parameter, the parenthesis set is left empty.

Examples:

digio.writeport(15) ' Sets digital I/O lines 1, 2, 3, and 4

high.

digio.writebit(3, 0) ' Sets line 3 low (0).

dmm.reset('all') ' Returns the DMM to its default

settings.

digio.readport() ' Reads the digital I/O port.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-3

The results of a function call are used by assigning the return values to variables

and accessing those variables. The following code will measure voltage and

return the reading:

dmm.func = 'dcvolts'

reading = dmm.measure()

print(reading)

Output: 2.360000e+00

The above output indicates that the voltage reading is 2.36V.

Attributes

An attribute is a characteristic of an instrument feature or operation. For

example, some characteristics of a digital multimeter (DMM) include the

measurement function and range.

Assigning a value to an attribute

An attribute-based command can be used to assign a new value to an attribute.

For many attributes, the value can be in the form of a discrete number or a

predefined identifier. For example, dmm.autorange is an attribute. The

autorange attribute is enabled by assigning the attribute to either of the following

values:

1 or dmm.ON

Either of the following command messages will configure the DMM for the

moving average filter:

dmm.filter.type = 0
dmm.filter.type = dmm.FILTER_MOVING_AVG

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-4 3700S-901-01 Rev. C / July 2008

Reading an attribute

Reading an attribute is accomplished by passing it to a function call as a

parameter or by assigning it to another variable.

Parameter passing example:

The following command reads the filter type for the DMM by passing the

attribute to the print function, which outputs a value:

print(dmm.filter.type)

Output: 0.000000e+00

The above output indicates that the moving average filter is selected.

Variable assignment example:

The following command reads the filter type by assigning the attribute to a

variable named filtertype:

filtertype = dmm.filter.type

Syntax rules

 Commands for functions and attributes are case sensitive. As a general rule,

all function and attribute names must be in lower case, while parameters

use a combination of lower and upper case characters. Upper case

characters are required for attribute constants. Example:

dmm.func = dmm.DC_VOLTS

In the above command, which selects the DC volts measurement function,

dmm.DC_VOLTS is the attribute constant and dmm.func is the attribute

command.

 White space in a function is not required. The function to set digital I/O line 3

low can be sent with or without white spaces as follows:

digio.writebit(3,0) Whitespaces NOT used in string.

digio.writebit (3, 0) Whitespaces used in string.

 Some commands require multiple parameters. Multiple parameters must be

separated by commas (,), as shown above for the digio.writebit

function.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-5

TSP-LinkTM nodes

Each instrument or enclosure attached to the TSP-Link bus must be uniquely

identified. This identification is called a TSP-Link node number, and the

enclosures are called nodes. Each node must be assigned a unique node

number.

In relation to Test Script Processor (TSPTM), nodes look like tables. There is one

global table named node that contains all the actual nodes that are themselves

tables. An individual node is accessed as node[N] where N is the node number

assigned to the node. Each node has certain attributes that can be accessed as

elements of its associated table. These are listed as follows:

id: The node number assigned to the node.

model: The product model number string of the node.

revision: The product revision string of the node.

serialno: The product serial number string of the node.

There is also an entry for each logical instrument on the node (see Logical

instruments (on page 13-5)).

It is not necessary to know the node number of the node running a script. The

variable localnode is an alias for the node entry the script is running on. For

example, if a script is running on Node 5, the global variable localnode will be

an alias for node[5].

Logical instruments

You would normally refer to all instrumentation within one enclosure or node as

a single instrument. In the context of TSPTM and instrument control libraries, it is

useful to think of individual DMMs as instruments. To avoid confusion, DMMs

and other subdivisions of the instrumentation within an enclosure will be referred

to as "logical instruments."

Each logical instrument is given a unique identifier in a system. These identifiers

are used as part of all ICL function calls that control a given logical instrument. A

Series 3700 has the following logical instruments per enclosure:

 beeper display format slot tsplink

 bit dmm gpib status

 channel eventlog lan timer

 digio errorqueue scan trigger

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-6 3700S-901-01 Rev. C / July 2008

Logical instruments also look like TSP tables. In addition to the logical

instrument-specific attributes and the commands to which they respond, there

are a few attributes that provide information about the logical instrument. These

attributes are listed below:

name: A string that represents the logical instrument's name. For example,

dmm.

node: A reference to the TSP-LinkTM node of which the logical instrument is a

part. Default value is 2.

Query commands

Channel response query commands can return a comma-delimited string (for

example, channel.getcount and other channel response query commands).

When a channel query command like channel.getcount or

channel.getstate is sent, the response is a comma-delimited list. The list

starts with the lowest channel through to the highest. After the channels are

listed, the analog backplane relays are listed, starting with Bank 1 followed by

each subsequent bank.

For example (Model 3720 card installed in Slot 4, returning 72 comma-

delimited values):

Send the following command:

print(channel.getclose('slot4'))

The first 60 values returned are for Channels 1 to 60, starting with 1 and

increasing to 60. The next six values are for analog backplane relays in Bank 1

(starting at 1 and increasing to 6). The final 6 values are for analog backplane

relays in Bank 2 (again, starting at 1 and increasing to 6).

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-7

If the command was channel.getstate instead of channel.getcount,

then 72 zero (0) or one (1) values would be returned (a 0 would indicate that the

channel or backplane is open; a 1 would indicate that it is closed). The first 60

values are for Channels 1 to 60 (starting at 1 and increasing to 60). The last 12

values are the backplane relays (starting with Bank 1, Relay 1, increasing to

Bank 2, Relay 6).

NOTE If a channel is paired for 4-wire by its pole setting, then the paired

channel state is returned in parenthesis () after the primary channel.

For example, if the card in Slot 4 is a Model 3720 and has the 4-pole

attribute for all channels set, querying for the states of "slot4" will

return 72 zeros and ones, with the first 60 shown as the primary

channel state (paired channel state); the 12 backplane relays follow.

Sample code and output:

channel.setpole('slot4', 4)

print(channel.getstate('slot4'))

Output from above code:

0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0)
,0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),0(0),
0(0),0(0),0(0),0(0),0(0),0(0),0(0),0,0,0,0,0,0,0,0,0,0,0

,0

The Model 3721 card has three additional backplane relays for common side

ohms functionality. Use 'slotX' or 'allslots' to query settings on this card

to return information for Channels 1 to 40, 911 to 916, 921 to 926, and then 917,

927, and 928 in the response message (the three additional common side ohms

backplane relays are listed last).

For example, to print out the channel images on this card when it is in Slot 2

after a reset, send the following:

reset()
print(channel.getimage('slot2'))

Output from above code:

2001;2002;2003;2004;2005;2006;2007;2008;2009;2010;2011;2012
;2013;2014;2015;2016;2017;2018;2019;2020;2021;2022;2023;202
4;2025;2026;2027;2028;2029;2030;2031;2032;2033;2034;2035;20
36;2037;2038;2039;2040;2041;2042;2911;2912;2913;2914;2915;2
916;2921;2922;2923;2924;2925;2926;2917;2927;2928

NOTE The common side ohm backplane relays (2917, 2927, and 2928) are

listed last.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-8 3700S-901-01 Rev. C / July 2008

DMM configuration

When a DMM configuration is updated, the instrument will go through all switch

channels in the system to find ones that have the updated configuration

assigned as its DMM configuration attribute setting. For each one found, it will

verify that the new configuration attribute settings are still valid for that channel.

If the settings are still valid and needed, changes will be made to support the

new settings.

The Model 3721 card has three additional backplane relays for common side

ohms functionality. Using 'slotX' or 'allslots' to query settings on this

card returns information for Channels 1 to 40, 911 to 916, 921 to 926, then 917,

927, and 928 in the response message (the three additional common side ohms

backplane relays are listed last).

For example, to print the channel images on this card when it is in Slot 2 after a

reset, send the following:

reset()

print(channel.getimage('slot2'))

Output from above code:
2001;2002;2003;2004;2005;2006;2007;2008;2009;2010;201
1;2012;2013;2014;2015;2016;2017;2018;2019;2020;2021;2

022;2023;2024;2025;2026;2027;2028;2029;2030;2031;2032
;2033;2034;2035;2036;2037;2038;2039;2040;2041;2042;29
11;2912;2913;2914;2915;2916;2921;2922;2923;2924;2925;
2926;2917;2927;2928

NOTE The common side ohm backplane relays (2917, 2927, and 2928) are

listed last.

DMM new configuration example

For example, assume Slot 6 has a Model 3720 card installed and the following

ICL commands are sent:

reset()
dmm.nplc = .1
dmm.range = 10
dmm.configure.set('myconfig')
dmm.setconfig('slot6', 'myconfig')

print(dmm.getconfig('slot6'))

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-9

The output will be 60 comma-delimited myconfig strings, as follows:

myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,mycon
fig,myconfig,myconfig,myconfig,myconfig,myconfig,myconfi
g,myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,
myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,my
config,myconfig,myconfig,myconfig,myconfig,myconfig,myco
nfig,myconfig,myconfig,myconfig,myconfig,myconfig,myconf
ig,myconfig,myconfig,myconfig,myconfig,myconfig,myconfig
,myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,m
yconfig,myconfig,myconfig,myconfig,myconfig,myconfig,myc

onfig,myconfig,myconfig,myconfig

Next, the following ICL commands are sent:

dmm.func = 'fourwireohms'
dmm.nplc = .5
dmm.range = 100000
dmm.configure.set('myconfig')

print(dmm.getconfig('slot6'))

The output will be 30 comma-delimited myconfig strings, as follows:

myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,mycon
fig,myconfig,myconfig,myconfig,myconfig,myconfig,myconfi
g,myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,
myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,my

config,myconfig,myconfig,myconfig,myconfig

As this example shows, 'myconfig' was first saved with a function setting of

DC volts, which was valid for all 60 channels on Slot 6. However, when

'myconfig' was associated with a function setting of 4-wire ohms, Channels

31 to 60 became unavailable because they are paired with Channels 1 to 30 in

4-wire measurement operation.

Next, the following ICL commands are sent:

dmm.func = 'temperature'
dmm.configure.set('myconfig')

print(dmm.getconfig('slot6'))

The output will be 30 comma-delimited myconfig strings, followed by 30

comma-delimited nofunctions strings, as follows:

myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,mycon
fig,myconfig,myconfig,myconfig,myconfig,myconfig,myconfi
g,myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,
myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,my
config,myconfig,myconfig,myconfig,myconfig,nofunction,no
function,nofunction,nofunction,nofunction,nofunction,nof
unction,nofunction,nofunction,nofunction,nofunction,nofu
nction,nofunction,nofunction,nofunction,nofunction,nofun
ction,nofunction,nofunction,nofunction,nofunction,nofunc
tion,nofunction,nofunction,nofunction,nofunction,nofunct
ion,nofunction,nofunction,nofunction

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-10 3700S-901-01 Rev. C / July 2008

If you now associate 'myconfig' with a 2-wire temperature function,

'myconfig' stays on Channels 1 to 30, but because Channels 31 to 60 are no

longer paired, they are set back to a default DMM configuration setting of

'nofunction' because the unit has no way of knowing what configuration is

desired on those channels.

Likewise, changing a DMM configuration to pertain to a function not supported

by a channel will cause the channel to be set back to the 'nofunction'

setting. Continuing the example, if 'myconfig' is set to pertain to the DC

current function, then Channels 1 to 30, Slot 6, would be set to 'nofunction'

because these channels don't support the amp functionality.

Next, the following ICL commands are sent:

dmm.func = 'dccurrent'
dmm.configure.set('myconfig')

print(dmm.getconfig('slot6'))

The output will be 60 comma-delimited nofunctions, as follows:

nofunction,nofunction,nofunction,nofunction,nofunction,nofu
nction,nofunction,nofunction,nofunction,nofunction,nofun
ction,nofunction,nofunction,nofunction,nofunction,nofunc
tion,nofunction,nofunction,nofunction,nofunction,nofunct
ion,nofunction,nofunction,nofunction,nofunction,nofuncti
on,nofunction,nofunction,nofunction,nofunction,nofunctio
n,nofunction,nofunction,nofunction,nofunction,nofunction
,nofunction,nofunction,nofunction,nofunction,nofunction,
nofunction,nofunction,nofunction,nofunction,nofunction,n
ofunction,nofunction,nofunction,nofunction,nofunction,no
function,nofunction,nofunction,nofunction,nofunction,nof
unction,nofunction,nofunction,nofunction

As this example demonstrates, it is important to be careful when updating the

attributes associated with a DMM configuration. Changing settings within the

same function (for example, NPLC or range) will usually not change the DMM

configuration, but you should still be cautious. For example, you should be

careful changing a setting like transducer for temperature to indicate 2-pole or 4-

pole measurement operation.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-11

This section provides a listing of Instrument

Control Library commands and basic functional

group usage.

beeper functions and attributes
beeper.beep() (on page 13-16)
beeper.enable (on page 13-16)

bit functions
bit.bitand() (on page 13-17)
bit.bitor() (on page 13-18)
bit.bitxor() (on page 13-18)
bit.clear() (on page 13-19)
bit.get() (on page 13-19)
bit.getfield() (on page 13-20)
bit.set() (on page 13-21)
bit.setfield() (on page 13-21)
bit.test() (on page 13-22)
bit.toggle() (on page 13-23)

channel functions and attributes
channel.clearforbidden() (on page 13-
36)
channel.close() (on page 13-37)
channel.connectrule (on page 13-39)
channel.connectsequential (on page 13-
40)
channel.exclusiveclose() (on page 13-
41)
channel.exclusiveslotclose() (on page
13-43)
channel.getbackplane() (on page 13-45)
channel.getclose() (on page 13-46)
channel.getcount() (on page 13-48)
channel.getdelay() (on page 13-49)
channel.getforbidden() (on page 13-50)
channel.getimage() (on page 13-51)
channel.getlabel() (on page 13-52)
channel.getpole() (on page 13-55)
channel.getstate() (on page 13-56)
channel.open() (on page 13-59)
channel.pattern.catalog() (on page 13-
61)
channel.pattern.delete() (on page 13-
62)
channel.pattern.getimage() (on page 13-
62)
channel.pattern.setimage() (on page 13-
63)
channel.pattern.snapshot() (on page 13-
66)
channel.reset() (on page 13-68)
channel.setbackplane() (on page 13-70)
channel.setdelay() (on page 13-72)
channel.setforbidden() (on page 13-73)
channel.setlabel() (on page 13-74)
channel.setpole() (on page 13-79)

dataqueue functions and attributes
dataqueue.add() (on page 3-10)
dataqueue.CAPACITY (on page 3-10)
dataqueue.clear() (on page 3-10)

dataqueue.count (on page 3-10)
dataqueue.next() (on page 3-11)

delay functions
delay() (on page 13-86)

digio functions and attributes
digio.readbit() (on page 13-87)
digio.readport() (on page 13-87)
digio.trigger[N].assert() (on page 13-
88)
digio.trigger[N].clear() (on page 13-
88)
digio.trigger[N].mode (on page 13-88)
digio.trigger[N].overrun (on page 13-
89)
digio.trigger[N].pulsewidth (on page
13-90)
digio.trigger[N].release((on page 13-
90))
digio.trigger[N].stimulus (on page 13-
91)
digio.trigger[N].wait() (on page 13-92)
digio.writebit() (on page 13-92)
digio.writeport() (on page 13-92)
digio.writeprotect (on page 13-93)

display functions and attributes
display.clear() (on page 13-93)
display.getannunciators() (on page 13-
94)
display.getcursor() (on page 13-95)
display.getlastkey() (on page 13-96)
display.gettext() (on page 13-97)
display.inputvalue() (on page 13-98)
display.loadmenu.add (on page 13-100)
display.loadmenu.delete() (on page 13-
101)
display.locallockout (on page 13-102)
display.menu() (on page 13-102)
display.prompt() (on page 13-102)
display.screen (on page 13-104)
display.sendkey() (on page 13-105)
display.setcursor() (on page 13-105)
display.settext() (on page 13-106)
display.waitkey() (on page 13-107)

dmm functions and attributes
dmm.adjustment.count (on page 13-109)
dmm.adjustment.date (on page 13-109)
dmm.aperture (on page 13-110)
dmm.appendbuffer() (on page 13-111)
dmm.autodelay (on page 13-112)
dmm.autorange (on page 13-113)
dmm.autozero (on page 13-114)
dmm.buffer.catalog() (on page 13-115)
dmm.buffer.info() (on page 13-116)
dmm.buffer.maxcapacity (on page 13-117)
dmm.buffer.usedcapacity (on page 13-
118)
dmm.calibration.ac() (on page 13-118)
dmm.calibration.dc() (on page 13-120)
dmm.calibration.lock() (on page 13-121)
dmm.calibration.password (on page 13-
122)

ICL command list

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-12 3700S-901-01 Rev. C / July 2008

dmm.calibration.save() (on page 13-122)
dmm.calibration.unlock() (on page 13-
122)
dmm.calibration.verifydate (on page 13-
123)
dmm.close() (on page 13-123)
dmm.configure.catalog() (on page 13-
125)
dmm.configure.delete() (on page 13-125)
dmm.configure.query() (on page 13-126)
dmm.configure.recall() (on page 13-128)
dmm.configure.set() (on page 13-129)
dmm.connect (on page 13-130)
dmm.dbreference (on page 13-131)
dmm.detectorbandwidth (on page 13-132)
dmm.displaydigits (on page 13-132)
dmm.drycircuit (on page 13-133)
dmm.filter.count (on page 13-134)
dmm.filter.enable (on page 13-134)
dmm.filter.type (on page 13-135)
dmm.filter.window (on page 13-136)
dmm.fourrtd (on page 13-137)
dmm.func (on page 13-137)
dmm.getconfig() (on page 13-139)
dmm.inputdivider (on page 13-140)
dmm.limit[Y].autoclear (on page 13-141)
dmm.limit[Y].clear() (on page 13-141)
dmm.limit[Y].enable (on page 13-142)
dmm.limit[Y].high.fail (on page 13-142)
dmm.limit[Y].high.value (on page 13-
143)
dmm.limit[Y].low.fail (on page 13-143)
dmm.limit[Y].low.value (on page 13-144)
dmm.linesync (on page 13-144)
dmm.makebuffer() (on page 7-8)
dmm.math.enable (on page 13-147)
dmm.math.format (on page 13-147)
dmm.math.mxb.bfactor (on page 13-148)
dmm.math.mxb.mfactor (on page 13-149)
dmm.math.mxb.units (on page 13-149)
dmm.math.percent (on page 13-150)
dmm.measure() (on page 13-150)
dmm.measurecount (on page 13-151)
dmm.measurewithtime() (on page 13-151)
dmm.nplc (on page 13-152)
dmm.offsetcompensation (on page 13-153)
dmm.open() (on page 13-154)
dmm.opendetector (on page 13-155)
dmm.range (on page 13-156)
dmm.refjunction (on page 13-157)
dmm.rel.acquire() (on page 13-158)
dmm.rel.enable (on page 13-159)
dmm.rel.level (on page 13-160)
dmm.reset() (on page 13-161)
dmm.rtdalpha (on page 13-162)
dmm.rtdbeta (on page 13-163)
dmm.rtddelta (on page 13-164)
dmm.rtdzero (on page 13-165)
dmm.savebuffer() (on page 7-10)
dmm.setconfig() (on page 13-168)
dmm.simreftemperature (on page 13-169)
dmm.thermistor (on page 13-170)
dmm.thermocouple (on page 13-171)
dmm.threertd (on page 13-172)
dmm.threshold (on page 13-173)
dmm.transducer (on page 13-173)
dmm.units (on page 13-174)

errorqueue functions and attributes
errorqueue.clear() (on page 13-176)
errorqueue.count (on page 13-176)
errorqueue.next() (on page 13-176)

eventlog functions and attributes
eventlog.all() (on page 13-178)
eventlog.clear() (on page 13-178)
eventlog.count (on page 13-179)
eventlog.enable (on page 13-179)
eventlog.next() (on page 13-180)

exit functions
exit() (on page 13-180)

file functions
file:close() (on page 9-10)
file:flush() (on page 9-10)
file:read() (on page 9-10)
file:seek() (on page 9-11)
file:write() (on page 9-11)

format attributes
format.asciiprecision (on page 13-183)
format.byteorder (on page 13-183)
format.data (on page 13-184)

fs functions
fs.chdir() (on page 9-9)
fs.cwd() (on page 9-9)
fs.is_dir() (on page 9-9)
fs.is_file() (on page 9-9)
fs.mkdir() (on page 9-9)
fs.readdir() (on page 9-9)
fs.rmdir() (on page 9-10)

gpib attributes
gpib.address (on page 13-187)

io functions
io.close() (on page 9-12)
io.flush() (on page 9-12)
io.input() (on page 9-12)
io.open() (on page 9-13)
io.output() (on page 9-13)
io.read() (on page 9-13)
io.type() (on page 9-14)
io.write() (on page 9-14)

LAN functions and attributes
lan.applysettings() (on page 13-190)
lan.config.autonegotiate (on page 13-
191)
lan.config.dns.address[index] (on page
13-191)
lan.config.dns.domain (on page 13-192)
lan.config.dns.dynamic (on page 13-193)
lan.config.dns.hostname (on page 13-
193)
lan.config.dns.verify (on page 13-194)
lan.config.duplex (on page 13-194)
lan.config.gateway (on page 13-195)
lan.config.ipaddress (on page 13-195)
lan.config.method (on page 13-196)
lan.config.speed (on page 13-196)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-13

lan.config.subnetmask (on page 13-197)
lan.lxidomain (on page 13-197)
lan.pingenable (on page 13-198)
lan.status.dns.address[N] (on page 13-
199)
lan.status.dns.hostname (on page 13-
200)
lan.status.duplex (on page 13-200)
lan.status.gateway (on page 13-200)
lan.status.ipaddress (on page 13-201)
lan.status.macaddress (on page 13-201)
lan.status.port.dst (on page 13-201)
lan.status.port.rawsocket (on page 13-
202)
lan.status.port.telnet (on page 13-202)
lan.status.port.vxi11 (on page 13-202)
lan.status.reset() (on page 13-202)
lan.status.speed (on page 13-203)
lan.status.subnetmask (on page 13-203)
lan.trigger[N].assert() (on page 13-
203)
lan.trigger[N].clear() (on page 13-204)
lan.trigger[N].connect() (on page 13-
204)
lan.trigger[N].connected (on page 13-
204)
lan.trigger[N].EVENT_ID (on page 13-
204)
lan.trigger[N].ipaddress (on page 13-
204)
lan.trigger[N].mode (on page 13-205)
lan.trigger[N].overrun (on page 13-206)
lan.trigger[N].protocol (on page 13-
207)
lan.trigger[N].pseudostate (on page 13-
207)
lan.trigger[N].stimulus (on page 13-
208)
lan.trigger[N].wait() (on page 13-209)

localnode functions and attributes
localnode.define.* (on page 13-210)
localnode.description (on page 13-210)
localnode.execute() (on page 3-11)
localnode.getglobal() (on page 3-11)
localnode.linefreq (on page 13-211)
localnode.model (on page 13-211)
localnode.password (on page 13-212)
localnode.passwordmode (on page 13-212)
localnode.prompts (on page 13-212)
localnode.reset() (on page 13-213)
localnode.revision (on page 13-214)
localnode.serialno (on page 13-214)
localnode.setglobal() (on page 3-12)
localnode.settime() (on page 13-215)
localnode.setup.poweron (on page 13-
215)
localnode.setup.recall() (on page 13-
216)
localnode.setup.save() (on page 13-216)
localnode.showerrors (on page 13-217)

makegetter functions
makegetter() (on page 13-218)
makesetter() (on page 13-218)

memory functions
memory.available() (on page 13-219)
memory.used() (on page 13-219)

opc functions
opc() (on page 13-220)

printbuffer
printbuffer() (on page 13-221)
printnumber() (on page 13-222)

ptp functions and attributes
ptp.burst.enable() (on page 13-223)
ptp.ds.current() (on page 13-223)
ptp.ds.default() (on page 13-224)
ptp.ds.foreignmaster() (on page 13-224)
ptp.ds.globaltime() (on page 13-225)
ptp.ds.parent() (on page 13-225)
ptp.ds.portconfig() (on page 13-226)
ptp.enable() (on page 13-227)
ptp.portstate (on page 13-227)
ptp.preferredmaster.enable() (on page
13-228)
ptp.subdomain (on page 13-228)
ptp.synchronized (on page 13-228)
ptp.syncinterval (on page 13-229)
ptp.time (on page 13-229)
ptp.utcoffset (on page 13-229)

reset functions
reset() (on page 13-230)

scan functions and attributes
scan.abort() (on page 13-230)
scan.add() (on page 13-230)
scan.background() (on page 13-232)
scan.bypass (on page 13-233)
scan.create() (on page 13-234)
scan.execute() (on page 13-236)
scan.list() (on page 13-237)
scan.measurecount (on page 13-238)
scan.mode (on page 13-239)
scan.nobufferbackground() (on page 13-
240)
scan.nobufferexecute() (on page 13-241)
scan.reset() (on page 13-242)
scan.scancount (on page 13-242)
scan.state() (on page 13-243)
scan.stepcount (on page 13-243)
scan.trigger.arm.clear() (on page 13-
244)
scan.trigger.arm.set() (on page 13-244)
scan.trigger.arm.stimulus (on page 13-
244)
scan.trigger.channel.clear() (on page
13-245)
scan.trigger.channel.set() (on page 13-
245)
scan.trigger.channel.stimulus (on page
13-246)
scan.trigger.clear() (on page 13-247)
scan.trigger.measure.clear() (on page
13-247)
scan.trigger.measure.set() (on page 13-
247)
scan.trigger.measure.stimulus (on page
13-247)
scan.trigger.sequence.clear() (on page
13-248)
scan.trigger.sequence.set() (on page

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-14 3700S-901-01 Rev. C / July 2008

13-248)
scan.trigger.sequence.stimulus (on page
13-249)

schedule functions and attributes
schedule.alarm[x].enable (on page 13-
250)
schedule.alarm[x].EVENT_ID (on page 13-
250)
schedule.alarm[x].fractionalseconds (on
page 13-250)
schedule.alarm[x].period (on page 13-
251)
schedule.alarm[x].ptpseconds (on page
13-251)
schedule.alarm[x].repetition (on page
13-251)
schedule.alarm[x].seconds (on page 13-
251)
schedule.disable() (on page 13-252)

setup functions and attributes
setup.cards() (on page 13-252)
setup.poweron (on page 13-253)
setup.recall() (on page 13-253)
setup.save() (on page 13-254)

slot[X] attributes
slot[X].commonsideohms (on page 13-255)
slot[X].digio (on page 13-255)
slot[X].endchannel.amps (on page 13-
255)
slot[X].endchannel.isolated (on page
13-256)
slot[X].endchannel.voltage (on page 13-
257)
slot[X].idn (on page 13-257)
slot[X].interlock.override (on page 13-
257)
slot[X].interlock.state (on page 13-
258)
slot[X].isolated (on page 13-259)
slot[X].matrix (on page 13-259)
slot[X].maxvoltage (on page 13-259)
slot[X].multiplexer (on page 13-259)
slot[X].poles.four (on page 13-260)
slot[X].poles.one (on page 13-260)
slot[X].poles.two (on page 13-260)
slot[X].pseudocard (on page 13-260)
slot[X].startchannel.amps (on page 13-
261)
slot[X].startchannel.isolated (on page
13-262)
slot[X].startchannel.voltage (on page
13-263)
slot[X].tempsensor (on page 13-263)
slot[X].thermal.state (on page 13-263)

status functions and attributes
status.condition (on page 13-264)
status.measurement.* (on page 13-265)
status.node_enable (on page 13-267)
status.node_event (on page 13-269)
status.operation.* (on page 13-270)
status.operation.user.* (on page 13-
271)
status.questionable.* (on page 13-273)
status.request_enable (on page 13-276)

status.request_event (on page 13-278)
status.reset() (on page 13-278)
status.standard.* (on page 13-278)
status.system.* (on page 13-280)
status.system2.* (on page 13-281)
status.system3.* (on page 13-282)
status.system4.* (on page 13-284)
status.system5.* (on page 13-285)

timer functions
timer.measure.t() (on page 13-286)
timer.reset() (on page 13-287)

trigger functions and attributes
trigger.blender[N].clear() (on page 13-
287)
trigger.blender[N].orenable (on page
13-287)
trigger.blender[N].overrun (on page 13-
288)
trigger.blender[N].stimulus[M] (on page
13-288)
trigger.blender[N].wait() (on page 13-
289)
trigger.clear() (on page 13-289)
trigger.wait() (on page 13-290)

trigger.timer functions and attributes
trigger.timer[N].clear (on page 13-290)
trigger.timer[N].count (on page 13-290)
trigger.timer[N].delay (on page 13-291)
trigger.timer[N].delaylist (on page 13-
291)
trigger.timer[N].overrun (on page 13-
292)
trigger.timer[N].passthrough (on page
13-292)
trigger.timer[N].triggerstimulus (on
page 13-292)
trigger.timer[N].wait() (on page 13-
293)

tsplink functions and attributes
tsplink.group (on page 3-12)
tsplink.master (on page 3-12)
tsplink.node (on page 13-294)
tsplink.reset() (on page 13-294)
tsplink.state (on page 13-295)

tsplink.trigger functions and
attributes
tsplink.trigger[N].assert() (on page 3-
12)
tsplink.trigger[N].clear() (on page 3-
13)
tsplink.trigger[N].mode (on page 3-13)
tsplink.trigger[N].overrun (on page 3-
15)
tsplink.trigger[N].release() (on page
3-15)
tsplink.trigger[N].stimulus (on page
13-298)
tsplink.trigger[N].wait() (on page 3-
15)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-15

tspnet functions and attributes
tspnet.clear() (on page 10-10)
tspnet.connect() (on page 10-5)
tspnet.disconnect() (on page 10-10)
tspnet.execute() (on page 10-6)
tspnet.idn() (on page 10-6)
tspnet.read() (on page 10-8)
tspnet.readavailable() (on page 10-9)
tspnet.reset() (on page 10-10)
tspnet.termination() (on page 10-11)
tspnet.timeout (on page 10-11)
tspnet.tsp.abort() (on page 10-13)
tspnet.tsp.abortonconnect (on page 10-
14)
tspnet.tsp.rbtablecopy() (on page 10-
12)
tspnet.tsp.runscript() (on page 10-12)
tspnet.write() (on page 10-7)

upgrade functions
upgrade.previous() (on page 13-309)
upgrade.unit() (on page 13-309)

userstring functions
userstring.add() (on page 13-310)
userstring.catalog() (on page 13-310)
userstring.delete() (on page 13-311)
userstring.get() (on page 13-311)

waitcomplete functions
waitcomplete() (on page 3-16)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-16 3700S-901-01 Rev. C / July 2008

beeper functions and attributes

The beeper generates a beep tone. It is typically used to announce the start

and/or completion of a test or operation.

beeper.beep()

Function Generates a beep tone.

Usage beeper.beep(duration, frequency)

duration: Set from 0.1 to 100 (seconds).

frequency: Set to 453, 621, 987, or 2400 (Hz).

Remarks There are four beeper frequencies: 453Hz, 621Hz, 987Hz, and 2400Hz. If you set

frequency to a different value, the closest supported frequency will be selected.

The beeper will not sound if it is disabled (see beeper.enable (on page 13-16)).

This function is an overlapped command. Script execution will continue and not wait

for the beep to finish. If another beep command is sent before the previous beep

finishes, the first beep is terminated. You can use the function waitcomplete() (on page

3-16) to pause script execution until the beep command finishes.

Also see beeper.enable (on page 13-16)

Example Enables the beeper and generates a two-second, 2400Hz beep:

beeper.enable = 1

beeper.beep(2, 2400)

beeper.enable

Attribute Beeper control (on/off).

Usage To read the state of the beeper:

beeperstate = beeper.enable

To write the state of the beeper:

beeper.enable = beeperstate

Set beeperstate to one of the following values:

 0: Beeper disabled

 1: Beeper enabled

Remarks This attribute enables or disables the beeper. Disabling the beeper also disables front

panel key clicks.

Cycling power enables the beeper. The reset function does not affect the beeper state.

Also see beeper.beep() (on page 13-16)

Example Enables the beeper and generates a two-second, 2400Hz beep:

beeper.enable = 1

beeper.beep(2, 2400)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-17

bit functions

Logic and bit operations

The bit functions are used to perform bitwise logic operations on two given

numbers, and bit operations on one given number. Logic and bit operations

truncate the fractional part of given numbers to make them integers.

NOTE The Test Script Processor (TSPTM) stores all numbers internally as

single precision IEEE-754 floating point values. The internal number

representation only stores 24 bits of numeric data. The logic

operations will work correctly for all integer values between 0 and

4294967295. However, only the 24 most significant bits will be stored

for the return value.

Logic operations:

The bit.bitand, bit.bitor, and bit.bitxor functions in this group

perform logic operations on two numbers. The TSP will perform the indicated

logic operation on the binary equivalents of the two integers. Logic operations

are performed bitwise. That is, Bit 1 of the first number is AND'ed, OR'ed or

XOR'ed with Bit 1 of the second number. Bit 2 of the first number is AND'ed,

OR'ed or XOR'ed with Bit 2 of the second number. This bitwise logic operation is

performed on all corresponding bits of the two numbers. The result of a logic

operation will be returned as an integer.

Bit operations:

The rest of the functions in this group are used for operations on the bits of a

given number. These functions can be used to clear a bit, toggle a bit, test a bit,

set a bit (or bit field), and retrieve the weighted value of a bit (or field value). All

of these functions use an index parameter to "point" to the bit position of the

given number. The least significant bit of a given number has an index of 1, and

the most significant bit has an index of 32.

bit.bitand()

Function Performs a bitwise logical AND operation on two numbers.

Usage value = bit.bitand(value1, value2)

value1: First number for the AND operation.

value2: Second number for the AND operation.

value: Returned result of the AND operation.

Remarks This function performs a logical AND operation on two numbers.

 Any fractional parts of value1 and value2 are truncated to make them

integers. The returned value is also an integer.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-18 3700S-901-01 Rev. C / July 2008

bit.bitand()

Also see Logic and bit operations (on page 13-17)

bit.bitor() (on page 13-18)

bit.bitxor() (on page 13-18)

Example AND'ing decimal 10 (binary 1010) with decimal 9 (binary 1001) will return a value of

decimal 8 (binary 1000):

value = bit.bitand(10, 9)

print(value)

Output: 8.000000e+00

bit.bitor()

Function Performs a bitwise logical OR operation on two numbers.

Usage value = bit.bitor(value1, value2)

value1: First number for the OR operation.

value2: Second number for the OR operation.

value: Returned result of the OR operation.

Remarks This function performs a logical OR operation on two numbers.

 Any fractional parts of value1 and value2 are truncated to make them

integers. The returned value is also an integer.

Also see Logic and bit operations (on page 13-17)

bit.bitand() (on page 13-17)

bit.bitxor() (on page 13-18)

Example Performs a bitwise logical OR operation on decimal 10 (binary 1010) with decimal 9

(binary 1001); will return a value of decimal 11 (binary 1011):

value = bit.bitor(10, 9)

print(value)

Output: 1.100000e+01

bit.bitxor()

Function Performs a bitwise logical XOR (Exclusive OR) operation on two numbers.

Usage value = bit.xor(value1, value2)

value1: First number for the XOR operation.

value2: Second number for the XOR operation.

value: Returned result of the XOR operation.

Remarks This function performs a logical Exclusive OR operation on two numbers.

 Any fractional parts of value1 and value2 are truncated to make them

integers. The returned value is also an integer.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-19

bit.bitxor()

Details Logic and bit operations (on page 13-17)

bit.bitor() (on page 13-18)

Example Performs a bitwise logical exclusive OR operation on decimal 10 (binary 1010) with

decimal 9 (binary 1001); will return a value of decimal 3 (binary 0011):

value = bit.bitxor(10, 9)

print(value)

Output: 3.000000e+00

bit.clear()

Function Clears a bit at a given index position.

Usage value = bit.clear(value1, index)

value1: Given number.

index: Index position of the bit to be cleared (1 to 32).

value: Returns the result of the manipulation.

Remarks This function clears a bit at a given index position.

 Any fractional part of value1 is truncated to make it an integer. The returned

value is also an integer.

 The least significant bit of the given number is at index 1. The most significant bit is

at index 32.

Also see Logic and bit operations (on page 13-17)

bit.get() (on page 13-19)

bit.getfield() (on page 13-20)

bit.set() (on page 13-21)

bit.setfield() (on page 13-21)

bit.toggle() (on page 13-23)

Example The binary equivalent of decimal 15 is 1111. If you clear the bit at index position 2, the

returned decimal value would be 13 (binary 1101):

value = bit.clear(15, 2)

print(value)

Output: 1.300000e+01

bit.get()

Function Retrieves the weighted value of a bit at a given index position.

Usage value = bit.get(value1, index)

value1: Given number.

index: Index position of the bit to be retrieved (1 to 32).

value: Returned weighted value of the bit.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-20 3700S-901-01 Rev. C / July 2008

bit.get()

Remarks This function returns the value of the bit in value1 at the given index. This is the

same as returning value1 with all other non-indexed bits set to zero.

 Prior to retrieving the indexed bit, any fractional part of the given number will be

truncated to make it an integer. The least significant bit of the given number has an

index of 1 and the most significant bit has an index of 32.

 If the indexed bit for the number is set to 0, the result will be 0.

 See Logic and bit operations (on page 13-17) for more information.

Also see bit.clear() (on page 13-19)

bit.set() (on page 13-21)

bit.setfield() (on page 13-21)

bit.test() (on page 13-22)

bit.toggle() (on page 13-23)

Example The binary equivalent of decimal 10 is 1010. Getting the bit at index position 4 will

return decimal value 8:

value = bit.get(10, 4)

print(value)

Output: 8.000000e+00

bit.getfield()

Function Returns a field of bits starting at a given index position.

Usage value = bit.getfield(value1, index, width)

value1: Given number.

index: Index position of the first bit; 1 to (33 - width).

width: Field width - number of bits to be included in the field; 1 to 24.

value: Returned value of the bit field.

Remarks A field of bits is a contiguous group of bits. This function retrieves a field of bits

from value1, starting at the given index position. The index position is the least

significant bit of the retrieved field. The number of bits to return is given by width.

 Prior to retrieving the field of bits, any fractional part of the given number will be

truncated to make it an integer.

 The least significant bit of the given number has an index of 1 and the most

significant bit has an index of 32.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-21

bit.getfield()

Also see Logic and bit operations (on page 13-17)

bit.clear() (on page 13-19)

bit.get() (on page 13-19)

bit.set() (on page 13-21)

bit.setfield() (on page 13-21)

bit.test() (on page 13-22)

bit.toggle() (on page 13-23)

Example The binary equivalent of decimal 13 is 1101. The field at index 2 and width 3 consists

of the binary bits 110. The returned value will be decimal 6 (binary 110):

value = bit.getfield(13, 2, 3)

Output: 6.000000e+00

bit.set()

Function Sets a bit at a given index position.

Usage value = bit.set(value1, index)

value1: Given number.

index: Index position of the bit to be set (1 to 32).

value: Returned value of the new number.

Remarks This function returns value, which is value1 with the indexed bit set. The index

must be a value between 1 and 32. The least significant bit of the given number

has an index of 1 and the most significant bit has an index of 32.

 Any fractional part of value1 will be truncated to make it an integer.

Also see Logic and bit operations (on page 13-17)

bit.clear() (on page 13-19)

bit.get() (on page 13-19)

bit.getfield() (on page 13-20)

bit.setfield() (on page 13-21)

bit.test() (on page 13-22)

bit.toggle() (on page 13-23)

Example The binary equivalent of decimal 8 is 1000. If the bit at index 3 is set to 1, the returned

value will be decimal 12 (binary 1100):

value = bit.set(8, 3)

Output: 1.200000e+01

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-22 3700S-901-01 Rev. C / July 2008

bit.setfield()

Function Overwrites a bit field at a given index position.

Usage value = bit.setfield(value1, index, width, fieldvalue)

value1: Given number.

index: Index position of the least significant bit of the field; 1 to (33 - width).

width: Field width number of bits in the field; 1 to 24.

fieldvalue: Value to write to the field.

value: Returned value of the new number.

Remarks This function returns value, which is value1 with a field of bits overwritten,

starting at the given index position. The index specifies the position of the least

significant bit of the given field. The width bits starting at the given index will be set

to the value given by fieldvalue. The least significant bit in value1 has an

index of 1 and the most significant bit has an index of 32.

 Prior to setting the field of bits, any fractional parts of value1 and fieldvalue will be

truncated to make them integers.

 If the fieldvalue is wider than the width, the extra most significant bits of the

fieldvalue will be truncated. For example, assume the width is 4 bits, and the

binary value for fieldwidth is 11110 (5 bits). The most significant bit of

fieldwidth will be truncated, and a binary value of 1110 will be used as the

fieldvalue.

Also see Logic and bit operations (on page 13-17)

bit.clear() (on page 13-19)

bit.getfield() (on page 13-20)

bit.set() (on page 13-21)

bit.test() (on page 13-22)

bit.toggle() (on page 13-23)

Example The binary equivalent of decimal 15 is 1111. After overwriting it with a decimal 5

(binary 101) at index position 2, the returned value will be decimal 11 (binary 1011):

value = bit.setfield(15, 2, 3, 5)

print(value)

Output: 1.100000e+01

bit.test()

Function Returns the Boolean value (true or false) of a bit at a given index position.

Usage value = bit.test(value1, index)

value1: Given number.

index: Index position of the bit to be tested (1 to 32).

value: Returned decimal value of the bit.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-23

bit.test()

Remarks This function returns value, which is the result of the tested bit. The least

significant bit of the given number is at index 1. The most significant bit is at index

32.

 Any fractional part of value1 will be truncated to make it an integer. If the

indexed bit for value1 is set to 0, the returned value will be false. If the indexed bit

for value1 is set to 1, the returned value will be true.

 If the index is bigger than the number of bits in value1, the result will be false.

Also see Logic and bit operations (on page 13-17)

bit.clear() (on page 13-19)

bit.get() (on page 13-19)

bit.getfield() (on page 13-20)

bit.set() (on page 13-21)

bit.setfield() (on page 13-21)

bit.toggle() (on page 13-23)

Example The binary equivalent of decimal 10 is 1010. Testing the bit at index position 4 will

return a Boolean value of true:

value = bit.test(10, 4)

print(value)

Output: true

bit.toggle()

Function Toggles the value of a bit at a given index position.

Usage value = bit.toggle(value1, index)

value1: Given number.

index: Index position of the bit to be toggled (1 to 32).

value: Returned value of the new number.

Remarks This function returns value, which is the result of toggling a bit in value1.

 Any fractional part of value1 is truncated to make it an integer. The returned

decimal value is also an integer. The least significant bit of the given number is

index 1. The most significant bit is index 32.

 The indexed bit for value1 is toggled from 0 to 1, or 1 to 0.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-24 3700S-901-01 Rev. C / July 2008

bit.toggle()

Also see Logic and bit operations (on page 13-17)

bit.clear() (on page 13-19)

bit.get() (on page 13-19)

bit.getfield() (on page 13-20)

bit.set() (on page 13-21)

bit.setfield() (on page 13-21)

bit.test() (on page 13-22)

Example The binary equivalent of decimal 10 is 1010. Toggling the bit at index position 3 will

return a decimal value of 14 (binary 1110).

value = bit.toggle(10, 3)

print(value)

Output: 1.400000e+01

channel functions and attributes

Use the functions and attributes in this group to control and query switching

channels. Unless specifically noted, <ch_list> specifies the channels,

backplane relays, and channel patterns in a comma-delimited format on which

the function is to be performed. The following figure shows this format:

Figure 13-1: ch_list legend

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-25

There are three different notations used to control relays: Backplane relay

notation, MUX (multiplexer) channel notation, and Matrix card notation.

To control analog backplane relays for slots with analog backplane relay

channels, use S9BX, where:

S: Slot number

9: Backplane notation designation (always 9 when referencing a backplane

relay)

B: Bank number

X: Analog backplane relay number

Analog backplane relays (Bank 2 of Slot 1) examples:

Reference Analog backplane relay

1921 analog backplane relay 1

1922 analog backplane relay 2

1923 analog backplane relay 3

1924 analog backplane relay 4

1925 analog backplane relay 5

1926 analog backplane relay 6

To control channels using MUX channel notation, use SCCC, where:

S: Slot number

CCC: Channel number (always use 3 digits)

Multiplexer examples:

Reference Slot Channel

1004 1 004

1020 1 020

2100 2 100

3003 3 003

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-26 3700S-901-01 Rev. C / July 2008

Figure 13-2: Multiplexer card display

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-27

To control channels using matrix card notation, use SRCC, where:

S: Slot number

R: Row number

CC: Column number (always use 2 digits)

Matrix channel examples:

Reference Slot Row Column

1104 1 1 04

1203 1 2 03

2305 2 3 05

3112 3 1 12

6101 6 1 01

Figure 13-3: Matrix card display

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-28 3700S-901-01 Rev. C / July 2008

Using channel.*() ICL commands

Unless otherwise noted, channel.*() Instrument Control Library (ICL)

commands use the channel list and return the value syntax described below.

 The channel list is specified according to the syntax presented in the

channel list legend. Not all ICL commands support the fully described

syntax. Any exclusions are noted in a specific command's documentation.

 There are five different types of channels available on the supported Model

3706 cards. These include switch (or relay), backplane, totalizer, DAC, and

digital I/O. Even though the channels are specified in an identical manner,

not all ICL commands act on all channel types. The descriptions of each ICL

command provide more information.

 When acting on a range of channels is necessary or more convenient, use

the ':' notation. For example, to specify Channels 1 through 20 on Slot 4, use

4001:4020.

print(channel.getlabel("4001:4020"))

 When acting on an entire slot is necessary or more convenient, use the

slotX notation. For example, to specify all channels on Slot 4, use slot4.

print(channel.getlabel("slot4"))

 When acting on an entire instrument is necessary or more convenient, use

the allslots notation. For example, to specify channels 1 through 20 on

Slot 4, use allslots.

print(channel.getlabel("allslots"))

 When a range (including slotX and allslots notation) includes mixed

channel types, the invalid channel types are ignored. If an invalid channel

type is individually specified, then an error is generated.

The following errors can occur because of invalid channel list syntax or

specification.

Error Message Description

invalid specified channel The channel is specified with the correct

syntax, but does not exist on the card.

invalid character in
channel list

The channel list contains an invalid

character or syntax sequence.

invalid slot in channel
list

The slot specified in the channel list is

empty.

invalid channel type in
channel list

The channel is specified with the correct

syntax, but the channel type is not

supported by the specified ICL

command.

no valid channels in
channel list

After processing, no valid channels

remain in the command to act upon.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-29

Error Message Description

invalid label or pattern

name
A string was found in the channel list

that does not specify any known label or

pattern name.

no patterns accepted A pattern was specified for an ICL

command that does not support patterns

as input.

no multiple channels
accepted

Multiple channels were specified for an

ICL command that acts only on a single

channel.

no range specifier accepted A range was specified for an ICL

command that does not support a range

as input.

no slot specifier accepted An entire slot was specified using

slotX (for example, slot1) for an ICL

command that does not support slotX

as input.

no all slots specifier
accepted

All slots were specified using

allslots for an ICL command that

does not support allslots as input.

no labels accepted A label was specified for an ICL

command that does not support labels

as input.

no paired channels accepted A channel was specified for an ICL

command that does not act on paired

channels.

no single channels accepted A single channel was specified for an

ICL command that only supports acting

on groups of channels.

no multiple specifiers
accepted

Multiple descriptions were specified for

an ICL command that does not support

multiple descriptions in a list.

channels all must be of
same type

The provided channel list contains

channels or various channel types, but

the ICL command supports only channel

lists that contain a single, consistent

channel type.

forbidden channel The channel specified is forbidden to be

closed.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-30 3700S-901-01 Rev. C / July 2008

Return value

The return value is a string containing a list of comma-delimited individual return

items. The channel list argument of the ICL command determines the number

and order of these returned items.

When the channel list parameter for this function is 'slotX', the response first

lists the channels starting from lowest to highest. After the channels, backplane

relays are listed starting with the lowest bank first and increasing to the highest.

More specifically, the channels are returned in numerical order.

When the channel list parameter for this function is 'allslots', the response

starts with Slot 1 and increases to Slot 6. Each slot is processed completely

before going to the next. Therefore, all Slot 1 channels and backplane relays are

listed before Slot 2 channels.

When the response is numerical, but in string format, use the tonumber()

function to convert a number string to a variable. For example,

TSP> x = tonumber("34.3")
TSP> print(x)

3.43e+001

When the response is a comma-delimited string, the individual numbers can be

identified by iterating through the list using the comma delimiters. For example,

the Lua code below will start at the beginning of a string and use the comma as

a signal to break the string into small chunks. The tonumber() function is used

on each chunk to isolate and convert the individual number.

s1 = 1
s2 = 1
e = string.len(text)

while s2 ~= e do

s2 = string.find(text, ",", s1)
if not s2 then s2 = e end
print(tonumber(string.sub(text, s1, s2-1)))
s1 = s2 + 1

end

channel.calibration.adjustcount()

Function Gets the number of times that a card has been calibrated.

Usage <mycount> = channel.calibration.adjustcount([ch_list])

mycount: Return value representing the number of times unit has been adjusted.

ch_list: A string representing the slot holding the card to query.

Remarks You can use this command with the instrument/channels either locked or unlocked. If

no channel list is provided, the currently unlocked channels are assumed.

There is only one adjustment count per card. Therefore, with no channel unlocked, the

only acceptable values for channel list are slot1, slot2, and so on. Otherwise, an

error is generated.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-31

channel.calibration.adjustcount()

Example To query for the adjustment count:

CalCount = channel.calibration.adjustcount("1010")

channel.calibration.adjustdate()

Function Sets or gets the adjustment date in UTC format (number of seconds since January 1,

1970) on the unlocked channel.

Usage mydate = channel.calibration.adjustdate([ch_list],
[<date>])

mydate: Return value representing the number of seconds since January 1, 1970.

ch_list: A string representing the slot holding the card to query.

date: Represents the number of seconds since January 1, 1970.

Remarks This command can get the adjust date whether calibration is currently locked or

unlocked. If the channel list is not specified, it uses the currently unlocked card.

This command can only set the adjust date on a previously unlocked card. The date is

not permanently saved until channel.calibration.save() (on page 13-32) is

issued.

There is only one adjustment date per card. Therefore, with no channel unlocked, the

only acceptable values for channel list are slot1, slot2, and so on. Otherwise, an

error is generated.

Also see channel.calibration.save() (on page 13-32)

Example To get the number of seconds since January 1, 1970:

date = channel.calibration.adjustdate()

To set the calibration adjustment date on the currently unlocked slot based on the

current date of the system:

channel.calibration.adjustdate(os.time())

To set the calibration adjustment date on Slot 1 to July 4, 2006:

channel.calibration.adjustdate(os.time(year=2006, month=7,
day = 4))

See Lua documentation for formatting options with os.date() and additional

information on os.time().

NOTE: The following example assumes the set date is July 4, 2006.

To query calibration adjustment date and format the response as mm/dd/yyyy:

TSP> print(os.date("%m/%d/%Y",
channel.calibration.adjustdate()))

07/04/2006

channel.calibration.lock()

Function Locks calibration on the card being calibrated.

Usage channel.calibration.lock()

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-32 3700S-901-01 Rev. C / July 2008

channel.calibration.lock()

Remarks This command locks calibration on the card being calibrated, but does not save

calibration data (which is lost if it is not saved before locking). Once locked, you must

unlock calibration to perform it again.

Only one card can be calibrated at a time. Therefore, the lock function works only on

the currently unlocked card.

An error is generated if this command is issued when calibration is already locked.

Also see channel.calibration.save() (on page 13-32)

Example To lock calibration:

channel.calibration.lock()

channel.calibration.password()

Function Sets the password needed to unlock the calibration of a card.

Usage channel.calibration.password(<password>)

password: A string of characters that protects the command.

Remarks There is only one password per card. Therefore, the password function works only

on the currently unlocked card.

Make note of the password, because there is no command to query for the password

once it has been set on the system.

This command generates an error if calibration is locked or if the password string

length is greater than six characters. Passwords are alphanumeric and case-sensitive.

The default password from the factory is KI3706. The first two characters in the

password are capital K capital I (for Keithley Instruments).

Also see channel.calibration.unlock() (on page 13-34)

Example To set the password to "MyUnlock" after unlocking calibration with the saved

password:

channel.calibration.password = "MyUnlock"

channel.calibration.save()

Function Saves calibration data after performing a calibration.

Usage channel.calibration.save()

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-33

channel.calibration.save()

Remarks Only one card can be calibrated at a time. Therefore, the save function works only on

the currently unlocked card. An error is generated if this command is issued when

calibration is already locked.

The system must receive this command before the

channel.calibration.lock() (on page 13-31) command or the data will be

lost.

This command saves the present values of the calibration constants and calibration

date, and increases the calibration count by 1, regardless of errors in the data. You

should not issue a save command unless the calibration procedure was performed

with no errors. If no calibration date was specified (using

channel.calibration.*date), then the date is auto-generated based on the

system date.

Also see channel.calibration.lock() (on page 13-31)

channel.calibration.adjustdate() (on page 13-31)

channel.calibration.verifydate() (on page 13-35)

Example To save calibration data:

channel.calibration.save()

channel.calibration.step()

Function Sends a calibrate command to the card.

Usage channel.calibration.step(<single channel>, <step>,
[<value>])

single_channel: Channel to be calibrated.

step: Number corresponding to the specified step.

value: Measurement value for the particular step.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-34 3700S-901-01 Rev. C / July 2008

channel.calibration.step()

Remarks The specified channel must be on the unlocked slot. Only DAC and totalizer channels

can be calibrated. It is best to calibrate a single channel sequentially to completion

before changing channels.

The card assumes that the given voltage or current value is exactly what it is sourcing

for the given step. This command generates an error if the step is out of sequence,

does not exist, or the calibration is locked. Also, an error is generated if the calibration

step does not complete successfully, if the value passed is invalid or out of range for

the step, or not needed.

For DAC channels, a calibration sequence includes these steps:

1. Set Voltage, -12 to +12 range, generate Negative Point 1.

2. Send reading.

3. Set Voltage, -12 to +12 range, generate Negative Point 2.

4. Send reading.

5. Set Voltage, -12 to +12 range, generate Positive Point 1.

6. Send reading.

7. Set Voltage, -12 to +12 range, generate Positive Point 2.

8. Send reading.

9. Set Current, 0 mA to +20 mA range, generate Point 1.

10. Send reading.

11. Set Current, 0 mA to +20 mA range, generate Point 2.

12. Send reading.

13. Set Current, +4 mA to +20 mA range, generate Point 1.

14. Send reading.

15. Set Current, +4 mA to +20 mA range, generate Point 2.

16. Send reading.

For totalizer channels, a calibration sequence includes these steps:

1. Calibrate 0 V Totalizer Threshold

2. Calibrate 1.5 V Totalizer Threshold

channel.calibration.unlock()

Function Unlocks calibration.

Usage channel.calibration.unlock(<ch_list>, <password>)

ch_list: A string representing the slot holding the card to query.

password: A string of characters that protects the command.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-35

channel.calibration.unlock()

Remarks There is only one password per card. Therefore, the only acceptable values for

channel list are slot1, slot2, and so on. Otherwise, an error is generated.

An error is generated if the password that is entered does not match the one that was

saved with channel.calibration.password() (on page 13-32).

The password can only contain six case-sensitive, alphanumeric characters.

The default password from the factory is KI3706. The first two characters in the

password are capital K capital I (for Keithley Instruments).

Also see channel.calibration.password() (on page 13-32)

Example To unlock calibration for first DAC using the default password:

channel.calibration.unlock("1010", "KI3706")

channel.calibration.verifydate()

Function Sets or gets the calibration verification date in UTC format (number of seconds since

January 1, 1970).

Usage <mydate> = channel.calibration.verifydate([ch_list],
[<date>])

mydate: Return value representing the number of seconds since January 1, 1970.

ch_list: A string representing the slot holding the card to set or query.

date: Represents the number of seconds since January 1, 1970.

Remarks This command can get the verification date whether calibration is currently locked or

unlocked. If the channel list is not specified, it uses the currently unlocked card.

This command can only set the verification date on a previously unlocked card. The

date is not permanently saved until channel.calibration.save() (on page

13-32) is issued.

There is only one verification date per card. Therefore, with no channel unlocked, the

only acceptable values for channel list are slot1, slot2, and so on. Otherwise, an

error is generated.

Also see channel.calibration.save() (on page 13-32)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-36 3700S-901-01 Rev. C / July 2008

channel.calibration.verifydate()

Example To query the number of seconds since January 1, 1970:

CalDate = channel.calibration.verifydate()

To set the calibration verification date on Slot 1 based on the current date of the

system:

channel.calibration.verifydate(os.time())

To set the calibration verification date on Slot 1 as July 4, 2006:

channel.calibration.verifydate(os.time(year=2006, month=7,
day = 4))

See Lua documentation for formatting options with os.date() and additional

information on os.time().

NOTE: Example assumes the set date is July 4, 2006.

To query calibration verification date and format the response as mm/dd/yyyy:

TSP> print(os.date("%m/%d/%Y",
channel.calibration.verifydate("slot1")))

07/04/2006

channel.clearforbidden()

Function Clears the list of channels specified from being forbidden to close.

Usage channel.clearforbidden(<ch_list>)

ch_list: A string listing the items to no longer be forbidden to close.

Remarks The ch_list parameter indicates the scope of channels affected and may include:

 allslots or slotX (where X equals 1 to 6).

 Channel ranges or individual channels.

 Analog backplane relays.

This function allows all items contained in the channel list parameter to be closed

(removes the "forbidden to close" attribute that can be applied to a channel using

channel.setforbidden() (on page 13-73)).

An error will be generated if:

 The specified channel or analog backplane relay does not exist for card installed in

a slot.

 The specified channel or analog backplane relay is for an empty slot.

 There is a parameter syntax error in the channel specified.

Command processing will stop as soon as an error is detected. If an error is found, the

channels are not cleared from being forbidden to close. With no errors, the channels in

the channel list parameter are cleared from being forbidden to close.

Also see channel.getforbidden() (on page 13-50)

channel.setforbidden() (on page 13-73)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-37

channel.clearforbidden()

Example To clear Channels 2, 4, 6, and 8 of Slot 2 from being forbidden to close:

channel.clearforbidden('2002,2004,2006,2008')

To clear all channels from being forbidden to close:

channel.clearforbidden('allslots')

channel.close()

Function Closes specified items in channel list parameter without opening any channels.

Usage channel.close(<ch_list>)

ch_list: A string listing the channels and channel patterns to close.

Remarks This function closes channels and channel patterns (specified by ch_list). These

closures are appended to the already closed channels (no previously closed

channels are opened by this command).

The ch_list parameter can include analog backplane relay items.

For items specified in ch_list, this function closes the associated channels along

with any associated analog backplane relays. For channel patterns, the analog

backplane relays that get closed are the ones that were specified when the pattern

was created (see channel.pattern.setimage() (on page 13-63) and

channel.pattern.snapshot() (on page 13-66)). However, for channels,

they are the ones specified with the channel.setbackplane() (on page 13-

70) function. Another option for closing analog backplane relays with this command is

to include them in the ch_list parameter.

This command has no effect on how the DMM is configured.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-38 3700S-901-01 Rev. C / July 2008

channel.close()

 Actions associated with this function include:

 Parse the parameter.

 Close the specified items in ch_list.

 Incur the settling time and user delay.

 Command completes.

An error is generated if:

 Syntax error exists in parameter string.

 An empty parameter string is specified, or a parameter string containing only

spaces exists.

 The parameter string contains 'slotX', where X = 1 to 6, or 'allslots'.

 A specified channel or channel pattern is invalid.

 Channel number does not exist for slot specified.

 Slot is empty.

 Channel pattern does not exist.

 A forbidden item is specified.

 Does not support being closed like a digital I/O channel.

 Channel is paired with another bank for a multi-wire application.

 Internal errors related to communication, power consumption, and so on.

Once an error is detected, the command stops processing and no channels are

closed. Channels close only if no syntax errors exist in parameters and all channels

are valid for closing.

For digital I/O, DAC, and totalizer channels, there is no valid behavior. Calling on a

specific channel generates an error. If the digital I/O, DAC, or totalizer channel is in

the range of channels, then the channel is ignored.

Details For delay time, see channel.setdelay() (on page 13-72).

 For analog backplane relays with channels, see channel.setbackplane() (on page

13-70).

 For channels associated with a channel, see channel.getimage() (on page 13-51).

 For channels associated with a channel pattern, see

 channel.pattern.getimage() (on page 13-62).

 For channel states (open/close), see channel.getstate() (on page 13-56).

 For closed channels, see channel.getclose() (on page 13-46).

Also see channel.exclusiveclose() (on page 13-41)

channel.exclusiveslotclose() (on page 13-43)

channel.open() (on page 13-59)

dmm.close() (on page 13-123)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-39

channel.close()

Example To close Channels 1 to 5 on Slot 1, Channel 3 on Slot 3, and mychans:

channel.close('1001:1005, 3003, mychans')

To close Channel 1 on Slot 2 and analog backplane relay 3 in Bank 1 on Slot 2:

channel.close('2001, 2913')

channel.connectrule

Attribute Indicates the connection rule for closing and opening channels in the system.

Usage To read the connect rule:

rule = channel.connectrule

To write the connect rule:

channel.connectrule = rule

Set rule to:

channel.BREAK_BEFORE_MAKE or 1

to have BBM connections for relays in system

channel.MAKE_BEFORE_BREAK or 2

to have MBB connections for relays in system

channel.OFF or 0

to not guarantee a connection rule. The system will close relays as it is able to without

adhering to a rule.

Remarks The connection rule describes the order in which switch channels are opened and

closed when using channel.exclusiveclose() (on page 13-41),

channel.exclusiveslotclose() (on page 13-43), dmm.close() (on page

13-123), and scanning commands like scan.execute() (on page 13-236) and

scan.background() (on page 13-232). These commands may both open and

close switch channels in a single command. The connection rule dictates the algorithm

used by the instrument to order the opening and closing of switches.

When the connection rule is set to channel.BREAK_BEFORE_MAKE, the

instrument ensures that all switch channels open before any switch channels close.

This behavior covers the most common applications and is considered the safest

connection rule because the tested device is completely decoupled from the

instrument. This is the default behavior. When switch channels are both opened and

closed, this command executes not less then the addition of both the open and close

settle times of the indicated switch channels.

When the connection rule is set to channel.MAKE_BEFORE_BREAK, the

instrument ensures that all switch channels close before any switch channels open.

This behavior should be applied with caution because it will connect two test devices

together for the duration of the switch close settle time. When switch channels are

both opened and closed, the command executes not less then the addition of both the

open and close settle times of the indicated switch channels.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-40 3700S-901-01 Rev. C / July 2008

channel.connectrule

Remarks,

continued

With no connection rule (set to channel.OFF), the instrument attempts to

simultaneously open and close switch channels in order to minimize the command

execution time. This results in faster performance at the expense of guaranteed switch

position. During the operation, multiple switch channels may simultaneously be in the

close position. Make sure your device under test can withstand this possible condition.

Cold switching is highly recommended. When switch channels are both opened and

closed, the command executes not less then the greater of either the open or close

settle times of the indicated switch channels.

In general, the settle time of single commands which open and close switch channels

depend on a number of factors, such as card type and channel numbers. However, the

opening and closing of two sequential channels including no others, can be

guaranteed as follows:

channel.BREAK_BEFORE_MAKE open settle time + close settle time

channel.MAKE_BEFORE_BREAK open settle time + close settle time

channel.OFF maximum of open settle time and close settle time

This behavior is also affected by connect.connectsequential (on page 13-

40).

Example Sets the connect rule in the system to chanel.BREAK_BEFORE_MAKE:

channel.connectrule =

channel.BREAK_BEFORE_MAKE

channel.connectsequential

Attribute Indicates if the connection rule is sequential or not.

Usage To read the connect sequential value:

sequential = channel.connectsequential

To write the connect sequential value:

channel.connectsequential = sequential

Set sequential to:

channel.OFF or 0 to disable sequential connecting

channel.ON or 1 to enable sequential connection

Remarks If sequential connecting is enabled, the list of channels or analog backplane relays

close sequentially. This allows for a deterministic time for the command to be

executed. For example, if each channel takes 4ms to close, closing 3 channels takes

12ms. However, if connectsequential was OFF, it may take 4, 8, or 12ms

depending on if the card can close multiple relays at once.

This attribute applies to switch cards like EMR and reed relay cards.

Default setting and channel.reset sequential connection is channel.OFF.

Changing this attributes settings causes an existing scan list to be rebuilt based on the

new setting.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-41

channel.connectsequential

Example Set connect sequential to ON:

channel.connectsequential = channel.ON

channel.exclusiveclose()

Function Closes the specified items so they are exclusively closed.

Usage channel.exclusiveclose(<ch_list>)

ch_list: A string listing the channels and channel patterns to exclusively close.

Remarks This function manipulates the channels and analog backplane relays for switching

aspects so that only those specified by ch_list are closed.

Actions associated with this function include:

 Opens previously closed channels and analog backplane relays if they are no

longer being specified for closure, then closes the desired channels and analog

backplane relays as indicated by the items in ch_list.

 Settling times are incurred before command processing is complete. The function

has no effect on how the DMM is configured and does not use analog backplane

relays associated with DMM configuration.

 You can specify analog backplane relays in the parameter list.

For channel patterns, the analog backplane relays that get manipulated (closed or

opened) are the ones that were specified when the pattern was created (see

channel.pattern.setimage() (on page 13-63) or

channel.pattern.snapshot() (on page 13-66)). However, for channels, they

are the ones specified with the channel.setbackplane() (on page 13-70)

function. Another option for getting analog backplane relays closed by the command is

to include them in the ch_list parameter.

If the channel list parameter is an empty string or a string of spaces, all channels and

analog backplane relays that are closed are opened. Therefore, when channels or

backplane relays are closed, sending channel.exclusiveclose('') is

equivalent to channel.open(channel.getclose('allslots')).

However, sending the equivalent commands when nothing is closed generates an

error because nil (the response of channel.getclose('allslots')) is

being sent to the open command.

For digital I/O, DAC, and totalizer channels, there is no valid behavior. Calling on a

specific channel generates an error. If the digital I/O, DAC, or totalizer channel is in the

range of channels, then the channel is ignored.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-42 3700S-901-01 Rev. C / July 2008

channel.exclusiveclose()

Remarks,

continued

An error is generated if

 Syntax error in parameter string.

 The parameter string contains 'slotX', where X = 1 to 6, or 'allslots'.

 A specified channel or channel pattern is invalid.

 Channel number does not exist for slot specified.

 Slot is empty.

 Channel pattern does not exist.

 A forbidden item is specified.

 Does not support being closed like a digital I/O channel.

 Channel is paired with another bank for a multi-wire application.

Once an error is detected, the command stops processing. Channels open or close

only if no errors are found and remain unchanged with any parsing or syntax error.

This command allows you to bundle the closing of channels with opening because any

currently closed channel or analog backplane relay open if not specified for closure in

the parameter. It guarantees that only the specified items are closed on the slots

specified in the parameters list.

Details For delay time, see channel.setdelay() (on page 13-72).

 For connection options, see channel.connectrule (on page 13-39) and

channel.connectsequential (on page 13-40).

 For forbidden channels, see channel.clearforbidden() (on page 13-36),

channel.getforbidden() (on page 13-50), and

channel.setforbidden() (on page 13-73).

 For analog backplane relays with channels, see channel.setbackplane()

(on page 13-70).

 For channels associated with a channel, see channel.getimage() (on page

13-51).

 For channels associated with a channel pattern, see

channel.pattern.getimage() (on page 13-62).

 For channel states (open/close), see channel.getstate() (on page 13-56).

 For closed channels, see channel.getclose() (on page 13-46).

Also see channel.close() (on page 13-37)

channel.exclusiveslotclose() (on page 13-43)

channel.open() (on page 13-59)

dmm.close() (on page 13-123)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-43

channel.exclusiveclose()

Example To only have Channel 3 on Slot 3 closed along with its associated analog backplane

relay 3 in Bank 1 on Slot 3:

channel.setbackplane('3003','3913')

channel.exclusiveclose('3003')

To eliminate the need for channel.setbackplane:

channel.exclusiveclose('3003, 3913')

channel.exclusiveslotclose()

Function Closes the specified items so they are exclusively closed on slots associated with

items in parameter list.

Usage channel.exclusiveslotclose(<ch_list>)

ch_list: A string listing the channels and channel patterns to exclusively close on a

slot basis.

Remarks This function manipulates the channels and analog backplane relays for switching

aspects so only those specified by ch_list are closed on the slots specified on the

items in the parameter list.

The actions associated with this function include:

 Previously closed channels and analog backplane relays are opened if they are no

longer being specified for closure on the slots specified with the parameter list

items.

 Channels and analog backplane relays specified by the items in ch_list are

closed.

 Settling times are incurred before command processing is complete.

 This function has no effect on how the DMM is configured.

 You can specify analog backplane relays in the parameter list.

For example, if Channel 1 is closed on each of the six slots, specifying a channel list

parameter of '2002, 4004' with this command opens Channel 1 on Slot 2 and 4

only. Then, Channel 2 on Slot 2 and Channel 4 on Slot 4 close. Channel 1 remains

closed on Slots 1, 3, 5, and 6.

For channel patterns, the analog backplane relays that get manipulated (closed or

opened) are the ones that were specified when the pattern was created (see

channel.pattern.setimage() (on page 13-63) or

channel.pattern.snapshot() (on page 13-66)). However, for channels, they

are the ones specified with the channel.setbackplane() (on page 13-70)

function. Another option for getting analog backplane relays closed by the command is

to include them in the ch_list parameter.

For digital I/O, DAC, and totalizer channels, there is no valid behavior. Calling on a

specific channel generates an error. If the digital I/O, DAC, or totalizer channel is in the

range of channels, then the channel is ignored.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-44 3700S-901-01 Rev. C / July 2008

channel.exclusiveslotclose()

Remarks,

continued

An error is generated if:

 Syntax error in parameter string exists.

 An empty parameter string is specified, or parameter string with just spaces or a

channel pattern that emulates an openall scenario exists.

 The parameter string contains 'slotX', where X = 1 to 6, or 'allslots'.

 A specified channel or channel pattern is invalid.

 Channel number does not exist for slot specified.

 Slot is empty.

 Channel pattern does not exist.

 A forbidden item is specified.

 Does not support being closed like a digital I/O channel.

 Channel is paired with another bank for a multi-wire application.

Once an error is detected, the command stops processing. Channels open or close

only if no errors are found and remain unchanged with any parsing or syntax error.

This command allows you to bundle the closing of channels with opening because any

currently closed channel or analog backplane relay opens if not specified for closure in

the parameter. It guarantees that only the specified items are closed on the slots

included in parameters list.

Details For delay time, see channel.setdelay() (on page 13-72).

 For connection options, see channel.connectrule (on page 13-39) and

channel.connectsequential (on page 13-40).

 For forbidden channels, see channel.clearforbidden (on page 13-36),

channel.getforbidden() (on page 13-50), and

channel.setforbidden() (on page 13-73).

 For analog backplane relays with channels, see channel.setbackplane()

(on page 13-70).

 For channels associated with a channel, see channel.getimage() (on page

13-51).

 For channels associated with a channel pattern, see

channel.pattern.getimage() (on page 13-62).

 For channel states (open/close), see channel.getstate() (on page 13-56).

 For closed channels, see channel.getclose() (on page 13-46).

Also see channel.close() (on page 13-37)

channel.exclusiveclose() (on page 13-41)

channel.open() (on page 13-59)

dmm.close() (on page 13-123)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-45

channel.exclusiveslotclose()

Example To have Channel 3 only closed on Slot 3 without affecting any other slot:

channel.exclusiveslotclose('3003')

To only have Channel 5 closed on Slots 1 and 2 without affecting any other slot:

channel.exclusiveslotclose('1005, 2005')

To only open channels on slots of channels in channel pattern MyRoute:

channel.exclusiveslotclose('MyRoute')

channel.getbackplane()

Function Returns a string listing the analog backplane relays controlled when the specified

channels are used with commands in a switching aspect.

Usage abuslist = channel.getbackplane(<ch_list>)

ch_list: A string listing the channels being queried.

abuslist: A string listing analog backplane relays associated with items in ch_list.

Remarks The response indicates the analog backplane relays that are used or affected by:

 channel.close() (on page 13-37), used during processing of command.

 channel.exclusiveclose() (on page 13-41), used during processing of

command.

 channel.open() (on page 13-59), used during processing of command.

 channel.setbackplane() (on page 13-70) replaces the analog backplane

relays with those specified.

 channel.setpole() (on page 13-79) clears the analog backplane relays.

 scan.execute() (on page 13-236) or scan.background() (on page 13-

232), used if channel is configured for switching.

 The analog backplane relays indicated by this response are not used or affected

by dmm.close() (on page 13-123) or dmm.open() (on page 13-154).

 scan.execute() (on page 13-236) or scan.background() (on page 13-

232) are not used if channel is configured for measuring.

 The parameter string can contain 'slotX', where X equals 1 to 6, or

'allslots'.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-46 3700S-901-01 Rev. C / July 2008

channel.getbackplane()

Remarks,

continued

An error is generated if:

 An empty parameter string is specified.

 An empty slot is specified.

 A specified channel does not exist for the card installed in a slot.

 A channel pattern is specified in parameter list.

 A syntax error exists in the parameter list.

 A specified channel does not have analog backplane relays associated with it like

digital I/O.

 An analog backplane relay is specified in parameter list.

When ch_list contains multiple items, the string returned has the analog backplane

relay channels of a single channel separated by a comma. A semicolon is used to

delineate channels.

For channel patterns, the analog backplane relays must be specified when creating

the pattern in the channel list parameter (see channel.pattern.setimage()

(on page 13-63) or channel.pattern.snapshot() (on page 13-66)).

Therefore, to see the channels and analog backplane relays associated with a channel

pattern, use the channel.pattern.getimage() (on page 13-62) function.

Command processing stops as soon as an error is detected and a nil response is

then returned. No partial list is returned.

For digital I/O, DAC, and totalizer channels, nothing is returned.

Also see channel.close() (on page 13-37)

channel.exclusiveclose() (on page 13-41)

channel.open() (on page 13-59)

channel.setbackplane() (on page 13-70)

channel.setpole() (on page 13-79)

Query commands (on page 13-6)

Example To query analog backplane relay(s) specified on Channel 2 of Slot 2 for switching

aspects:

abuslist = channel.getbackplane("2002")

MUX

channel.getclose()

Function Queries for the closed channels indicated by the scope of the channel list parameter.

Usage closed = channel.getclose(<ch_list>)

ch_list: A string representing the scope of closed items being queried. Items can

include channels, backplane relays, and channel patterns.

closed: A string listing the channels that are currently closed.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-47

channel.getclose()

Remarks The returned string lists the closed channels. If more than one channel is closed, they

are comma delimited in the string. If ch_list equals 'slotX' where X is 1 to 6,

the response indicates the channels that are closed on that specific slot, along with

any backplane relays. Likewise, if ch_list equals 'allslots', the response

indicates all channels and analog backplane relays that are closed within the system.

For channels, the format is SCCC (MUX channels) or SRCC (matrix channels). When

the channel list contains a channel pattern, only the channels in that image which are

closed are returned.

If a single slot is being queried and that slot is empty or does not support the close

channel concept, the response is an empty string, meaning no channels are closed on

that slot. This allows you to use 'allslots' to query for all channels closed and

not worry about an error if one of the slots is empty or does not support close

channels.

The ch_list parameter indicates the scope of channels affected and can include:

 allslots or slotX (where X equals 1 to 6).

 Channel ranges, individual channels, or channel patterns.

 Analog backplane relays.

If nothing is closed within the specified scope, a nil response is returned.

An error is generated if:

 There is a syntax error in a parameter string.

 An empty parameter string is specified.

 A non-existent channel or analog backplane relay is specified.

 A non-existent channel pattern is specified.

Channels of type DAC, totalizer, and digital I/O are omitted from the list.

Also see channel.close() (on page 13-37)

channel.exclusiveclose() (on page 13-41)

channel.getstate() (on page 13-56)

channel.open() (on page 13-59)

channel functions and attributes (on page 13-24)

Query commands (on page 13-6)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-48 3700S-901-01 Rev. C / July 2008

channel.getclose()

Example To see the channels and analog backplane relays that are closed on Slot 5:

ClosedSlot5 = channel.getclose('slot5')

To see all channels and analog backplane relays that are closed in a system:

AllClosed = channel.getclose('allslots')

To see all channels closed within a pattern called 'mychans':

ClosedMyChans = channel.getclose('mychans')

To see all channels closed from Channel 1 to 20 on Slot 3:

ClosedRange = channel.getclose('3001:3020')

To see Channels 1, 2, 3, 5 and analog backplane relay 1 and 2 in Bank 1 on Slot 3:

ClosedOnes = channel.getclose('3001, 3002,

3003, 3005, 3911, 3912')

channel.getcount()

Function Returns a string with the close counts for specified items.

Usage counts = channel.getcount(<ch_list>)

ch_list: string listing the items to query. Items can include channels, backplane relays,

and channel patterns.

counts: comma-delimited string listing the channel close counts.

Remarks This function returns a comma-delimited string of numbers representing the close

counts for each channel specified in parameter list. The count values are returned in

the same order as the channels were specified. The close counts for an analog

backplane relay might be included in the ch_list parameter.

The parameter string can contain 'slotX', where X equals 1 to 6, or

'allslots'. It can also contain a pattern which gets translated into the channels

and analog backplane relays. Use the channel pattern get command (see

channel.pattern.getimage() (on page 13-62)) with the pattern name to see

the channels that the close counts pertain to, along with the channel order.

An error is generated if:

 Syntax error in parameter string exists.

 An empty parameter string is specified or a parameter string with just spaces

exists.

 A specified channel is invalid.

 The channel number does not exist for slot specified.

 Slot is empty.

 Does not have a count closure associated with it.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-49

channel.getcount()

Remarks,

continued

If an error is detected, a nil value is returned. No partial list of close counts is

returned.

When the channel list parameter for this function is 'slotX', the response first lists

the channels starting from lowest to highest. After the channels, backplane relays are

listed starting with lowest bank first and increasing to the highest.

When the channel list parameter for this function is 'allslots', the response

starts with Slot 1 and increases to Slot 6. Each slot is processed completely before

going to the next. Therefore, all Slot 1 channels and backplane relays are listed before

Slot 2 channels.

For digital I/O, DAC, and totalizer channels, zero is always returned.

Also see Query commands (on page 13-6)

Example To see the close counts for Channels 1 to 5 on Slot 2:

counts = channel.getcount('2001:2005')

To see the close counts for all channels and analog backplane relays on Slot 3:

counts = channel.getcount('slot3')

To see the close counts for channels and analog backplane relays in channel pattern

called 'mypath':

MyPathList = channel.pattern.getimage('mypath')

print(MyPathList)

print(channel.getcount(MyPathList))

or

print(channel.getcount('mypath'))

channel.getdelay()

Function Queries for the additional delay time for the specified items.

Usage stime = channel.getdelay(<ch_list>)

ch_list: A string listing the channels to query for their delay time.

stime: Returns a comma-delimited string consisting of the delay times (in seconds) for

items specified in ch_list.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-50 3700S-901-01 Rev. C / July 2008

channel.getdelay()

Remarks The parameter string may contain 'slotX', where X equals 1 to 6, or

'allslots'.

An error message will be generated for the following reasons:

 An empty parameter string is specified.

 The specified channel does not exist.

 Slot is empty.

 The specified channel does not exist for card installed in slot.

 Parameter syntax error such as incorrect format for ch_list.

 An analog backplane relay is specified.

 The specified channels does not support a delay time like digital I/O.

 A channel pattern is specified.

Command processing will stop as soon as an error is detected and a nil response will

be generated. No partial list of delay times will be returned.

The delay times will be comma delimited in the same order as the items were specified

in the ch_list parameter. A value of 0 indicates that no additional delay time is

being incurred before a close or open command completes. A command, after

updating the state of channels based on the command, will incur the delay time

indicated in the response for a channel before completing. However, the internal

settling time needs to elapse before the user delay is incurred. Therefore, open/close

command processed – settling time incurred – user delay incurred – command

completes.

Also see channel.setdelay() (on page 13-72)

Query commands (on page 13-6)

Example To query Channels 1 and 3 on Slot 5 for their delay time:

mydelaytime = channel.getdelay('5001, 5003')

To see the delay of the channels comprising a channel pattern call mychans:

PatternChannels = channel.pattern.get('mychans')

MyDelayPatternTimes =

channel.getdelay(PatternChannels)

channel.getforbidden()

Function Returns a string listing the items contained in the channel list parameter that are

forbidden to close.

Usage forbid_list = channel.getforbidden(<ch_list>)

ch_list: string listing the items to check if they are forbidden to close. Items can

include channels, backplane relays, and channel patterns.

forbid_list: Comma-separated string listing channels that are forbidden to close in the

scope of the channel list.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-51

channel.getforbidden()

Remarks The ch_list parameter indicates the scope of channels to check and may include:

 'allslots' or 'slotX' (where X equals 1 to 6).

 Channel ranges or individual channels.

 Analog backplane relays.

 Channel pattern(s).

If there are no channels in the scope of the channel list that are on the forbidden list,

the string returned will be empty or nil. The format of the channels will be SCCC or

SRCC in the response string.

Also see channel.clearforbidden() (on page 13-36)

channel.setforbidden() (on page 13-73)

Example To query for the channels that are "forbidden to close" channels in the system:

MyForbidden = channel.getforbidden('allslots')

To query for channels only on slot3:

MyForbidden = channel.getforbidden('slot3')

To query for channels in specified list:

MyForbidden =
channel.getforbidden('1911:1916,2004,2008,2012')

channel.getimage()

Function Query a channel for items associated with that channel when used with a switching

aspect command.

Usage channels = channel.getimage(<ch_list>)

ch_list: A string representing the channels to query.

channels: A string listing the channels and analog backplane relays associated with

the specified item(s).

Remarks An error is generated if:

 A channel pattern is specified

 The specified channel is invalid.

 Channel does not exist on the specified slot.

 An empty parameter string is specified.

The parameter string can contain 'slotX', where X equals 1 to 6, or

'allslots'.

The returned string lists the channels in the SCCC or SRCC format. A request for

multiple channels is delimited by a semicolon. However, commas delineate the

specific channels and analog backplane relays for an individual channel in the string.

If an error is detected or the slot is empty, the response is nil.

For digital I/O, DAC, and totalizer channels, the channel number itself is returned with

no backplanes, pairings, and so on.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-52 3700S-901-01 Rev. C / July 2008

channel.getimage()

Details To just query for the analog backplane relays associated with a channel, use

channel.getbackplane() (on page 13-45).

Also see channel.pattern.getimage() (on page 13-62)

Query commands (on page 13-6)

channel functions and attributes (on page 13-24)

Example Assume Channel 3 on Slot 2 is configured for a 4-wire application and Channel 5 on

Slot 2 is configured for a 2-wire application on a 50-channel card.

To query Channel 5 on Slot 2:

channels = channel.getimage('2005')

print(channels) 2005

To query Channel 3 on Slot 2:

channels = channel.getimage('2003')

print(channels) 2003(2028)

To query for Channels 2003 and 2005 in a single call:

channels = channel.getimage('2003, 2005')

print(channels) 2003(2028);2005

To query Channel 2028:

channels = channels.getimage('2028')

print(channels) nil

-- (error – 2028 is paired for 4-wire operation)

channel.getlabel()

Function Queries for the label associated with one or more channels.

Usage label = channel.getlabel(<ch_list>)

ch_list: A string listing the channels to query for the label associated with them.

label: String listing the comma-delimited labels for items in ch_list.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-53

channel.getlabel()

Remarks The parameter ch_list can contain more than one channel. If it does, a comma is

used to delineate the labels for the channels. The return string lists the labels in the

same order that the channels were specified.

The parameter string can contain 'slotX', where X equals 1 to 6, or

'allslots'. It can also contain a label. However, if the label exists, it is in the

returned response and not the numerical channel number. For example, if Channel

1001 has a label of "start", then sending:

print(channel.getlabel('start'))

prints 'start' and not the numeric of '1001'.

An error is generated if:

 An empty parameter string is specified.

 A specified channel does not exist.

 Slot is empty.

 Channel not on card.

 A channel pattern is specified.

 The channel does not support a label setting.

 An analog backplane relay is specified.

Command processing stops as soon as an error is detected and a nil response is

then generated. No partial list of labels is returned.

Labels are also supported for digital I/O, DAC, and totalizer channels.

Also see channel.setlabel() (on page 13-74)

Query commands (on page 13-6)

Example To query for the label of Channel 1 on Slot 1:

MyLabel = channel.getlabel("1001")

channel.getmatch()

Function Gets the match value.

Usage <match_value> = channel.getmatch(<ch_list>)

match_value: Return string listing the comma-delimited states for channels in

ch_list.

ch_list: String specifying digital I/O or totalizer channels to query, using normal

channel list syntax.

Remarks If a width greater than 1 was specified with the match value, then the value returned

contains the additional channel width specified by the width. For example, the value of

65535 with a width of 2 returns 65535. If the width is 1, then 255 is returned.

DAC, backplane, and switch channels are not supported. If included in a range, they

are ignored; otherwise, an error is generated.

Also see channel.setmatch() (on page 13-76)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-54 3700S-901-01 Rev. C / July 2008

channel.getmatch()

Example Query the match value set to digital I/O Channel 1, Slot 1:

print(channel.getmatch("1001"))

channel.getmatchtype()

Function Gets the match type.

Usage <match_type> = channel.getmatchtype(<ch_list>)

match_type: Return string listing the comma-delimited states for channels in

ch_list.

ch_list: String specifying digital I/O or totalizer channels to query, using normal

channel list syntax.

Remarks DAC, backplane, and switch channels are not supported. If included in a range, they

are ignored; otherwise, an error is generated.

Also see channel.setmatchtype() (on page 13-76)

Example Query the match type for digital I/O Channel 1, Slot 1:

print(channel.getmatchtype("1001"))

channel.getmode()

Function Gets the current mode attribute for a channel.

Usage <mode> = channel.getmode(<ch_list>)

mode: Return string of a comma-delimited list of modes.

ch_list: String specifying digital I/O, DAC, or totalizer channels to query, using normal

channel list syntax.

Remarks Switch and backplane channels do not have modes. If included in a range, they are

ignored; otherwise, an error is generated.

Also see channel.setmode() (on page 13-77)

Example Query the configuration of the first totalizer channel (Channel 6) in Slot 1:

print(channel.getmode("1006"))

channel.getoutputenable()

Function Gets the current output enable attribute for a channel.

Usage <relay_state> = channel.getoutputenable(<ch_list>)

state: Return string of a comma-delimited list of relay states.

ch_list: String specifying DAC channels to query, using normal channel list syntax.

Remarks Switch and backplane channels do not have modes. If included in a range, they are

ignored; otherwise, an error is generated.

Also see channel.setoutputenable() (on page 13-78)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-55

channel.getoutputenable()

Example Query the state of the first DAC channel on a card in Slot 1:

print(channel.getoutputenable("1010"))

channel.getpole()

Function Queries the pole settings for the specified channels.

Usage poles = channel.getpole(<ch_list>)

ch_list: A string listing the channels to query for their pole setting.

poles: Returns a string consisting of the poles, comma separated, for ch_list.

Remarks The parameter string can contain 'slotX', where X equals 1 to 6, or

'allslots'.

An error message is generated if:

 An empty parameter string is specified.

 The specified channel does not exist for card installed in slot.

 Parameter syntax error such as incorrect format for ch_list.

 A channel pattern was specified.

 An analog backplane relay was specified.

 Channel does not support pole setting like a digital I/O.

Command processing stops as soon as an error is detected. No partial list is returned.

The response is the numerical value representing the pole selection and not the text.

For example, 4-pole selection is 4 and not channel.POLES_FOUR.

For channels, manipulate the analog backplane relay channels for the desired pole

setting (see channel.setbackplane() (on page 13-70)). Recall channel

patterns do not have a pole setting associated with them and have their analog

backplane relay channels specified when created (see

channel.pattern.getimage() (on page 13-62) and

channel.pattern.snapshot() (on page 13-66)).

When the channel list parameter for this function is 'slotX', the response first lists

the channels starting from lowest to highest.

When the channel list parameter for this function is 'allslots', the response

starts with Slot 1 and increases to Slot 6. Each slot is processed completely before

going to the next. Keeping this in mind, all Slot 1 channels are listed before Slot 2

channels.

If an error is detected or the slot is empty, the response is nil.

Digital I/O, DAC, backplane, and totalizer channels are not supported.

Also see channel.setpole() (on page 13-79)

Query commands (on page 13-6)

Example To query Channels 1 and 3 on Slot 5 for pole setting:

mypoles = channel.getpole('5001, 5003')

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-56 3700S-901-01 Rev. C / July 2008

channel.getpowerstate()

Function Gets the current power state attribute for a channel.

Usage <state(s)> = channel.getpowerstate (<ch_list>)

state: Return string of a comma-delimited list of power states.

ch_list: String specifying the channels to query, using normal channel list syntax.

Remarks See card-specific documentation for important potential implications (warmup times,

effective coverage, use cases, and so on) when disabling power to a channel.

Not all channels can be disabled. If included in a range, they are ignored; otherwise,

an error is generated.

Also see channel.setpowerstate() (on page 13-80)

Example To get the current power state attribute for a channel:

print(channel.getpowerstate ("1006"))

channel.getstate()

Function Queries the state indicators of a channel.

Usage <state> = channel.getstate(<ch_list>, [<indicator_mask>])

state: Return string listing the comma-delimited states for channels in ch_list.

ch_list: String specifying the channels to query, using normal channel list syntax.

indicator_mask: Value to specify only certain indicators. If omitted, all indicators are

returned.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-57

channel.getstate()

Remarks Use this command to query for the state of channels in the system. Each bit in the

state represents a different indicator. Therefore, multiple indicators can be present

(there values are OR‟ed bitwise). Any state or state latch commands behave in this

manner.

Different channel types support different state information (indicators). The optional

state indicator mask can be used to only return certain indicators. If there is no

indicator mask, then all indicators are returned.

The following status indicators are defined:

 channel.IND_CLOSED

 channel.IND_OVERLOAD

 channel.IND_MATCH

 channel.IND_OVERFLOW

Indicators can be latched or unlatched depending on other system settings. Latched

indicators indicate that the condition has occurred since the last reset (or power cycle).

Unlatched indicators indicate that the condition has occurred when the

channel.getstate() command was issued. The Overflow and Overload indicators

default to latched.

For switch channels, the only state information is an indicator of relay state

(channel.IND_CLOSED).

For digital I/O channels, the state information includes an indicator for the state of auto

protection and whether the match value has been matched

(channel.IND_OVERLOAD and channel.IND_MATCH).

For totalizer channels, the state information includes an indicator for overflow and

whether the match value has been matched (channel.IND_OVERFLOW and

channel.IND_MATCH).

For DAC channels, the state information includes an indicator for the state of auto

protection (channel.IND_OVERLOAD).

For more specific information on the overload and overflow indicators, refer to the

documentation for the specific card on which the specified channel resides.

Also see channel.getclose() (on page 13-46)

channel.setmatch() (on page 13-76)

channel.setstatelatch() (on page 13-81)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-58 3700S-901-01 Rev. C / July 2008

channel.getstate()

Example To query the state of the first 20 channels on Slot 4:

MyState = channel.getstate('4001:4020')

To see the state of channels and analog backplane relays in channel pattern called

'mypath':

MyPathList = channel.pattern.getimage('mypath')

print(MyPathList)

print(channel.getstate(MyPathList))

or

MyPathState = channel.getstate('mypath')

Although the channel.getstate() command returns a string representing a

number, this can be easily changed to a number and then compared to one of

the provide Lua constants. For example, use the following command to check

for an overload on a DAC channel:

TSP> if bit.bitand(channel.IND_OVERLOAD,
tonumber(channel.getstate("4009"))) == 1 then

print("OVERLOAD") end

In the previous example, channel.getstate() returns a string that is

converted to a number using the Lua tonumber() command.

channel.IND_OVERLOAD equates to the number 2. Because the state is a bit-

oriented value, the state must be ANDed to the overload constant to isolate it

from other indicators.

The tonumber() command only works with a single channel. When multiple

channels are returned (for example, channel.getstate("slot4")), this string

must be parsed by the comma delimiter to find each value.

channel.getstatelatch()

Function Gets the mask representing the states which would be latched if they occurred.

Usage channel.getstatelatch(<ch_list>)

ch_list: String specifying the channels to query, using normal channel list syntax.

Also see channel.setstatelatch() (on page 13-81)

Example To query the state event latch on digital I/O Channel 1:

channel.getstatelatch("1001")

channel.gettype()

Function Returns the type associated with a channel.

Usage <type> = channel.gettype(<ch_list>)

type: Return string listing the comma-delimited states for channels in ch_list.

ch_list: String specifying the channels to query, using normal channel list syntax.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-59

channel.gettype()

Remarks The channel type is defined by the physical hardware of the card where the channel

resides. The following are valid channel types:

 channel.TYPE_SWITCH

 channel.TYPE_BACKPLANE

 channel.TYPE_DAC

 channel.TYPE_DIGITAL

 channel.TYPE_TOTALIZER

Consult the card-specific documentation for more information on the channel types

available for a given card.

Example Query the channel type of Channel 1 in Slot 1:

print(channel.gettype("1001"))

channel.open()

Function Opens specified items in channel list parameter.

Usage channel.open(<ch_list>)

ch_list: string listing the items to open. Items can include channels, backplane relays,

and channel patterns.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-60 3700S-901-01 Rev. C / July 2008

channel.open()

Remarks This function opens the specified channels for switching aspects. The items specified

in ch_list can include analog backplane relays. For the items specified to open, the

channels associated with them open along with the associated analog backplane

relays for each. For channel patterns, the analog backplane relays that get opened are

the ones that were specified when the pattern was created (see

channel.pattern.setimage() (on page 13-63) and

channel.pattern.snapshot() (on page 13-66)). However, for channels, they

are the ones specified with the channel.setbackplane() (on page 13-70)

function. Another option for getting analog backplane relays to be opened by this

command is to include them in the ch_list parameter.

This command has no effect on how the DMM is configured.

To open all channels on a specific slot, use 'slotX', where X = 1 to 6 in the

parameter string. To open all channels on all slots, use 'allslots' in the

parameter string. Using 'allslots' has no effect on empty slots or slots that do

not support the open command. The 'allslots' only applies to slots with

channels that support being opened and ignores the ones that do not. This allows you

to use 'allslots' to open all channels and not worry about an error if one of the

slots is empty or does not support open channels.

The settling time and user delay associated with a channel needs to elapse before the

command completes (see channel.getdelay() (on page 13-49)).

The parameter string can contain 'slotX', where X equals 1 to 6, or

'allslots'.

An error is generated if:

 Syntax error in parameter string.

 An empty parameter string is specified.

 A specified channel or channel pattern is invalid

 Channel number does not exist for slot specified.

 Slot is empty.

 Channel pattern does not exist.

 Does not support being opened like a digital I/O channel.

 Channel is paired with another bank for a multi-wire application.

 The slotX specified does not support open like a digital I/O card.

Once a parsing error is detected, the command stops processing and no channels are

opened. Channels open only if no syntax errors exist in parameter and all channels

are valid for opening.

For digital I/O, DAC, and totalizer channels, there is no valid behavior. Calling on a

specific channel generates an error. If the digital I/O, DAC, or totalizer channel is in the

range of channels, then the channel is ignored.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-61

channel.open()

Details For delay time, see channel.setdelay() (on page 13-72)

For forbidden channels, see channel.setforbidden() (on page 13-73)

For analog backplane relays with channels, see channel.setbackplane() (on page 13-

70)

For channels associated with a channel, see channel.getimage() (on page 13-51)

For channels associated with a channel pattern, see channel.pattern.getimage() (on

page 13-62)

For channel states (open/close), see channel.getstate() (on page 13-56)

For closed channels, see channel.getclose() (on page 13-46)

Also see channel.exclusiveclose() (on page 13-41)

dmm.close() (on page 13-123)

dmm.open() (on page 13-154)

channel.exclusiveslotclose() (on page 13-43)

channel.close() (on page 13-37)

Example To open Channels 1 to 5 on Slot 1, Channel 3 on Slot 3, and mychans:

channel.open('1001:1005, 3003, mychans')

To open all channels on Slot 3 and 5:

channel.open('slot3, slot5')

To open all channels on all slots:

channel.open('allslots')

channel.pattern.catalog()

Function Creates an iterator for the user created channel patterns.

Usage for name in channel.pattern.catalog() do

…

end

Remarks Accessing the catalog for user channel patterns allows the user to print or delete all

patterns in volatile memory. The entries will be enumerated in no particular order. This

will only list user created channel patterns. It does not list channels which are created

at power up.

Also see channel.pattern.setimage() (on page 13-63)

channel.pattern.delete() (on page 13-62)

channel.pattern.getimage() (on page 13-62)

channel.pattern.snapshot() (on page 13-66)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-62 3700S-901-01 Rev. C / July 2008

channel.pattern.catalog()

Example To delete all user created channel patterns:

for name in channel.pattern.catalog() do

channel.pattern.delete(name)

end

To print all user created channel patterns:

for name in channel.pattern.catalog() do

print(name)

end

To print the names and items associated with all user created channel patterns:

for name in channel.pattern.catalog() do

print(name .. " = " .. channel.pattern.getimage(name))

end

channel.pattern.delete()

Function Deletes a channel pattern.

Usage channel.pattern.delete(name)

name: A string representing the name of the channel pattern to delete.

Remarks An error will be generated if the name does not exist.

Also see channel.pattern.catalog() (on page 13-61)

channel.pattern.getimage() (on page 13-62)

channel.pattern.setimage() (on page 13-63)

channel.pattern.snapshot() (on page 13-66)

Example To delete a channel pattern called mychans:

channel.pattern.delete("mychans")

channel.pattern.getimage()

Function Query a channel pattern for associated channels and analog backplane relays.

Usage channels = channel.pattern.getimage(name)

name: A string representing the name of the channel pattern to query.

channels: A string listing channels & analog backplane relays represented by name.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-63

channel.pattern.getimage()

Remarks A nil response will be generated if:

 The channel pattern does not exist.

 A channel is specified.

 An analog backplane relay is specified.

The returned string lists the channels in the SCCC or SRCC format (even if a channel

pattern was used to create it). Requests for multiple channel patterns will be delimited

by a semicolon, however, commas will delineate the specific channels for a single

channel pattern in the string.

Also see channel.pattern.catalog() (on page 13-61)

channel.pattern.delete() (on page 13-62)

channel.pattern.snapshot() (on page 13-66)

channel functions and attributes (on page 13-24)

Example Assume mychans is comprised of Channels 1 through 5 on Slot 4 and myroute is

comprised of Channels 1, 3, and 5 on Slot 2:

To query the channel pattern called mychans:

channels = channel.pattern.getimage('mychans')

print(channels) 4001,4002,4003,4004,4005

To query the channel pattern called myroute:

channels = channel.pattern.getimage('myroute')

print(channels) 2001,2003,2005

To query channel patterns called myroute and mychans in a single call:

channels = channel.pattern.getimage('myroute,

mychans')

print(channels) 2001,2003,2005;4001,

4002,4003,4004,4005

channel.pattern.setimage()

Function Creates a channel pattern and associates it with the specified name.

Usage channel.pattern.setimage(<ch_list>, name)

ch_list: A string listing the channels, channel patterns, or analog backplane relays to

use when creating the new channel pattern.

Name: A string representing the name to associate with the new channel pattern.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-64 3700S-901-01 Rev. C / July 2008

channel.pattern.setimage()

Remarks If the name specified is being used for an existing channel pattern, that pattern is

overwritten with the new pattern channel image if no errors occur. The previous image

associated with the name is lost. The DMM configuration associated with the pattern

remains unchanged in this scenario.

An error is generated if

 The name parameter already exists as a label.

 An invalid channel is specified in the channel list parameter.

 Slot is empty.

 Channel does not exist on slot specified.

 Channel is forbidden to close.

 A non-existent channel pattern is specified in channel list parameter.

 A syntax error exists in either parameter.

 Insufficient memory exists to create the channel pattern.

 The parameter string contains 'slotX', where X equals 1 to 6, or 'allslots'.

 The name parameter contains a space character.

 Pattern name exceeds 20 characters.

The channel pattern is not created if an error is detected. You can create a channel

pattern with an empty ch_list parameter (this would be equivalent to an open

all).

A channel pattern must include the analog backplane relays as well as desired

channels. Once a channel pattern is created, the only way to add a channel or analog

backplane relay to an existing pattern is to delete the old and recreate with the new

desired items. Or, include the additional channel(s) or analog backplane relay(s) in the

channel parameter list with the channel pattern when using.

Issuing this function on an existing pattern invalidates the existing scan list (the pattern

might or might not be used in the current scan list). Creating a new pattern is okay.

Including any channels of type digital I/O, DAC, and totalizer generates an error.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-65

channel.pattern.setimage()

Details Channel patterns are not persistent through a power cycle and are stored when a

setup.save() (on page 13-254) command is executed. Use setup.recall()

(on page 13-253) to restore them.

The following restrictions exist when naming a channel pattern:

 The name must contain only letters, numbers, or underscore.

 The name must start with a letter.

 The name is case sensitive.

Examples of valid names:

mychans, MyChans, Mychans – three different channel patterns, not one

(names are case sensitive)

Path1

Path20

my_chans

path_3

Examples of invalid names:

1path – invalid due to starting with a number

my chans – invalid due to space

My,chans – invalid due to comma

Path1:10 – invalid due to colon

Also see channel.pattern.catalog() (on page 13-61)

channel.pattern.delete() (on page 13-62)

channel.pattern.getimage() (on page 13-62)

channel.pattern.snapshot() (on page 13-66)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-66 3700S-901-01 Rev. C / July 2008

channel.pattern.setimage()

Example To create a channel pattern called mychans using Channels 1 to 10 on Slot 3:

channel.pattern.setimage('3001:3010', 'mychans')

To add analog backplane relay 1 of Bank 1 on Slot 3 to mychans:

OldList = channel.pattern.getimage('mychans')

NewList = OldList .. ',3911'

channel.pattern.delete('mychans')

channel.pattern.setimage(NewList, 'mychans')

To include 3911 without deleting and creating again:

–- closes mychans and 3911

channel.close('mychans, 3911')

The above works for channels as well. Just replace the ', 3911' with the

appropriate channel(s). For example, to add Channels 11 and 12 of Slot 3 to

'mychans'.

OldList = channel.pattern.getimage('mychans')

NewList = OldList .. ',3011, 3012'

channel.pattern.delete('mychans')

channel.pattern.setimage(NewList, 'mychans')

To include 3011 and 3012 without deleting and creating again:

channel.close("mychans, 3011,3012")

To rename MyList to MyPattern:

MyListItems = channel.pattern.getimage('MyList')

channel.pattern.setimage(MyListItems, 'MyPattern')

channel.pattern.delete('MyList')

 or

channel.pattern.setimage(channel.pattern.getimage('MyList'
), 'MyPattern')

channel.pattern.delete('MyList')

channel.pattern.snapshot()

Function Creates a channel pattern that uses the present state of each channel and analog

backplane relay.

Usage channel.pattern.snapshot(name)

name: A string representing the name to associate with the present state of channels.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-67

channel.pattern.snapshot()

Remarks This command stores the image of closed and opened channels, along with analog

backplane relays in the system, and associates them with the name parameter in

persistent memory.

If the name specified is being used for an existing channel pattern, that pattern is

overwritten with the new pattern channel image if no errors occur. The previous image

associated with the name is lost. The DMM configuration associated with the pattern

remains unchanged in this scenario.

An error is generated if:

 The name parameter already exists as a label.

 Insufficient memory exists to save the channel pattern and name in persistent

memory.

 Pattern name exceeds 20 characters or contains a space.

Issuing this function on an existing pattern invalidates the existing scan list (the pattern

might or might not be used in the current scan list). Creating a new pattern is okay.

Channels of type DAC, totalizer, and digital I/O are ignored.

Details Not persistent through a power cycle. Channel patterns are stored when a

setup.save() (on page 13-254) command is executed. Use setup.recall()

(on page 13-253) to restore them.

NOTE See channel.pattern.setimage() (on page 13-63) for valid name

examples.

Also see channel.pattern.catalog() (on page 13-61)

channel.pattern.delete() (on page 13-62)

channel.pattern.setimage() (on page 13-63)

Example To take a snapshot of the current state and name it mysnapshot:

channel.pattern.snapshot("mysnapshot")

channel.read()

Function Reads a value from a channel.

Usage <value> = channel.read(<ch_list>, [<width>], [<rbuffer>])

value: Return string listing the comma-delimited states for channels in ch_list.

ch_list: String specifying channels to read using normal channel list syntax.

width: Optional value that specifies reading over multiple consecutive channels.

rbuffer: Optional reading buffer to store values read from the channel list.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-68 3700S-901-01 Rev. C / July 2008

channel.read()

Remarks The width parameter is optional and defaults to 1. The reading buffer parameter is

optional. A width does not have to be specified in order to specify a reading buffer.

However, if both are specified, the width must be first in the argument list.

For digital I/O channels, only a width of 1, 2, 3, or 4 is supported. Any information (bits)

greater than the specified width is returned as zero. For example, if Channels 1 and 2

are both 255, a reading with a width of 1 returns 255 and a width of 2 returns 65535.

Values read from outputs reflect their current setting. If the read channel is in the

overload state, the read value is indeterminate.

Totalizer and DAC channels do not support a width other than 1 and result in an error

if specified.

Switch and backplane channels are not supported.

For widths greater than 1, the specified channel occupies the least significant byte. For

example, reading the value of 0xff00ff00 from Channel 1 with a width of 4 indicates

Channel 1 is 0x00, Channel 2 is 0xff, Channel 3 is 0x00, and Channel 4 is 0xff.

Reading the value of 0x00000000 from Channel 1 with a width of 1 indicates Channel

1 is 0x00 and other channels are not included.

For a channel with a power state of OFF, the returned value is DISABLED. The value

into the reading buffer is indeterminate.

Example Reading the count from the first totalizer channel (Channel 6) in Slot 1:

count = channel.read("1006")

channel.reset()

Function Resets the channel aspects of the system to factory default settings.

Usage channel.reset(<ch_list>)

ch_list: A string list items to reset. Items can include channels, backplane relays, and

channel patterns.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-69

channel.reset()

Remarks This command resets only the channel aspects for the items specified to factory

default settings. For the items specified in the parameter list (ch_list) the following

actions occur:

 For closed channels or analog backplane relays, they open.

 For channels, the poles reset to 2 and paired channels are changed to match.

 Additional user delay is set to 0.

 Labels go back to default of SCCC or SRCC.

 Analog backplane relays specified by channel.setbackplane function are

cleared.

 If channel is forbidden to close, it is cleared from being forbidden to close.

 Channels in a channel pattern list are deleted. This means that specifying a

channel pattern to reset, resets the items within the pattern and delete that pattern.

 Channels have their DMM configurations set to 'nofunction'

 The parameter string can contain 'allslots', 'slotX' where X = 1 to 6,

channel pattern(s), and channel(s), including a range of channels.

 The rest of the settings are unaffected. To reset the entire system to factory default

settings, use the reset() (on page 13-230) command.

 An error message is generated if the parameter string is empty or just spaces.

Using this function to reset a channel or backplane relay involved in scanning

invalidates the existing scan list. The list has to be recreated before scanning again.

Doing a selective channel reset on some channels can take some time to process,

depending on how many patterns exist and how many contain channels being reset.

Resetting a channel removes any channel patterns with that channel in its image.

Examples of select channel resets:

channel.reset('3003')

channel.reset('3001:3015')

channel.reset('slot3')

However, doing a channel reset on for all slots is fast because this needs to remove all

patterns since all channels are being reset. For example:

channel.reset('allslots')

or

channel.reset('slot1, slot2, slot3, slot4, slot5, slot6')

For all channels, any trigger settings are removed.

For digital I/O channels, the mode is set to input. The match is set to zero (0) and

auto-protect is turned on.

For totalizer channels, mode is set to falling edge and TTL level.

For DAC channels, output is turned off and auto-protect is turned on. Mode is set to -

12 to + 12 voltage.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-70 3700S-901-01 Rev. C / July 2008

channel.reset()

Also see dmm.reset() (on page 13-161)

reset() (on page 13-230)

scan.reset() (on page 13-242)

channel functions and attributes (on page 13-24)

Example To perform a reset on all channels in the system:

channel.reset('allslots')

To reset channels on Slot 1 only:

channel.reset('slot1')

To reset only Channels 1 to 5 on Slot 3:

channel.reset('3001:3005')

To reset only Channel 5 and analog backplane relay 5 in Bank 1 on Slot 5:

channel.reset('5005, 5915')

channel.resetstatelatch()

Function Resets the channel state.

Usage channel.resetstatelatch(<ch_list>, <state>)

ch_list: String specifying the channels to query, using normal channel list syntax.

state: String listing the comma-delimited states for channels in ch_list.

Remarks If the state is reset and the condition still exists, the indicator is reset, but a second

event is generated through the channel trigger module.

Multiple states can be set by ORing the values together.

Use channel.ALL to reset all indicators.

Indicators can be latched or unlatched, depending on other system settings. Latched

indicators indicate that the condition occurred since the last reset (or power cycle).

Unlatched indicators indicate that the condition has occurred when the

channel.getstate() (on page 13-56) command was issued. The Overflow and

Overload indicators default to latched.

Also see channel.getstate() (on page 13-56)

channel.setstatelatch() (on page 13-81)

channel.getstatelatch() (on page 13-58)

Example To clear out a match indicator that was latched on digital I/O Channel 1:

channel.resetstatelatch("1001", channel.IND_MATCH)

channel.setbackplane()

Function Specify list of analog backplane relays (abuslist) to use with channels specified in

ch_list when they are used in a switching aspect.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-71

channel.setbackplane()

Usage channel.setbackplane(<ch_list>, abuslist)

ch_list: A string listing the channels to change.

abuslist: A string listing analog backplane relays to set for channels in ch_list.

Remarks The abuslist parameter must specify the entire list of analog backplane relays

needed.

The analog backplane relays specified in the abuslist parameter are used or

affected by:

 channel.close() (on page 13-37), used during processing of command

 channel.exclusiveclose() (on page 13-41), used during processing of

command

 channel.open() (on page 13-59), used during processing of command

 channel.setpole() (on page 13-79) clears the analog backplane relays

 scan.execute() (on page 13-236) or scan.background() (on page 13-

232), if channel or channel pattern are configured for switching

The analog backplane relays specified in the abuslist parameter are not used or

affected by:

 dmm.close() (on page 13-123)

 dmm.open() (on page 13-154)

 scan.execute() (on page 13-236) or scan.background() (on page 13-

232) if channel or channel pattern are configured for measuring

The parameter string (ch_list) can contain 'slotX', where X equals 1 to 6, or

'allslots'.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-72 3700S-901-01 Rev. C / July 2008

channel.setbackplane()

Remarks,

continued

An error is generated if:

 An empty slot is specified.

 A specified channel or analog backplane relay does not exist for the card installed

in a slot.

 A syntax error exists in either of the parameters.

 An empty parameter string is received for ch_list. An empty string is okay for

abuslist. A parameter string of just spaces is treated like an empty string.

 A specified channel does not have analog backplane relays associated with it like

digital I/O.

 An analog backplane relay is specified in ch_list.

 A channel is specified in abuslist.

 A channel pattern is specified.

For channel patterns, the analog backplane relays are specified when the pattern is

created (see channel.pattern.setimage() (on page 13-63)).

Command processing stops as soon as a parsing or syntax error is detected and no

changes are made. Only with no errors are the analog backplane relays updated for

the specified channels. When updated, the previous list is replaced with the new

specified analog backplane relays in the abuslist parameter.

For channels, as their poles setting changes, the list of analog backplane relays gets

cleared. Therefore, after changing the poles settings, send this command with the

appropriate analog backplane relay channels. (Channel patterns do not have a poles

setting associated with them.) When clearing the backplane channels, this can involve

clearing the paired channel, whether pairing or un-pairing channels. For example, on a

40–channel card, Channels 1 and 21 are paired when the poles for Channel 1 is set to

4. Therefore, setting the poles setting on Channel 1 to 4 clears the backplane

channels for Channels 1 and 21. Likewise, they are both cleared when the poles

setting is set back to 2 on Channel 1.

Calling this function on an existing channel involved in scanning invalidates the

existing scan list.

For digital I/O, DAC, and totalizer channels, there is no valid behavior. Calling on a

specific channel generates an error. If the digital I/O, DAC, or totalizer channel is in the

range of channels, then the channel is ignored.

Also see channel.close() (on page 13-37)

channel.exclusiveclose() (on page 13-41)

channel.getbackplane() (on page 13-45)

channel.open() (on page 13-59)

channel.setpole() (on page 13-79)

Example To use analog backplane relay 3 and 4 of Slot 2 for switching aspects on Channel 2 of

Slot 2:

channel.setbackplane('2002', '2913, 2914')

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-73

channel.setdelay()

Function Sets additional delay time for channels specified in ch_list.

Usage channel.setdelay(<ch_list>, value)

ch_list: A string listing channels to modify their delay time.

Value: Desired delay time for items in ch_list. Minimum is 0 seconds.

Remarks An error message will be generated for the following reasons:

 An empty parameter string is specified.

 The value is an invalid setting for the specified channel.

 The specified channel doesn‟t exist for the card installed in the specified slot.

 A channel pattern is specified.

 The channel is for an empty slot.

 The value is invalid for command – parameter out of range error.

 Parameter syntax error such as incorrect format for ch_list.

 An analog backplane relay is specified.

The parameter string may contain 'slotX', where X equals 1 to 6, or

'allslots'.

Command processing will stop as soon as an error is detected and no delay times will

be modified. Only with no errors, do the specified channels get their delay time

changed.

Setting the value to 0 indicates to incur no additional delay when closing or opening

the specified channels. With a setting of 0, only the needed settling time for a channel

to close or open will be incurred. If additional delay is desired then use this command

to indicate the amount needed. Channel patterns get their delay from the channels

comprising the pattern. Therefore, specify the delay for a pattern through the channels.

A pattern will incur the longest delay of all channels comprising that pattern.

Calling this function on an existing channel involved in scanning has no affect on the

existing scan list.

Details Setting a delay only applies to switch channels. An error will occur for a read/write

channel like digital input/output. The delay being specified by value may be updated

based on a card's resolution for delay. To see if the delay value was modified after

setting, use the channel.getdelay command to query.

Also see channel.getdelay() (on page 13-49)

Example Set Channels 1 and 3 on Slot 5 for a delay time of 50 microseconds:

channel.setdelay("5001, 5003" , 50e-6)

To set the channels on Slot 3 for 0 delay time:

channel.setdelay ("slot3", 0)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-74 3700S-901-01 Rev. C / July 2008

channel.setforbidden()

Function Prevents the closing of specified channels.

Usage channel.setforbidden(<ch_list>)

ch_list: A string listing the channels to make forbidden to close.

Remarks The ch_list parameter indicates the scope of channels affected and may include:

 allslots or 'slotX' (where X equals 1 to 6).

 Channel ranges or individual channels

 Analog backplane relays.

This function prevents all items contained in the channel list parameter from closing

(applies the "forbidden to close" attribute to channels specified). To remove the

"forbidden to close" attribute, use channel.clearforbidden (on page 13-36).

An error will be generated if:

 The specified channel or analog backplane relay does not exist for card installed in

a slot.

 The specified channel or analog backplane relay is for an empty slot.

 There is a parameter syntax error in the channel specified.

 An empty channel list is parsed.

Command processing will stop as soon as an error is detected. If an error is found, the

forbidden setting is not updated. With no errors, items in the list are marked as being

forbidden to close. The previous ones are not lost.

After the forbidden list is updated, the existing channel patterns are reviewed. Any of

the patterns that contain an item (channel or analog backplane relay) that is now

forbidden to close will be deleted. A channel pattern may be specified in the channel

list parameter. However, doing this will cause the pattern to be deleted because it

contains items that are forbidden to close.

Making a channel or backplane forbidden that is involved in scanning invalidates the

existing scan list.

Also see channel.clearforbidden() (on page 13-36)

channel.getforbidden() (on page 13-50)

Example To mark Channels 2, 4, 6, and 8 of Slot 2 as forbidden to close:

channel.setforbidden('2002,2004,2006,2008')

To mark Slot 3 as forbidden to close:

channel.setforbidden('slot3')

channel.setlabel()

Function Sets the label associated with a channel.

Usage channel.setlabel(<ch_list>, label)

ch_list: A string listing the channel to set the label associated with it.

Label: A string representing the label for items in ch_list.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-75

channel.setlabel()

Remarks This command sets the label of the specified channel in ch_list to the value

specified in the label parameter. To clear label use the command with the label

parameter equaling an empty string "" or a string with a space as the first character.

If the name specified is being used for an existing channel label, that label reverts to

the default label and the new channel is updated to use the new label if no errors

occur. The previous association with that label is lost. The channel attributes

associated with each channel remain unchanged except for their labels. For example,

channel one on Slot 4 has a label of 'start'. Sending

channel.setlabel('5001', 'start') causes Channel 4001 to lose the

label of 'start' and go back to '4001', while Channel 5001's label is set to

'start'. Using 'start' in commands then refers to 5001 and not 4001.

An error is generated if:

 An empty parameter string is specified for ch_list.

 Exceeds max length, which is 20 characters.

 A specified channel does not exist.

 The channel is for an empty slot.

 A channel pattern is specified.

 The channel does not support a label setting.

 An analog backplane relay is specified.

 More than one channel is specified in ch_list.

 ch_list contains 'slotX' where X = 1 to 6 or 'allslots'.

 The label contains a space. However, if the first character is a space, the label is

cleared.

 The label is already being used to represent a channel pattern.

Command processing stops as soon as an error is detected and no channel label is

updated. To clear a label back to its factory default, SCCC or SRCC, send an empty

string for the label parameter. The label is not persistent through a power-cycle.

However, a label is part of data saved with a setup.

Labels are also supported for digital I/O, DAC, and totalizer channels.

Details Not persistent through a power cycle.

 You can use labels with commands. Labels and patterns are unique, meaning a

channel label cannot be used for a channel pattern. Whichever one is created or

specified first is the one used. If you try to use one for the other, an error is

generated.

Also see channel functions and attributes (on page 13-24)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-76 3700S-901-01 Rev. C / July 2008

channel.setlabel()

Example To set the label for Channel 1 on Slot 1 to "start":

channel.setlabel('1001', 'start')

To clear the label for Channel 1 on Slot 1 back to '1001'

channel.setlabel('1001', '')

or

channel.setlabel('1001', ' ')

channel.setmatch()

Function Sets the match value on a channel.

Usage channel.setmatch(<ch_list>, <match value>, [<mask>,
[<width>]])

ch_list: String specifying the channels to query, using normal channel list syntax.

match_value: Channel value to compare on the specified channel.

mask: Optional value to specify bits used to mask <match_value>.

width: Optional value that specifies matches over multiple consecutive channels.

Remarks The mask is AND‟ed bitwise to the match value to determine the final match value

used on the channel.

The mask and width arguments are optional. A mask must be specified in order to

specify a width. The default width is 1. The default mask is channel.ALL (all bits).

For digital I/O channels, a width of 1, 2, 3, or 4 channels is supported. Any information

(bits) greater than the specified width are ignored. If a width crosses channels, the

match status indicator is only on the channel specified in the match value. For

example, setting a value with a 2 width on Channel 3 drives the indicator on Channel

3, not Channel 4. Match values for output channels are ignored.

Totalizer and DAC channels only support a width of 1.

Switch and backplane channels are not supported.

Also see channel.getmatch() (on page 13-53)

Example To generate a match state event on Bit 6 of Digital I/O Channel 1:

channel.setmatchtype("1001", channel.MATCH_EXACT)

channel.setmatch("1001", 32)

channel.setmatchtype()

Function Sets the match type on a channel.

Usage channel.setmatchtype(<ch_list>, <type>)

ch_list: String specifying the channels to set, using normal channel list syntax.

type: A value for setting the match operation used on this specific channel.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-77

channel.setmatchtype()

Remarks There are four types of match values:

 channel.MATCH_EXACT

 channel.MATCH_ANY

 channel.MATCH_NOT_EXACT

 channel.MATCH_NONE

For an EXACT match, the state match indicator only becomes TRUE when the match

value AND match mask value EQUAL the channel read value.

For an ANY match, the state match indicator only becomes TRUE when the match

value OR match mask value EQUAL the channel read value.

For a NOT_EXACT match, the state match indicator only becomes TRUE when the

match value AND match mask value AND channel read value are NOT EQUAL to the

match value AND match mask value AND last channel read value. In other words, the

match value should be the current value, and if the value changes at all away from the

original value, then a match is declared.

For NONE, matching is effectively disabled. This is the default.

For totalizer channels, only MATCH_EXACT and MATCH_NONE are supported.

DAC, backplane, and switch channels are not supported.

Also see channel.getmatchtype() (on page 13-54)

Example To define the match type for digital I/O Channel 1 to be a MATCH_EXACT type:

channel.setmatchtype("1001", channel.MATCH_EXACT)

channel.setmode()

Function Sets the mode attribute on a channel.

Usage channel.setmode(<ch_list>, <mode>)

ch_list: String specifying the channels to set, using normal channel list syntax.

mode: The value that sets the mode of a channel‟s operation.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-78 3700S-901-01 Rev. C / July 2008

channel.setmode()

Remarks Different channel types contain additional configurable settings. These settings are

grouped together by channel type as described in the following paragraphs.

For digital I/O channels, the mode indicates the direction of the channel (input or

output). The following modes are supported:

 channel.MODE_INPUT (default)

 channel.MODE_OUTPUT

 channel.MODE_PROTECT_OUTPUT

For totalizer channels, the mode indicates the configuration of the channel (edge and

reset). The following modes are supported:

 channel.MODE_RISING_EDGE

 channel.MODE_FALLING_EDGE

 channel.MODE_RISING_TTL_EDGE (default)

 channel.MODE_FALLING_TTL_EDGE

 channel.MODE_RISING_EDGE_READ_RESET

 channel.MODE_FALLING_EDGE_READ_RESET

 channel.MODE_RISING_TTL_EDGE_READ_RESET

 channel.MODE_FALLING_TTL_EDGE_READ_RESET

For DAC channels, the mode indicates the output of the channel (function and range).

The output is switched off before any mode change is made, and remains off after the

mode has changed. The following modes are supported:

 channel.MODE_VOLTAGE_1

 channel.MODE_CURRENT_1

 channel.MODE_CURRENT_2

 channel.MODE_PROTECT_VOLTAGE_1 (default)

 channel.MODE_PROTECT_CURRENT_2

 channel.MODE_PROTECT_CURRENT_2

Changing the mode setting can impact the power consumption of the card. The

instrument verifies that power is available before changing the mode. If an insufficient

power capability exists, the command generates an error.

Consult the card-specific documentation for more detailed information on mode

settings and functionality.

For digital I/O channels, changing the mode from input to output or from output to input

adds an additional channel delay (see channel.setdelay() (on page 13-72)).

For switch and backplane channels, there is no valid mode setting. Setting a mode on

a specific channel generates an error. If the switch channel is in the range of channels,

the mode is ignored.

The specified channel list must use only one channel type. For example, channel list

“1001:1004” is only valid if Channels 1, 2, 3, and 4 are of the same type. If Channel 3

is a DAC channel, the channel list is invalid and an error is generated.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-79

channel.setoutputenable()

Function Sets the output enable attribute on a channel.

Usage channel.setoutputenable(<ch_list>, <state>)

ch_list: String specifying the channels to set, using normal channel list syntax.

state: A value representing the desired state of the channel‟s output.

Remarks Channels with output OFF consume less power.

For DAC channels, output enable is used to indicate the whether or not the DAC is

driving the output. The following possible states are supported:

 channel.ON

 channel.OFF (default)

For DAC channels, changing the output state adds an additional channel delay (see

channel.setdelay() (on page 13-72)).

Channels with output OFF consume less power. Changing the output setting impacts

the power consumption of the card. The instrument verifies that power is available

before changing the mode. If an insufficient power capability exists, the command

generates an error. Consult the specific card documentation for more detailed

information on a channel‟s output characteristics.

For switch, backplane, digital I/O, and totalizer channels, there is no valid output

enable attribute. Setting output enable on a specific channel generates an error. If the

switch or totalizer channel is in the range of channels, the mode is ignored.

Also see channel.getoutputenable() (on page 13-54)

Example To turn the output off on the first DAC channel (Channel 10) in Slot 1:

channel.setoutputenable("1010", channel.OFF)

channel.setpole()

Function Specifies the pole setting for a list of channels.

Usage channel.setpole(<ch_list>, value)

ch_list: A string listing the channels to assign their pole setting

value: Desired pole setting for items in ch_list. Use the following:

 For one-pole: channel.POLES_ONE or 1.

 For two-pole: channel.POLES_TWO or 2.

 For four-pole: channel.POLES_FOUR or 4.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-80 3700S-901-01 Rev. C / July 2008

channel.setpole()

Remarks An error message is generated for the following reasons:

 An empty parameter string is specified.

 The value parameter is an invalid setting for the specified channel.

 The specified channel does not exist for the card installed in a slot.

 The channel is for an empty slot.

 The value parameter is invalid for command – parameter out of range error.

 Parameter syntax error such as incorrect format for ch_list.

 A channel pattern or analog backplane relay was specified.

The parameter string can contain 'slotX', where X equals 1 to 6, or

'allslots'.

Command processing stops as soon as an error is detected and no pole settings are

modified. Only with no errors are the poles setting changed on the specified channels.

Recall channel patterns do not have a pole setting associated with them. For channel

patterns, the analog backplane relays must be specified when creating the pattern

(see channel.pattern.setimage() (on page 13-63) and

channel.pattern.snapshot() (on page 13-66)).

You manipulate the analog backplane relays for the desired pole setting by using the

channel.setbackplane() (on page 13-70) function for channels. For channels,

as the pole setting changes, their analog backplane relays, specified by

channel.setbackplane() (on page 13-70), get cleared. Therefore, after a pole

setting change, you need to add the desired analog backplane relays for desired pole

setting by using channel.setbackplane() (on page 13-70).

The analog backplane relays get manipulated based on the DMM configuration

assigned to a channel when the channel used with the dmm.close() (on page 13-

123) command. When clearing the backplane channels, this involves clearing the

paired channel whether pairing or unpairing channels. For example, on a 40-channel

card, Channels 1 and 21 are paired when the poles for Channel 1 is set to 4.

Therefore, when changing the poles setting on Channel 1 to 4, the backplane

channels for Channels 1 and 21 are cleared. Likewise, they both are cleared when the

poles setting is set back to 2 on Channel 1.

Calling this function on an existing channel involved in scanning invalidates the

existing scan list.

For digital I/O, DAC, and totalizer channels, only a value of 1 is accepted.

Also see channel.getbackplane() (on page 13-45)

channel.getpole() (on page 13-55)

channel.setbackplane() (on page 13-70)

Example Set Channels 1 and 3 on Slot 5 to four-pole:

channel.setpole("5001, 5003", channel.POLES_FOUR)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-81

channel.setpowerstate()

Function Sets the power state attribute on a channel.

Usage channel.setpowerstate(<ch_list>, <state>)

ch_list: String specifying the channels to query, using normal channel list syntax.

state: A value representing the desired channel‟s power state.

Remarks Channels with an OFF power state consume less power. When a channel previously

OFF is turned ON, the channel attributes are reset to their default values (except the

power state attribute).

The default value is dependent on the installed card. The following possible values are

supported:

 channel.ON

 channel.OFF

Changing the output setting impacts the power consumption of the card. The

instrument verifies that power is available before changing the mode. If an insufficient

power capability exists, the command generates an error.

Consult the specific card documentation for more detailed information on a channel‟s

power usage characteristics, including default state, possible warmup issues, and

effects on other channels.

When a channel with an OFF power state is used in a scan, results are undefined. No

error notification is issued.

For switch, backplane, and digital I/O channels, there is no valid power state attribute.

Setting the power state on a specific channel generates an error.

NOTE: On some cards for DAC channels, there can be a warmup time for

the DAC to reach full accuracy (see card-specific documentation).

 On some cards for totalizer channels, setting the power state of a

single channel can affect the power state of other channels. If a

single totalizer channel is turned ON, then all totalizer channels are

reset to their defaults.

Also see channel.getpowerstate() (on page 13-55)

Example channel.setpowerstate("1010", channel.ON)

channel.setstatelatch()

Function Sets the state indicators to either latching or non-latching.

Usage channel.setstatelatch(<ch_list>, <state latch mask>)

ch_list: String specifying the channels to set, using normal channel list syntax.

state latch mask: A value specifying the indicators to latch.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-82 3700S-901-01 Rev. C / July 2008

channel.setstatelatch()

Remarks Each indicator is represented by a bit in the mask.

For non-latching applications, the state indicator clears automatically when the causing

condition clears itself. For latching applications, the condition is cleared using the

channel.resetstate() command.

When using the trigger module, events are always non-latching (or pulse oriented).

However, in latching mode, the event is only generated once at the beginning. In non-

latching mode, the event is generated anytime the condition begins.

Set multiple states by ORing the values together.

Also see channel.getstate() (on page 13-56)

channel.getstatelatch() (on page 13-58)

Example To generate a match state event on digital I/O Channel 1:

channel.setstatelatch("1001", channel.IND_MATCH)

channel.trigger[N].clear()

Function Clears any pending events.

Usage channel.trigger[N].clear()

Also see channel.trigger[N].set() (on page 13-82)

Example To clear any pending events on channel trigger 1:

channel.trigger[1].clear()

channel.trigger[N].EVENT_ID

Function Defined constant that indicates the event ID in the event system.

Usage channel.trigger[N].EVENT_ID

Also see channel.trigger[N].set() (on page 13-82)

Example To use a channel trigger event to start a scan:

scan.trigger.chan.stimulus = channel.trigger[1].EVENT_ID

channel.trigger[N].get()

Function Gets trigger information associated with a given trigger.

Usage <ch_list>, <state_match> = channel.trigger[<n>].get()

ch_list: Return string specifying the channels watched by this trigger.

state_match: Return value specifying the state to match when triggering an event.

Also see channel.trigger[N].set() (on page 13-82)

Example chan_list, state_match = channel.trigger[1].get()

print(chan_list, state_match)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-83

channel.trigger[N].set()

Function Sets the channel status trigger module to watch the state of a specific channel.

Usage channel.trigger[N].set(<ch_list>, <state_match>)

ch_list: String specifying the channels to query, using normal channel list syntax.

state_match: Value of the state indicators which are to be matched.

Remarks If the channel list contains more than one channel, then the trigger acts as a logical

OR. When any one of the channels in the list matches the desired state, a trigger

event is generated. Therefore, if an indicator is present in both the match and the

actual state, then an event is triggered. If the match contains more than one state

indicator, only one of those indicators needs be present to trigger the event. There are

a total of eight channel trigger events per Model 3706, defined by [N]. Using this

mechanism, a trigger can be generated when a pattern is matched on an I/O, a

totalizer matches a defined count, or an I/O has an over-current condition.

Latching functionality is not supported.

Switch channels are currently not supported.

To clear a trigger that is no longer needed, pass an empty channel list (“”).

Also see channel.trigger[N].get() (on page 13-82)

Example To define channel trigger event 1 to occur when digital I/O Channel 1 matches its

defined match value:

channel.trigger[1].set("1001", channel.IND_MATCH)

channel.trigger[N].wait()

Function Waits for the desired trigger or timeout period, whichever comes first.

Usage <triggered> = channel.trigger[N].wait(<timeout>)

triggered: Returns an indication that a trigger occurred.

timeout: Specifies the number of seconds to wait.

Remarks If one or more trigger events were detected since the last time

channel.trigger[N].wait or channel.trigger[N].clear was called,

this function returns immediately.

After waiting for a trigger with this function, the event detector is automatically reset

and rearmed. This is true regardless of the number of events detected.

The value for timeout must be greater than zero and less than 10,000.

Example To wait 5 seconds for channel trigger event 1:

channel.trigger[1].wait(5)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-84 3700S-901-01 Rev. C / July 2008

channel.write()

Function Writes a value to a channel.

Usage channel.write(<ch_list>, <value>, [<width>])

ch_list: String specifying channels to write, using normal channel list syntax.

value: The value to be written to the channel.

width: Optional value that specifies the channel width of the write.

Remarks For widths greater than 1, the specified channel occupies the least significant byte. For

example, writing the value of 0xff00ff00 to Channel 1 with a width of 4 sets Channel 1

to 0x00, Channel 2 to 0xff, Channel 3 to 0x00, and Channel 4 to 0xff. Writing the value

of 0xff00ff00 to Channel 1 with a width of 1 sets Channel 1 to 0x00 and leaves other

channels untouched.

For digital I/O channels, only a width of 1, 2, 3, or 4 is supported. Any other widths are

ignored. Values written to inputs are ignored. If no specified channel is set for output,

then an error is generated. If a width crosses channels, then only the channels set to

output are affected.

Totalizers, DACs, and switch channels do not support a width other than 1. Specifying

a width greater than 1 results in an error.

For a channel with a power state of OFF, an error is generated. No action is taken on

any channel in the specified channel list.

For DAC channels, the value is expected to be the desired floating point voltage or

current. Also, an error is generated if the value is out of range. No action is taken on

any channel in the specified channel list.

For digital I/O channels, the value becomes the settings of the digital output.

For totalizer channels, the value becomes the new current totalizer count.

The time it takes to execute the write command is affected by the channel delay

setting.

Example To output a value of 33 to digital I/O Channel 1:

channel.write("1001", 33)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-85

dataqueue functions and attributes

Use the dataqueue commands to share data between test scripts running in

parallel, and to access data from a remote group or a local node on a TSP-Link

network at any time. You can access data from the data queue even if a remote

group or a node has overlapped operations in process.

dataqueue.add()

Function Store an item of data in the data queue.

Usage success = dataqueue.add(value[, timeout])

value: The data item to add.

timeout: Maximum amount of time in seconds to wait for room in the queue if it is full.

success: Success indication.

Remarks This function will add one entry to the data queue. If the queue is full, this function will

wait up to timeout seconds for room to be made available. This function will return

true if the value was added to the data queue. It will return false if the queue is full and

the item could not be added before the timeout expires.

The timeout value may only be specified when called from the local node. If a timeout

value is not given, the function will not wait for room in the queue if it is full.

NOTE If value is a table, this function will make a deep copy of it rather than

storing a reference to it. This will make a complete copy of all entries within

the table, including all nested tables.

dataqueue.CAPACITY

Attribute The maximum number of entries the data queue can hold.

Usage capacity = dataqueue.CAPACITY

capacity: Maximum number of entries in the data queue.

Remarks This constant indicates the maximum number of values that can be stored in the data

queue.

dataqueue.clear()

Function Clear the data queue.

Usage dataqueue.clear()

Remarks This function will remove all entries from the data queue. If any nodes are waiting to

add data to the queue, this method will force them to fail as if they timed out.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-86 3700S-901-01 Rev. C / July 2008

dataqueue.count

Attribute The number of entries currently stored in the data queue.

Usage count = dataqueue.count

count: Number of entries in the data queue.

Remarks This attribute is a read-only attribute that indicates how many entries are in the data

queue.

dataqueue.next()

Function Retrieve an entry from the data queue.

Usage value = dataqueue.next([timeout])

timeout: Maximum amount of time in seconds to wait for data if the queue is empty.

value: The next entry from the data queue.

Remarks This function will remove the next entry from the data queue and return its value. If the

queue is empty, this function will wait up to timeout seconds for data to arrive. If no

data arrives before the timeout expires, this function will return nil.

The timeout value may only be specified when called from the local node. If a timeout

value is not given, the function will not wait for data to be put in the queue if it is empty.

NOTE If the entry is a table, this function will return a deep copy of its contents at

the time the table was added to the data queue rather than returning a

reference to the original table.

delay functions

This function is used to hold up system operation for a specified period of time. It

is typically used to soak a device at a specific voltage or current for a period of

time.

delay()

Function Delays system operation.

Usage delay(seconds)

seconds: Set delay in seconds (100000 seconds maximum).

Remarks This function will cause a delay for the specified number of seconds. It is

impossible to delay for zero seconds.

 Delays smaller than 50µs (seconds) will be dominated by overhead such that the

actual delay might be as long as 50µs (typical). For delays longer than 50µs, the

delay may be as much as 10µs (typical) more than the requested delay.

Example To pause program execution for 50ms:

delay(0.050)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-87

digio functions and attributes

Use the functions and attributes in this group to control read/write and trigger

operations for the digital I/O port.

NOTE The digital I/O lines can be used for both input and output. If a line is

being driven low, then a "0" value will be read by a command for that

line. You must write a "1" to all digital I/O lines that are to be used as

inputs.

digio.readbit()

Function Reads one digital I/O line.

Usage data = digio.readbit(N)

N: Digital I/O line number to be read (1 to 14).

Remarks A returned value of "0" indicates that the line is low. A returned value of "1" indicates

that the line is high.

Details See Digital I/O port.

Also see digio.readport() (on page 13-87)

digio.writebit() (on page 13-92)

digio.writeport() (on page 13-92)

Example Assume line 4 is set high, and it is then read:

data = digio.readbit(4)

print(data)

Output:

1.000000e+00

digio.readport()

Function Reads the digital I/O port.

Usage data = digio.readport()

Remarks The binary equivalent of the returned value indicates the input pattern on the I/O port.

The least significant bit of the binary number corresponds to line 1 and bit 14

corresponds to line 14. For example, a returned value of 170 has a binary equivalent

of 00000010101010. Lines 2, 4, 6 and 8 are high (1), and the other 10 lines are low

(0).

Also see digio.readbit() (on page 13-87)

digio.writebit() (on page 13-92)

digio.writeport() (on page 13-92)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-88 3700S-901-01 Rev. C / July 2008

digio.readport()

Example Assume lines 2, 4, 6 and 8 are set high, and the I/O port is then read:

data = digio.readport()

print(data)

Output: 1.700000e+02 (binary 10101010)

digio.trigger[N].assert()

Function Asserts a trigger on one of the digital I/O lines.

Usage digio.trigger[N].assert()

N: Digital I/O trigger line: 1 to 14

Remarks The set pulsewidth determines how long the trigger is asserted.

Also see digio.trigger[N].pulsewidth (on page 13-90)

Example Asserts trigger on I/O line 2:

digio.trigger[2].assert()

digio.trigger[N].clear()

Function Clears a trigger event on a digital I/O line.

Usage digio.trigger[N].clear()

N: Digital I/O trigger line: 1 to 14

Remarks A trigger's event detector remembers if a trigger event has been detected since the

last digio.trigger[N].wait call. This function clears a trigger's event detector and

discards the previous history of the trigger line.

Also see digio.trigger[N].wait() (on page 13-92)

Example Clears trigger event on I/O line 2:

digio.trigger[2].clear()

digio.trigger[N].mode

Attribute Controls the mode in which the trigger event detector as well as the output trigger

generator will operate on the given trigger line.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-89

digio.trigger[N].mode

Usage To read the trigger mode:

tmode = digio.trigger[N].mode

To write the trigger mode:

digio.trigger[N].mode = tmode

N: Digital I/O trigger line 1 to 14

Set tmode to one of the following values:

digio.TRIG_BYPASS or 0: Allow direct control of the line.

digio.TRIG_FALLING or 1: Detect falling edge triggers as input. Assert a TTL-low

pulse for output.

digio.TRIG_RISING or 2: Use digio.TRIG_RISINGA if the line is in the high output

state. Use digio.TRIG_RISINGM if the line is in the low output state.

digio.TRIG_EITHER or 3: Detect rising or falling edge triggers as input. Assert a TTL-

low pulse for output.

digio.TRIG_SYNCHRONOUSA or 4: Detect falling edge triggers as input and

automatically latch and drive them low when detected. Release a latched line for

output.

digio.TRIG_SYNCHRONOUS or 5: Detect falling edge triggers as input and latch

them low. Assert a TTL-low pulse for output.

digio.TRIG_SYNCHRONOUSM or 6: Detect rising edge triggers as input. Assert a

TTL-low pulse for output.

digio.TRIG_RISINGA or 7: Detect rising edge triggers as input. Assert a TTL-low

pulse for output.

digio.TRIG_RISINGM or 8: Assert a TTL-high pulse for output. Input edge detection is

not possible in this mode.

Remarks The default trigger mode for a line will be TRIG_BYPASS. In this mode, the line can be

directly controlled as a digital I/O line. When programmed to any other mode, the

output state of the I/O line is controlled by the trigger logic and the user specified

output state of the line will be ignored.

For compatibility with older firmware, when the trigger mode is set to TRIG_RISING,

the user specified output state of the line will be examined. If the output state selected

when the mode is changed is high, the actual mode used will be TRIG_RISINGA. If

the output state selected when the mode is changed is low, the actual mode used will

be TRIG_RISINGM.

TRIG_SYNCHRONOUS is provided for compatibility with older firmware. Either

TRIG_SYNCHRONOUSA or TRIG_SYNCHRONOUSM should be used instead.

 tmode can be expressed as a number or as one of the pre-defined constants (see

the "Usage" section above).

 When reading the trigger mode, it is returned as a number with the modes noted,

tmode is defined.

Example To set the trigger mode for I/O line 4 to TRIG_RISING:

digio.trigger[4].mode = 2

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-90 3700S-901-01 Rev. C / July 2008

digio.trigger[N].overrun

Attribute Event detector overrun status.

Usage overrun = digio.trigger[N].overrun

overrun: Trigger overrun state.

N: Digital I/O trigger line: 1 to 14

Remarks This attribute is a read-only attribute that indicates if an event was ignored because

the event detector was already in the detected state when the event occurred. This is

an indication of the state of the event detector built into the line itself. It does not

indicate if an overrun occurred in any other part of the trigger model or in any other

construct that is monitoring the event. It also is not an indication of an output trigger

overrun.

Example overrun = digio.trigger[1].overrun

print(overrun) false

digio.trigger[N].pulsewidth

Attribute The length of time that the trigger line will be asserted for output triggers. N is a digital

I/O trigger line: 1 to 14

Usage To read pulse width:

width = digio.trigger[N].pulsewidth

To write pulse width:

digio.trigger[N].pulsewidth = width

pulsewidth: length in s (seconds).

N: Digital I/O trigger line: 1 to 14

Remarks The trigger line is guaranteed to be asserted for at least the specified time, and it

might be asserted slightly longer.

 Setting pulsewidth to 0 (seconds) asserts the trigger indefinitely.

 The default pulsewidth time is 10µs for digio lines 1 through 9, and 20µs for digio

lines 10 through 14

Also see See digio.trigger[N].release() (on page 13-90).

Example Sets pulsewidth for trigger line 4 to 20µs:

digio.trigger[4].pulsewidth = 20e-6

digio.trigger[N].release()

Function Releases an indefinite length or latched trigger.

Usage digio.trigger[N].release()

N: Digital I/O trigger line: 1 to 14

Remarks Releases a trigger that was asserted with an indefinite pulsewidth, as well as a trigger

that was asserted in response to receiving a synchronous mode trigger. Only the

specified trigger line (N) is affected.

Also see digio.trigger[N].pulsewidth (on page 13-90)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-91

digio.trigger[N].release()

Example Releases trigger line 4:

digio.trigger[4].release()

digio.trigger[N].stimulus

Attribute Event to cause this trigger to assert.

Usage triggerstimulus = digio.trigger[N].stimulus

- or -

digio.trigger[N].stimulus = triggerstimulus

N: Digital I/O trigger line: 1 to 14

triggerstimulus: The event identifier for the triggering event.

Remarks This attribute selects which event(s) will cause digital output line to assert a trigger.

Set this attribute to 0 to bypass waiting for an event.

Trigger stimulus for a digio line may be set to one of the following (existing trigger

event IDs):

 digio.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the digital input line.

 display.trigger.EVENT_ID: The trigger key on the front panel is pressed.

 trigger.EVENT_ID: A *trg message on the active command interface. If GPIB is the

active command interface, a GET message will also generate this event.

 trigger.blender[N].EVENT_ID: A combination of events has occurred.

 trigger.timer[N].EVENT_ID: A delay expired.

 tsplink.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the tsplink trigger line.

 lan.trigger[N].EVENT_ID

 scan.trigger.EVENT_SCAN_READY: Scan Ready Event.

 scan.trigger.EVENT_SCAN_START: Scan Start Event

 scan.trigger.EVENT_CHANNEL_READY: Channel Ready Event

 scan.trigger.EVENT_MEASURE_COMP: Measure Complete Event

 scan.trigger.EVENT_SEQUENCE_COMP: Sequence Complete Event

 scan.trigger.EVENT_SCAN_COMP: Scan Complete Event

 scan.trigger.EVENT_IDLE: Idle Event

NOTE Use ICL define to set the stimulus value rather than the define value. Doing

this will make the code compatible for future upgrades because they may

need to change when enhancements are added to the instrument.

Example To set the trigger stimulus of digital I/O line 3 to be the channel ready event during a

scan:

digio.trigger[3].stimulus = scan.EVENT_CHANNEL_READY

To clear the trigger stimulus of digital I/O line 3:

digio.trigger[3].stimulus = 0

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-92 3700S-901-01 Rev. C / July 2008

digio.trigger[N].wait()

Function Waits for a trigger.

Usage triggered = digio.trigger[N].wait(timeout)

N: Digital I/O trigger line: 1 to 14

timeout: Set timeout in seconds.

triggered: Returns `true' if a trigger was detected, or `false' if no triggers were

detected during the timeout period.

Remarks This function will wait up to timeout seconds for an input trigger. If one or more trigger

events were detected since the last time digio.trigger[N].wait (this function) or

digio.trigger[N].clear() (on page 13-88) was called, this function will return immediately.

After waiting for a trigger with this function, the event detector will be automatically

reset and re-armed. This is true regardless of the number of events detected.

Also see digio.trigger[N].clear() (on page 13-88)

Example Waits up to three seconds for a trigger to be detected on trigger line 4, then displays if

the trigger was detected:

triggered = digio.trigger[4].wait(3)

print(triggered)

Output: false (no triggers detected) true (trigger detected)

digio.writebit()

Function Sets a digital I/O line high or low.

Usage digio.writebit(bit, data)

bit: Digital I/O line number (1 to 14)

data: Value to write to the bit; 0 (low) or 1 (high)

Remarks If the output line is write protected, using the digio.writeprotect() (on page 13-93)

attribute, the command will be ignored.

 The reset function does not affect the present states of the digital I/O lines.

NOTE The second parameter (data) needs to be 0 to clear the bit. Any value other

than 0 causes the bit to be set.

Also see digio.readbit() (on page 13-87)

digio.readport() (on page 13-87)

digio.writeport() (on page 13-92)

Example Sets digital I/O line 4 low (0):

digio.writebit(4, 0)

digio.writeport()

Function Writes to all digital I/O lines.

Usage digio.writeport(data)

data: Value to write to the port; 0 to 16383.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-93

digio.writeport()

Remarks The binary representation of data indicates the output pattern to be written to the I/O

port. For example, a data value of 170 has a binary equivalent of 00000010101010.

Lines 2, 4, 6 and 8 are set high (1), and the other 10 lines are set low (0).

 Write protected lines will not be changed (see digio.writeprotect() (on page 13-93)).

 The reset function does not affect the present states of the digital I/O lines.

Also see digio.readbit() (on page 13-87)

digio.readport() (on page 13-87)

digio.writebit() (on page 13-92)

Example Sets digital I/O lines 1 through 8 high (binary 00000011111111):

digio.writeport(255)

digio.writeprotect

Attribute Write protect mask that disables bits from being changed with the digio.writebit() (on

page 13-92) and digio.writeport() (on page 13-92) functions.

Usage To read writeprotect mask:

mask = digio.writeprotect

To write writeprotect mask:

digio.writeprotect = mask

mask: Set to the value that specifies the bit pattern for write protect.

Remarks Bits that are set to one cause the corresponding line to be write protected.

 The binary equivalent of mask indicates the mask to be set for the I/O port. For

example, a mask value of 7 has a binary equivalent 00000000000111. This mask

write protects lines 1, 2 and 3.

Example Write protects lines 1, 2, 3 and 4:

digio.writeprotect = 15

display functions and attributes

The functions and attributes in this group are used for various display

operations.

display.clear()

Function Clears all lines of the display.

Usage display.clear()

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-94 3700S-901-01 Rev. C / July 2008

display.clear()

Remarks This function will switch to the user screen and then clear the display.

 The display.clear(), display.setcursor() (on page 13-105), and

display.settext() (on page 13-106) functions are overlapped, non-blocking

commands. That is, the script will NOT wait for one of these commands to

complete. These non-blocking functions do not immediately update the display. For

performance considerations, they write to a shadow and will update the display as

soon as processing time becomes available.

Also see display.setcursor() (on page 13-106)

display.settext() (on page 13-105)

display.getannunciators()

Function Reads the annunciators that are presently turned on.

Usage annun = display.getannunciators()

annun: Returns the bitmap value for annunciators that are turned on.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-95

display.getannunciators()

Remarks This function returns a bitmap value that indicates which annunciators are turned on.

The 16- bit binary equivalent of the returned value is the bitmap. For example, assume

the returned value is 1028. The binary equivalent for this value is as follows:

0000010000000100

The above bitmap indicates that bits 3 and 11 are set. From the chart below, bit 3 and

bit 11 corresponds to the annunciators that are turned on (4W and REM). Notice that

the sum of the weighted values for bits 3 and 11 is the returned value (1028).

Annunciator Bit Weighted

Value

Annunciator Bit Weighted

Value

FILT 1 1 EDIT 9 256

MATH 2 2 ERR 10 512

4W 3 4 REM 11 1024

AUTO 4 8 TALK 12 2048

ARM 5 16 LSTN 13 4096

TRIG 6 32 SRQ 14 8192

*(star) 7 64 REAR 15 16384

SMPL 8 128 REL 16 32768

The following definitions exist:

display.ANNUNCIATOR_x

Where: x equals EDIT, ERROR, REMOTE, TALK, LISTEN, SRQ, REAR, REL,

FILTER, MATH, 4_WIRE, AUTO, ARM, TRIGGER, STAR, or SAMPLE

The values correspond to the annunciators listed above.

For example:

print(display.ANNUNCIATOR_EDIT)

2.560000000e+002

print(display.ANNUNCIATOR_TRIGGER)

3.200000000e+001

print(display.ANNUNCIATOR_AUTO)

8.000000000e+000

Example Reads the annunciators that are turned on:

annun = display.getannunciators()

print(annun)

Output: 1.280000e+03

For the returned value of 1280, the binary equivalent is 0000010100000000. Bits 9

and 11 are set. Using the above chart in "Remarks", the REM and EDIT annunciators

are turned on.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-96 3700S-901-01 Rev. C / July 2008

display.getcursor()

Function Reads the present position of the cursor for the user display.

Usage row, column, style = display.getcursor()

row: Returns the row for the present cursor position.

column: Returns the column for the present cursor position.

style: Returns the cursor style.

Remarks This function switches the display to the user screen, and then returns values to

indicate row and column position, and cursor style.

 The row value is returned as 1 (top row) or 2 (bottom row).

 With the cursor in the top row, the column is returned as a value from 1 to 20.

With the cursor in the bottom row, the column is returned as a value from 1 to 32.

Columns are numbered from left to right on the display.

 The returned value for style is 0 (invisible) or 1 (blink).

Also see display.gettext() (on page 13-97)

display.screen (on page 13-104)

display.setcursor() (on page 13-105)

display.settext() (on page 13-106)

Example Reads cursor position (row and column):

row, column = display.getcursor()

print(row, column)

Output: 1.000000e+00 3.000000e+00

The above output indicates that the cursor is in Row 1 at Column 3.

display.getlastkey()

Function Retrieves the key code for the last pressed key.

Usage key = display.getlastkey()

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-97

display.getlastkey()

Remarks This read-only function returns the key code for the last pressed key. key returns one

of the following values:

Key List Value Key List Value

display.KEY_RIGHT 103 display.KEY_INSERT 78

display.KEY_LEFT 104 display.KEY_OPENALL 79

display.WHEEL_LEFT 107 display.KEY_CONFIG 80

display.WHEEL_RIGHT 114 display.KEY_RANGEDOW

N

81

display.KEY_RANGEUP 65 display.KEY_ENTER 82

display.KEY_FUNC 66 display.KEY_REC 83

display.KEY_REL 67 display.KEY_DMM 84

display.KEY_MENU 68 display.KEY_DELETE 85

display.KEY_CLOSE 69 display.KEY_STEP 86

display.KEY_SLOT 70 display.KEY_CHAN 87

display.KEY_RUN 71 display.KEY_RATE 90

display.KEY_DISPLAY 72 display.KEY_LIMIT 91

display.KEY_AUTO 73 display.KEY_TRIG 92

display.KEY_FILTER 74 display.KEY_OPEN 93

display.KEY_EXIT 75 display.KEY_PATT 94

display.KEY_STORE 76 display.KEY_LOAD 95

display.KEY_SCAN 77 display.WHEEL_ENTER 97

A history of the key code for the last pressed front panel key is maintained by the

Series 3700. When the instrument is powered-on, (or when transitioning from local to

remote), the key code is set to 0 (display.KEY_NONE).

Pressing the EXIT/LOCAL key normally aborts a script. In order to use this function

with the EXIT key, display.locallockout (on page 13-102) must be used.

Also see display.sendkey() (on page 13-105)

display.locallockout (on page 13-102)

Example On the front panel, press the MENU key and then send the following code:

key = display.getlastkey()

print(key)

Output: 6.800000e+01

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-98 3700S-901-01 Rev. C / July 2008

display.gettext()

Function Reads the text presently displayed

Usage There are five ways to use this function:

text = display.gettext()

text = display.gettext(embellished)

text = display.gettext(embellished, row)

text = display.gettext(embellished, row, column_start)

text = display.gettext(embellished, row, column_start,

column_end)

embellished Set to false to return text as a simple character string. Set to true to

include all character codes.

row Set to 1 or 2 to select which row to read text. If not included, text from both rows

are read.

column_start Set to starting column for reading text. Default is 1.

column_end Set to ending column for reading text. Default is 20 (Row 1) or 32 (Row

2).

NOTE The range of valid column numbers depends on which row is specified. For

Row 1, valid column numbers are 1 to 20. For Row 2, valid column

numbers are 1 to 32.

Remarks Sending the command without any parameters returns both lines of the display. The

$N character code will be included to show where the top line ends and the bottom line

begins.

With embellished set to true , all other character codes will be returned along with the

message. With embellished set to false, only the message and the $N character code

will be returned. See display.settext() (on page 13-106) for details on the character

codes.

The display will not be switched to the user screen. Text will be read from the active

screen.

Also see display.getcursor() (on page 13-95)

display.setcursor() (on page 13-105)

display.settext() (on page 13-106)

Example Returns all text in both lines of the display:

text = display.gettext()

print(text)

Output: User Screen $N

The above output indicates that the message "User Screen" is on the top line. The

bottom line is blank.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-99

display.inputvalue()

Function Displays a formatted input field that the operator can edit.

Usage There are four ways to use this function:

value = display.inputvalue(format)

value = display.inputvalue(format, default)

value = display.inputvalue(format, default, min)

value = display.inputvalue(format, default, min, max)

format: Define format string for the input field using `0's, the decimal point (.), polarity

sign (+) and 'E' for exponent.

default: Set the default value for the parameter.

min: Set the minimum input value that can be set.

max: Set the maximum input value that can be set.

Remarks This function will make use of text to create an editable input field on the user screen

at the present cursor position. The first write to the display after power-on will clear the

user screen.

Examples of the input field:

 +0.00 00 +00.0000E+00

 0.00000E+0

Value field:

 + Include a plus sign for positive/negative value entry. Do not include the "+" sign

to prevents negative value entry.

 0 Defines the digit positions for the value. Up to six 0's can be used for the value

(as shown above in the third and fourth examples).

 . If used, include the decimal point (.) where needed for the value.

Exponent field (optional):

 E Include the "E" for exponent entry.

 + Include a plus sign for positive/negative exponent entry. If a "+" sign is not

included, negative exponent entry is prohibited.

 0 Defines the digit positions for the exponent.

 You can also specify minimum and maximum limits for the input field. When NOT

using the "+" sign for the value field, the minimum limit cannot be set to less than

zero. When using the "+" sign, the minimum limit can set to less than zero (for

example, -2).

 There is also an option to specify a default value. When this command is executed,

the initially displayed value for the field will be the default value.

 Message prompts to instruct the operator should be displayed prior to calling this

function. Make sure to position the cursor where the edit field should appear.

 The input value is limited to ±1e37.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-100 3700S-901-01 Rev. C / July 2008

display.inputvalue()

Remarks

(cont.)

 After sending this command, script execution pauses for the operator to enter a

value and press the ENTER key.

 If limits are used, the operator will not be able to input values outside the minimum

and maximum limits.

 For positive and negative entry ("+" sign used for the value field and/or the

exponent field), polarity of a non-zero value or exponent can be toggled by

positioning the cursor on the polarity sign and turning the navigation wheel. Polarity

will also toggle when using the navigation wheel to decrease or increase the value

or exponent past zero. A zero value or exponent (for example, +00) is always

positive and cannot be toggled to negative polarity.

 After sending this command and pressing the EXIT key, value will return nil.

Also see display.prompt() (on page 13-102)

display.setcursor() (on page 13-105)

display.settext() (on page 13-106)

Example Displays an editable field ("+0.50") for operator input. Valid input range: 0.10 to +2.00,

with a default of 0.50:

display.clear()

value = display.inputvalue("+0.00", 0.5, -0.1, 2.0)

display.loadmenu.add()

Function Adds an entry to the USER TESTS submenu of the LOAD TEST menu.

Usage There are two ways to use this function:

display.loadmenu.add(displayname, chunk)

display.loadmenu.add(displayname, chunk, memory)

displayname: Name to display in the menu.

chunk: Chunk is the code to be executed.

memory: Save or don't save chunk and displayname in non-volatile memory.

Set memory to one of the following values:

0 or display.DONT_SAVE

1 or display.SAVE

The default memory setting is display.SAVE

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-101

display.loadmenu.add()

Remarks This function adds an entry to the USER TESTS submenu of the LOAD TEST

menu. If the given item is subsequently selected using the front panel, the chunk

will be executed when the RUN key is pressed.

 The chunk can be made up of scripts, functions, variables, and commands. With

memory set to display.SAVE, commands are saved with the chunk in non-

volatile memory. Scripts, functions, and variables used in the chunk are not saved

by display.SAVE. Functions and variables need to be saved along with the

script. If the script is not saved in non-volatile memory, it will be lost when the

Series 3700 is turned off. See Example 1 below.

 It does not matter what order the menu items are added. They will be displayed in

alphabetical order when the USER TESTS menu is selected.

Also see display.loadmenu.delete() (on page 13-101)

Examples Example 1: Assume a script with a function named 'DUT1' has already been loaded

into the Series 3700, and the script has NOT been saved in non-volatile memory.

Now assume you want to add a test named 'Test' to the USER TESTS menu. You

want the test to run the function named 'DUT1' and sound the beeper. The following

command will add 'Test' to the menu, define the chunk, and then save

displayname and chunk in non-volatile memory:

display.loadmenu.add('Test', 'DUT1() beeper.beep(2, 500)',

display.SAVE)

When 'Test' is run from the front panel USER TESTS menu, the function named

'DUT1' will execute and the beeper will beep for two seconds.

Now assume you cycle power on the Series 3700. Because the script was not saved

in non- volatile memory, the function named 'DUT1' is lost. When 'Test' is again

run from the front panel, the beeper will beep, but 'DUT1' will not execute because it

no longer exists in the chunk.

Example 2: This example adds an entry called 'Part1' to the front panel USER

TESTS load menu for the chunk 'testpart([[Part1]], 5.0)', and saves it

in non-volatile memory:

display.loadmenu.add('Part1', 'testpart([[Part1]], 5.0)',

display.SAVE)

display.loadmenu.delete()

Function Deletes an entry from the USER submenu of the LOAD TEST menu.

Usage display.loadmenu.delete(displayname)

displayname: Name to remove from the menu.

Remarks This function is used to delete an entry (displayname) from the front panel USER

TESTS submenu of the LOAD TEST menu.

Also see display.loadmenu.add() (on page 13-100)

Example Removes the entry named 'Part1' from the front panel USER TESTS load menu:

display.loadmenu.delete('Part1')

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-102 3700S-901-01 Rev. C / July 2008

display.locallockout

Attribute LOCAL key disabled.

Usage

To read state of lockout:

lockout = display.locallockout

To write state of lockout:

display.locallockout = lockout

Set lockout to one of the following values:

Unlocks LOCAL key: 0 or display.UNLOCK

Locks out LOCAL key: 1 or display.LOCK

Remarks Setting display.locallockout to display.LOCK prevents the user from

interrupting remote operation by pressing the LOCAL key. Set this attribute to

display.UNLOCK to allow the LOCAL key to abort script/remote operation.

Example Disables the front panel LOCAL key:

display.locallockout = display.LOCK

display.menu()

Function Presents a menu on the front panel display.

Usage selection = display.menu(name, items)

name: Menu name to display on the top line.

items: Menu items to display on the bottom line.

Remarks The menu consists of the menu name string on the top line, and a selectable list of

items on the bottom line. The menu items must be a single string with each item

separated by whitespace. The name for the top line is limited to 20 characters.

 After sending this command, script execution pauses for the operator to select a

menu item. An item is selected by rotating the navigation wheel (or using the

CURSOR keys) to place the blinking cursor on the item, and then pressing the

navigation wheel (or ENTER key). When an item is selected, the text of that

selection is returned.

 Pressing the EXIT key will not abort the script while the menu is displayed, but it

will return nil. The script can be aborted by calling the exit function when nil is

returned.

Example Displays a menu with three menu items. If the second menu item is selected, selection

will be given the value Test2:

selection = display.menu("Sample Menu", "Test1 Test2
Test3")

print(selection)

Output: Test2

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-103

display.prompt()

Function Prompts the user to enter a parameter from the front panel.

Usage There are four ways to use this function:

value = display.prompt(format, units, help)

value = display.prompt(format, units, help, default)

value = display.prompt(format, units, help, default, min)

value = display.prompt(format, units, help, default, min,
max)

format: Define format string for the input field using zeros (0), the decimal point (.),

polarity sign (+), and exponent (E).

units: Set units text string for top line (8 characters maximum).

help: Text string to display on the bottom line (32 characters maximum).

default: Set the default value for the parameter.

min: Set the minimum input value that can be set.

max: Set the maximum input value that can be set.

Remarks This function will create an editable input field at the present cursor position, and an

input prompt message on the bottom line. Example of a displayed input field and

prompt:

 0.00V

 Input 0 to +2V

The format configures the editable input field. Four examples for the format:

 +0.00

 00

 +00.0000E+00

 0.00000E+0

Value field:

 +: Include a plus sign for positive/negative value entry. Not including the "+" sign

prevents negative value entry.

 0: Defines the digit positions for the value. Up to six `0's can be used for the value

(as shown above in the third and fourth usage examples). If used, include the

decimal point (.) where needed for the value.

Exponent field (optional):

 E: Include the "E" for exponent entry.

 +: Include a "+" sign for positive/negative exponent entry. Do not include the "+"

sign to prevents negative value entry.

 0: Defines the digit positions for the exponent.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-104 3700S-901-01 Rev. C / July 2008

display.prompt()

Remarks

(cont.)

 units: a string that indicates the units (for example, "V" or "A") for the value and

help provides a message prompt on the bottom line.

 You can also specify minimum and maximum limits for the input field. When NOT

using the "+" sign for the value field, the minimum limit cannot be set to less than

zero. When using the "+" sign, the minimum limit can set to less than zero (for

example, -2).

 There is also an option to specify a default value. When this command is executed,

the initially displayed value for the field will be the default value.

 Message prompts to instruct the operator should be displayed prior to calling this

function. Make sure to position the cursor where the edit field should appear.

 The input value is limited to ±1e37.

 After sending this command, script execution pauses for the operator to enter a

value and press ENTER:

 If limits are used, the operator will not be able to input values outside the minimum

and maximum limits.

 For positive and negative entry ("+" sign used for the value field and/or the

exponent field), polarity of a non-zero value or exponent can be toggled by

positioning the cursor on the polarity sign and turning the navigation wheel. Polarity

will also toggle when using the navigation wheel to decrease or increase the value

or exponent past zero. A zero value or exponent (for example, +00) is always

positive and cannot be toggled to negative polarity.

 After sending this command and pressing the EXIT key, the value will return nil.

Also see display.inputvalue() (on page 13-98)

Example Prompts the operator to enter a voltage value; valid input range is 0 to +2.00, with a

default of 0.50:

value = display.prompt("0.00", "V", "Input 0 to +2V" 0.5,
0, 2)

The above command will display the following input prompt:

0.50V

Input 0 to +2V

display.screen

Attribute The selected display screen.

Usage To read display screen: displayid = display.screen

To write display screen: display.screen = displayid

Set displayid to one of the following values:

0 or display.MAIN: Displays main screen.

1 or display.USER: Displays the user screen.

Remarks Setting this attribute selects the display screen for the front panel. Read this attribute

to determine which of the available display screens was last selected.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-105

display.screen

Example Selects the user display:

display.screen = display.USER

display.sendkey()

Function Send key code that simulates the action of a front panel control being pressed.

Usage display.sendkey(keycode)

Set key code to one of the values shown below:

Key List Value Key List Value

display.KEY_RIGHT 103 display.KEY_INSERT 78

display.KEY_LEFT 104 display.KEY_OPENALL 79

display.WHEEL_LEFT 107 display.KEY_CONFIG 80

display.WHEEL_RIGHT 114 display.KEY_RANGEDO
WN

81

display.KEY_RANGEUP 65 display.KEY_ENTER 82

display.KEY_FUNC 66 display.KEY_REC 83

display.KEY_REL 67 display.KEY_DMM 84

display.KEY_MENU 68 display.KEY_DELETE 85

display.KEY_CLOSE 69 display.KEY_STEP 86

display.KEY_SLOT 70 display.KEY_CHAN 87

display.KEY_RUN 71 display.KEY_RATE 90

display.KEY_DISPLAY 72 display.KEY_LIMIT 91

display.KEY_AUTO 73 display.KEY_TRIG 92

display.KEY_FILTER 74 display.KEY_OPEN 93

display.KEY_EXIT 75 display.KEY_PATT 94

display.KEY_STORE 76 display.KEY_LOAD 95

display.KEY_SCAN 77 display.WHEEL_ENTER 97

NOTE When using this function, send built-in defines such as

display.KEY_RIGHT (rather than the numeric value of 103). This will

allow for greater forward compatibility with respect to firmware revisions.

For example, use display.KEY_ENTER instead of 82.

Also see Front panel keys for key functions.

Example To use a bus command to simulate the action of a front panel RUN key being pressed:

display.sendkey(display.KEY_RUN)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-106 3700S-901-01 Rev. C / July 2008

display.setcursor()

Function Sets the position of the cursor.

Usage There are two ways to use this function:

display.setcursor(row, column)

display.setcursor(row, column, style)

row: Set row number for the cursor (1 or 2).

column: Set the column number for the cursor. For row 1, the column can be set from

1 to 20. For row 2, the column can be set from 1 to 32.

style: Set the cursor style to be invisible (0) or blink (1).

Remarks Sending this command selects the user screen and then moves the cursor to the

given location.

 An out of range parameter for row will set the cursor to row 2. An out of range

parameter for column will set the cursor to column 20 (for row 1) or 32 (for row 2).

 An out of range parameter for style (a parameter other than 1 or 0) sets it to 0

(invisible).

 A blinking cursor will only be visible when it is positioned over displayed text. It

cannot be seen when positioned over a space character.

 The display.clear() (on page 13-93), display.setcursor, and

display.settext() (on page 13-106) functions are overlapped, non-blocking

commands. That is, the script will NOT wait for one of these commands to

complete. These non-blocking functions do not immediately update the display. For

performance considerations, they write to a shadow and will update the display as

soon as processing time becomes available.

Also see display.clear() (on page 13-93)

display.getcursor() (on page 13-95)

display.gettext() (on page 13-97)

display.settext() (on page 13-106)

Example Positions cursor in row 2, column 1:

display.setcursor(2, 1)

display.settext()

Function Displays text on the user screen.

Usage display.settext("text")

text: Text message string to be displayed.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-107

display.settext()

Remarks This function selects the user display screen, and displays the given text. The first

write to the display after power-on will clear the user screen.

The text starts at the present cursor position. After the text is displayed, the cursor will

be located after the last character in the display message.

Top line text will not wrap to the bottom line of the display automatically. Any text that

does not fit on the current line will be truncated. If the text is truncated, the cursor will

be left at the end of the line.

The text remains on the display until replaced or cleared.

The following character codes can be also be included in the text string:

 $N Newline: Starts text on the next line. If the cursor is already on line 2, text will

be ignored after the $N is received. $R Sets text to Normal.

 $B: Sets text to blink.

 $D: Sets text to dim intensity.

 $F: Sets text to background blink.

 $$: Escape sequence to display a single "$".

The display.clear (on page 13-93), display.setcursor (on page 13-105), and

display.settext functions are overlapped, non-blocking commands. That is, the

script will NOT wait for one of these commands to complete. These non-blocking

functions do not immediately update the display. For performance considerations, they

write to a shadow and will update the display as soon as processing time becomes

available.

Also see display.clear() (on page 13-93)

display.getcursor() (on page 13-95)

display.gettext() (on page 13-97)

display.setcursor() (on page 13-105)

Example Displays a message on the user screen:

To display "Message Test" on the top line and the bottom line displays the blinking

message "with Row 2 Blinking":

display.clear()

display.settext("Message Test NBwith Row 2 Blinking")

To display the unit's serial number on the top line:

display.clear()

display.settext(localnode.serialno)

(see localnode.serialno (on page 13-214))

display.waitkey()

Function Captures the key code value for the next key press.

Usage key = display.waitkey()

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-108 3700S-901-01 Rev. C / July 2008

display.waitkey()

Remarks After sending this function, script execution pauses until a front panel key or the

navigation wheel is pressed, or the navigation wheel is turned to the right or left. After

pressing a control or turning the navigation wheel, the key code value for that key will

be returned. The chart shown below lists the key code value for each front panel

control. The controls are listed alphabetically.

If the EXIT key is pressed while this function is waiting for a key press, the script will

not be aborted.

A typical use for this function is to prompt the user to press the EXIT key to abort the

script or press any other key to continue. If key code value 75 is returned (EXIT key

pressed), then the exit() function can be called to abort the script.

Key List Value Key List Value

display.KEY_RIGHT 103 display.KEY_INSERT 78

display.KEY_LEFT 104 display.KEY_OPENALL 79

display.WHEEL_LEFT 107 display.KEY_CONFIG 80

display.WHEEL_RIGHT 114 display.KEY_RANGEDO
WN

81

display.KEY_RANGEUP 65 display.KEY_ENTER 82

display.KEY_FUNC 66 display.KEY_REC 83

display.KEY_REL 67 display.KEY_DMM 84

display.KEY_MENU 68 display.KEY_DELETE 85

display.KEY_CLOSE 69 display.KEY_STEP 86

display.KEY_SLOT 70 display.KEY_CHAN 87

display.KEY_RUN 71 display.KEY_RATE 90

display.KEY_DISPLAY 72 display.KEY_LIMIT 91

display.KEY_AUTO 73 display.KEY_TRIG 92

display.KEY_FILTER 74 display.KEY_OPEN 93

display.KEY_EXIT 75 display.KEY_PATT 94

display.KEY_STORE 76 display.KEY_LOAD 95

display.KEY_SCAN 77 display.WHEEL_ENTER 97

The above chart lists the numeric key code values for the front panel controls. The key

code value identifiers are listed in the documentation for display.sendkey() (on page

13-105) (for example, display.KEY_RUN is the identifier for the RUN key).

Also see display.sendkey() (on page 13-105)

display.settext() (on page 13-106)

display.getlastkey() (on page 13-96)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-109

display.waitkey()

Example The following code pauses script execution and wait for the operator to press a key or

the navigation wheel, or rotate the navigation wheel:

key = display.waitkey()

print(key) 8.600000e+01

The above output (8.600000e+01, or 86) indicates that the STEP key was pressed.

dmm functions and attributes

Use the functions and attributes in this group to control DMM operation, set

limits, and perform calibration. Default configuration names like "dcvolts",

"temperature", "fourwireohms", etc., imply the reset conditions for the

corresponding functions. For example, sending dmm.setconfig("slot1",

"dcvolts") sets all channels on Slot 1 to use DC volts factory-default settings.

To make a channel use one setting that is different, create a user dmm

configuration with dmm.configure.set("mydcv") and then set "mydcv" to

the desired channels.

dmm.adjustment.count

Attribute Indicates the number of times the unit has been adjusted.

Usage cal_count = dmm.adjustment.count

cal_count: Represents the number of times unit has been adjusted.

Remarks Use this attribute to query the unit for the number of times the unit has been adjusted.

This item can only be set when calibration is unlocked.

Example To query for the adjustment count:

CalCount = dmm.adjustment.count

dmm.adjustment.date

Attribute Sets or queries the adjustment date in UTC format (number of seconds since January

1, 1970).

Usage CalDate = dmm.adjustment.date

CalDate: Represents the number of seconds since January 1, 1970.

To set the adjustment date based on the present date of the system:

dmm.adjustment.date = os.time()

To set the adjustment date as July 4, 2007

dmm.adjustment.date = os.time({year=2007, month=7, day =
4})

Remarks Use this attribute to set and get the adjustment date of the DMM in UTC format. See

Lua documentation for formatting options with os.date.

This item can only be set when calibration is unlocked.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-110 3700S-901-01 Rev. C / July 2008

dmm.adjustment.date

Example Also see usage for setting date.

NOTE For following assume set date to July 4, 2007.

To query date and format the response as mm/dd/yyyy:

print(os.date("%m/%d/%Y",

dmm.adjustment.date)) 07/04/2007

To query date and format the response as mm/dd/yy:

print(os.date("%x",

dmm.adjustment.date)) 07/04/07

dmm.aperture

Attribute Indicates the aperture setting for the active DMM function in seconds.

Usage To read the aperture:

value = dmm.aperture

value: Represents the present aperture setting in seconds

To write the aperture:

dmm.aperture = value

value: Represents the desired aperture:

 For 50Hz, the range is 10e-6 to 0.250 second.

 For 60Hz, the range is 8.33e-6 to 0.250 second.

 For frequency and period, 0.01 to 0.273 second.

Remarks This is the aperture setting for the DMM and it applies to the selected function as

indicated by dmm.func (on page 13-137). Querying the aperture when the selected

function does not have an aperture associated with it will cause nil to be returned.

An error is generated if a command is received when dmm.func (on page 13-137) =

"continuity" or "nofunction".

Changing functions with dmm.func (on page 13-137) will reflect the aperture setting for

that function.

The setting for aperture may be adjusted based on what the DMM supports.

Therefore, after setting the aperture, query the value to see if it was adjusted.

If the detector bandwidth (dmm.detectorbandwidth (on page 13-132)) setting is 30 or

less for "acvolts" or "accurrent", then an error message will be generated when trying

to set the aperture for these functions. The detector bandwidth setting is one of three

values (based on input parameter): 3, 30, or 300.

Input parameter Converted value

< 30 3

Between 30 and 300 30

 300 300

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-111

dmm.aperture

Also see dmm.func (on page 13-137)

dmm.nplc (on page 13-152)

Example To set the aperture to 16.67 milliseconds for DC volts:

dmm.func = "dcvolts"

dmm.aperture = 16.67e-3

dmm.appendbuffer()

Function Appends data from reading buffer to USB flash drive.

Usage dmm.appendbuffer('<reading buffer name>', '<filename>',
time_format)

reading buffer name: The name of a previously created DMM reading buffer.

filename: The destination filename located on the USB flash drive.

time_format: This optional parameter indicates how the date and time information

should be appended to the file to the thumb drive. Use the following values for

time_format:

 dmm.buffer.SAVE_RELATIVE_TIME, which saves relative time stamps only

 dmm.buffer.SAVE_FORMAT_TIME, which is the default if no time format

specified and saves dates, times and fractional seconds

 dmm.buffer.SAVE_RAW_TIME, which saves seconds and fractionalseconds

only

 dmm.buffer.SAVE_TIMESTAMP_TIME, which only saves time stamps

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-112 3700S-901-01 Rev. C / July 2008

dmm.appendbuffer()

Remarks The first parameter (reading buffer name) represents the reading buffer to be

saved. The second (filename) is the filename of file to append reading buffer data

to on USB flash drive. The third parameter is optional and indicates how the date and

time information from the buffer should be saved. For options that save more than one

item of time information, each item is comma delimited. For example, the default

format will have <date>, <time>, and <fractional seconds> for each

reading, separated by commas.

This command appends data to an existing file or creates the file, if it doesn't exist.

Because it is appending data, it does not include the header information like the

dmm.savebuffer() (on page 7-10) command. This command doesn't care about the

data format of existing data because it only appends data. Therefore, the index column

entry starts at 1 for each append operation. Like the savebuffer command, it appends

all data in the reading buffer specified.

Errors are generated if the reading buffer does not exist or is not a DMM buffer, or if

the destination filename is not specified correctly. The file extension .csv is

appended to the filename if necessary. Any specified file extension other than .csv

generates errors.

Valid destination filename examples:

dmm.appendbuffer('mybuffer', '/usb1/mydata')

dmm.appendbuffer('mybuffer', '/usb1/mydata.csv')

Invalid destination filename examples:

dmm.appendbuffer('mybuffer', '/usb1/mydata.')

-Invalid extension due to period by no following letters for extension.

dmm.appendbuffer('mybuffer', '/usb1/mydata.txt')

-Invalid extension. Use .csv or do not specify (no period)

dmm.appendbuffer('mybuffer', '/usb1/mydata.txt.csv')

-invalid extension because 2 periods specified (mydata_txt.csv would be

correct).

NOTE The reading buffer files saved to the USB flash drive will always have an

extension of .csv

Example To append readings from valid DMM buffer named mybuffer with default time

information to a file named mydata.csv on the USB flash drive:

dmm.appendbuffer('mybuffer', '/usb1/mydata.csv')

To append readings from mybuffer with relative time stamps to a file named

mydatarel.csv on the USB flash drive:

dmm.appendbuffer('mybuffer', '/usb1/mydatarel.csv',
dmm.buffer.SAVE_RELATIVE_TIME)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-113

dmm.autodelay

Attribute Indicates the auto delay setting for the active DMM function.

Usage To read the autodelay setting:

value = dmm.autodelay

value: Represents the present auto delay setting

To write the autodelay setting:

dmm.autodelay = value

value: Represents the desired auto delay. Set to one of the following:

 dmm.ON or 1 to enable auto delay

 dmm.OFF or 0 to disable auto delay

 dmm.AUTODELAY_ONCE or 2

Remarks This is the auto delay setting for the DMM and it applies to the selected function as

indicated by dmm.func (on page 13-137). Querying the auto delay when the selected

function doesn't have an auto delay setting associated with it will cause nil to be

returned.

An error is generated if command is received when dmm.func = "nofunction".

Also, an error will be generated if the value is invalid.

Changing functions with dmm.func (on page 13-137) will reflect the auto delay setting

for that function.

A setting of dmm.OFF has the DMM take a measurement has fast as possible without

concern of delays needed based on range, function and other settings.

A setting of dmm.ON has the DMM wait the necessary delay for each and every

measurement it takes.

A setting of dmm.AUTODELAY_ONCE will only incur the delay on the first

measurement set or group. This is the factory default and reset setting.

For example:

dmm.autodelay = dmm.AUTODELAY_ONCE

dmm.measurecount = 10

MyReadingBuffer = dmm.makebuffer(1000)

dmm.measure(MyReadingBuffer)

This will only incur the auto delay on the first of the 10 readings. Readings 2 through

10 will occur as fast as possible.

Also see dmm.func (on page 13-137)

Example To enable auto delay for DC volts:

dmm.func = "dcvolts"

dmm.autodelay = dmm.ON

To set auto delay to set once:

dmm.autodelay = dmm.AUTODELAY_ONCE

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-114 3700S-901-01 Rev. C / July 2008

dmm.autorange

Attribute Indicates the auto range setting for the active DMM function.

Usage To read the auto range:

value = dmm.autorange

value: Represents the present auto range setting (1 = ON, 0 = OFF).

To write the auto range:

dmm.autorange = value

value: Represents the desired auto range setting. Use one of the following:

 dmm.ON or 1: Enables auto ranging.

 dmm.OFF or 0: Disables auto ranging.

Remarks This is the auto range setting for the DMM. It applies to the selected function as

indicated by dmm.func (on page 13-137). Querying the auto range when the selected

function does not have an auto range associated with it will cause nil to be returned.

An error is generated if command is received when dmm.func = "temperature",

"frequency", "period", "continuity" or "nofunction". Also, an error will be generated if the

value is out of range.

Changing functions with dmm.func (on page 13-137) reflects the autorange setting for

that function.

The default setting is dmm.ON.

Example To enable auto ranging for 2-wire ohms:

dmm.func = "twowireohms"

dmm.autorange = dmm.ON

dmm.autozero

Attribute Indicates the auto zero setting for the active DMM function.

Usage To read the auto zero status:

value = dmm.autozero

value: Represents the present auto zero setting (1 = ON, 0 = OFF)

To change the auto zero status:

dmm.autozero = value

value: Represents the desired auto zero. Use one of the following:

 dmm.ON or 1 to enable auto zero

 dmm.OFF or 0 to disable auto zero

 dmm.AUTOZERO_ONCE or 2 to refresh backgrounds once and go to auto zero off

setting (0 will be returned if auto zero status is read).

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-115

dmm.autozero

Remarks This is the auto zero setting for the DMM. It applies to the selected function as

indicated by dmm.func (on page 13-137). Querying the auto zero when the selected

function does not have an auto zero setting associated with it will cause nil to be

returned.

An error is generated if command is received when dmm.func =

"nofunction". Also, an error will be generated if the value is invalid.

Changing functions with dmm.func (on page 13-137) will cause that function's auto

zero setting to take effect.

The auto zero once setting will force a refresh of the backgrounds. After doing this

once, the auto zero setting will automatically be set to "OFF". Therefore, querying the

dmm.autozero state after setting dmm.autozero to 2 generates a response of 0 and

not 2.

Example To enable auto zero for DC volts:

dmm.func = "dcvolts"

dmm.autozero = dmm.ON

To force backgrounds to cycle once and set auto zero to OFF:

dmm.autozero = dmm.AUTOZERO_ONCE

print(dmm.autozero) 0.000000000e+000

dmm.buffer.catalog()

Function Creates an iterator for the user-created reading buffers.

Usage for name in dmm.buffer.catalog() do...end

Remarks Accessing the catalog for the user-created local reading buffers allows the user to print

the names of all reading buffers in system. The entries will be enumerated in no

particular order. From this list, one may selectively delete reading buffers from the

system. For example:

for name in dmm.buffer.catalog() do print(name) end

outputs:

buf3

buf5

buf1

Now, with these buffers in the system, to delete buf1:

buf1 = nil

collectgarbage()

Key Note: Don't delete the reading buffers by doing

for name in dmm.buffer.catalog() do name = nil end

This will not delete the reading buffers from the system but make the system appear

locked up and an abort will need to be done to stop the command from running by

pressing the EXIT key on front panel. This occurs because name is a string type

variable and not a reading buffer type.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-116 3700S-901-01 Rev. C / July 2008

dmm.buffer.catalog()

Also see dmm.buffer.info (on page 13-116)

Example To print all user-created local reading buffers in the system:

for name in dmm.buffer.catalog() do

print(name)

end

dmm.buffer.info()

Function Returns the size and capacity of the reading buffer parameter.

Usage size, capacity = dmm.buffer.info(buffer_name)

buffer_name: String representing the reading buffer name to query for size and

capacity

size: Number representing the n attribute of reading buffer parameter

capacity: Number representing the capacity attribute of reading buffer parameter

Remarks This function uses the specified reading buffer input parameter name to find the

corresponding size and capacity to return. Use this function with the

dmm.buffer.catalog() function to output the size and capacity for all reading buffers in

the system.

Also see dmm.buffer.catalog() (on page 13-115)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-117

dmm.buffer.info()

Example Assume the system has the following reading buffers created: buf1, buf2, buf3,

buf4, and buf5.

Now, query the system for the size and capacity of each reading buffer without

formatting the results.

for n in dmm.buffer.catalog() do

print(dmm.buffer.info(n))

end

Output results:

0.000000000e+000 2.000000000e+003

0.000000000e+000 4.000000000e+003

0.000000000e+000 5.000000000e+003

0.000000000e+000 3.000000000e+003

0.000000000e+000 1.000000000e+003

Now, to query the system for the name, size, and capacity of each reading buffer while

formatting the results:

for n in dmm.buffer.catalog() do

size, cap = dmm.buffer.info(n)

print(n, 'size = ' .. size, 'capacity = ' .. cap)

end

Output results:

buf2 size = 0 capacity = 2000

buf4 size = 0 capacity = 4000

buf5 size = 0 capacity = 5000

buf3 size = 0 capacity = 3000

buf1 size = 0 capacity = 1000

dmm.buffer.maxcapacity

Attribute Indicates the overall max capacity for reading buffers in the system.

Usage maxcap = dmm.buffer.maxcapacity

maxcap: Number representing the overall max capacity for reading buffers

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-118 3700S-901-01 Rev. C / July 2008

dmm.buffer.maxcapacity

Remarks Use this attribute to determine what the system maximum capacity for reading buffer

storage is. This value represents the total system reading buffer storage size. A single

reading buffer may be created (dmm.makebuffer() (on page 7-8) with this as its

size or several reading buffers may be created in the system that are smaller in size.

However, the sum total of all reading buffer sizes in the system can't exceed this

maximum. For example,

print(dmm.buffer.maxcapacity) -> 6.500000000e+005

So we have 650,000 readings as our max capacity.

Also see dmm.buffer.usedcapacity (on page 13-118)

dmm.buffer.info (on page 13-116)

Example To read the maximum reading buffer capacity for the system:

MaxBuffCap = dmm.buffer.maxcapacity

dmm.buffer.usedcapacity

Attribute Indicates how much of the maximum capacity for reading buffers in the system is

used.

Usage usedcap = dmm.buffer.usedcapacity

usedcap: Number representing current used capacity for reading buffers in system

Remarks Use this attribute to determine how much of the system maximum capacity for reading

buffer storage is used. This value represents the sum total capacity of all reading

buffers in the system. For example, assume the following commands have been

executed:

buf1 = dmm.makebuffer(300000)

buf2 = dmm.makebuffer(300000)

Therefore:

print(dmm.buffer.usedcapacity) -> 6.000000000e+005

print(dmm.buffer.maxcapacity - dmm.buffer.usedcapacity) ->
5.000000000e+004

This shows that we have 50,000 available for creating additional reading buffers.

Also see dmm.buffer.maxcapacity (on page 13-117)

dmm.buffer.info (on page 13-116)

Example To read the used reading buffer capacity for the system:

UsedBuffCap = dmm.buffer.usedcapacity

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-119

dmm.calibration.ac()

Function Signals the desired AC calibration step on the DMM.

Usage dmm.calibration.ac(step, value)

step: Represents the AC calibration step to perform

value Represents the associated value for this functions step. This is an optional

parameter. Only use if calibration step has a value associated. If no value is needed,

use dmm.calibration.ac(step).

Remarks Use this command to indicate the desired AC calibration step to perform on the DMM.

This command will generate an error if the step is out of sequence, does not exist, or

the calibration is locked. An error will be generated if the calibration step does not

complete successfully or if the value passed is invalid for the step, out of range, or not

needed.

Details AC volts calibration

dmm.calibration.ac(1) ' AC cal step 1

(10mV, 1kHz step)

dmm.calibration.ac(2) ' AC cal step 2

(100mV, 1kHz step)

dmm.calibration.ac(3) ' AC cal step 3

(100mV, 50kHz step)

dmm.calibration.ac(4) ' AC cal step 4

(1V, 1kHz step)

dmm.calibration.ac(5) ' AC cal step 5

(1V, 50kHz step)

dmm.calibration.ac(6) ' AC cal step 6

(10V, 1kHz step)

dmm.calibration.ac(7) ' AC cal step 7

(10V, 50kHz step)

dmm.calibration.ac(8) ' AC cal step 8

(100V, 1kHz step)

dmm.calibration.ac(9) ' AC cal step 9

(100V, 50kHz step)

dmm.calibration.ac(10) ' AC cal step 10

(300V, 1kHz step)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-120 3700S-901-01 Rev. C / July 2008

dmm.calibration.ac()

Details,

continued
AC current calibration

dmm.calibration.ac(11) ' AC cal step 11

(100uA 1kHz step)

dmm.calibration.ac(12) ' AC cal step 12

(1mA 1kHz step)

dmm.calibration.ac(13) ' AC cal step 13

(10mA 1kHz step)

dmm.calibration.ac(14) ' AC cal step 14

(100mA 1kHz step)

dmm.calibration.ac(15) ' AC cal step 15

(1A 1kHz step)

dmm.calibration.ac(16) ' AC cal step 16

(2A 1kHz step)

Example To perform AC calibration step 1 after unlocking calibration:

dmm.calibration.ac(1)

dmm.calibration.dc()

Function Signals the desired DC calibration step on the DMM.

Usage dmm.calibration.dc(step, value)

step: Represents the DC calibration step to perform

value: Represents the associated value for the specified step. This is an optional

parameter; only use if step has a value associated. If no value is needed, use

dmm.calibration.dc(step).

Remarks Use this command to indicate the desired DC calibration step to perform on the DMM.

This command will generate an error if the step is out of sequence, does not exist, or

the calibration is locked. An error will be generated if the calibration step does not

complete successfully or if the value passed is invalid for the step (out of range or not

needed).

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-121

dmm.calibration.dc()

Details DC volts calibration

dmm.calibration.dc(1) ‘ DC cal step 1

(4 wire short circuit step)

dmm.calibration.dc(2) ‘ DC cal step 2

(open circuit step)

dmm.calibration.dc(3, <value>) ‘ DC cal step 3

(+10V step, 9 < value < 11)

dmm.calibration.dc(4, <value>) ‘ DC cal step 4

(-10V step, -11 < value < -9)

dmm.calibration.dc(5, <value>) ‘ DC cal step 5

(+100V step, 90 < value < 110)

Resistance calibration

dmm.calibration.dc(6, <value>) ‘ DC cal step 6

(100 ohm step, 90 < value < 110)

dmm.calibration.dc(7, <value>) ‘ DC cal step 7

(10k ohm step, 9k < value < 11k)

dmm.calibration.dc(8, <value>) ‘ DC cal step 8

(100k ohm step, 90k < value < 110k)

dmm.calibration.dc(9, <value>) ‘ DC cal step 9

(1M ohm step, .9M < value < 1.1M)

DC current calibration

dmm.calibration.dc(10, <value>) ‘ DC cal step 10

(100uA step, 90u < value < 110u)

dmm.calibration.dc(11, <value>) ‘ DC cal step 11

(1mA step, .9m < value < 1.1m)

dmm.calibration.dc(12, <value>) ‘ DC cal step 12

(10mA step, 9m < value < 11m)

dmm.calibration.dc(13, <value>) ‘ DC cal step 13

(100mA step, 90m < value < 110m)

dmm.calibration.dc(14, <value>) ‘ DC cal step 14

(1A step, .9 < value < 1.1)

Example To perform DC calibration step 2 after unlocking calibration:

dmm.calibration.dc(2)

To perform DC calibration step 3 with a value of 10 after unlocking calibration:

dmm.calibration.dc(3, 10)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-122 3700S-901-01 Rev. C / July 2008

dmm.calibration.lock()

Function Locks calibration.

Usage dmm.calibration.lock()

Remarks Use this command to lock an unlocked calibration. Once locked, calibration will need

to be unlocked to be performed again. An error will be generated if this command is

issued when calibration is already locked. This function locks calibration but does not

save calibration data. Calibration data will be lost if it is not saved before locking.

Also see dmm.calibration.save() (on page 13-122)

Example To lock calibration:

dmm.calibration.lock()

dmm.calibration.password

Attribute Sets the password to unlock calibration.

Usage dmm.calibration.password = password

password: A string representing the valid password to unlock calibration.

Remarks Use this attribute to set the password to unlock calibration. Make note of the password

because there is no command to query for the password once set on the system. This

command will generate an error if calibration is locked or if the password string length

is greater than 10 characters.

This item can only be set when calibration is unlocked.

Example To set the password to "MyUnlock" after unlocking calibration with the saved

password:

dmm.calibration.password = "MyUnlock"

dmm.calibration.save()

Function Saves calibration data.

Usage dmm.calibration.save()

Remarks Use this command to save calibration data after performing a calibration. This

command needs to be received before locking calibration, otherwise the data will be

lost. This command will save the calibration constants, adjustment date, and increase

the adjustment count by 1. An error will be generated if this command is issued when

calibration is already locked. This command will save the calibration data with its

present values regardless of errors in the data. The user should not issue a save

unless the calibration procedure was performed with no errors. If no calibration date

was specified (see dmm.adjustment.date (on page 13-109)), the date will be auto

generated based on the system date.

Also see dmm.calibration.lock() (on page 13-121)

dmm.adjustment.date (on page 13-109)

Example To save calibration data:

dmm.calibration.save()

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-123

dmm.calibration.unlock()

Function Unlocks calibration.

Usage dmm.calibration.unlock(password)

password: A string representing the password to unlock calibration.

Remarks Use this command to unlock calibration (if locked). An error will be generated if the

password does not match the one saved. The default password from the factory is

"KI003706". This may be changed with dmm.calibration.password (on page 13-122).

Also see dmm.calibration.password (on page 13-122)

Example To unlock calibration using the default password:

dmm.calibration.unlock("KI003706")

dmm.calibration.verifydate

Attribute Set or queries the calibration verification date in UTC format (number of seconds since

January 1, 1970).

Usage To query the calibration verify date:

CalDate = dmm.calibration.verifydate

CalDate: Represents the number of seconds since January 1, 1970.

To set the calibration verification date based on the current date of the system:

dmm.calibration.verifydate = os.time()

To set the calibration verification date as July 4, 2007:

dmm.calibration.verifydate = os.time({year=2007, month=7,
day = 4})

Remarks This attribute sets and gets the calibration verification date of the DMM in UTC format.

See Lua documentation for formatting options with os.date.

This item can only be set when calibration is unlocked.

Example NOTE Example assumes the set date is July 4, 2007.

To query calibration verification date and format the response as mm/dd/yyyy:

print(os.date("%m/%d/%Y", dmm.calibration.verifydate))

07/04/2007

To query calibration verification date and format the response as mm/dd/yy:

print(os.date("%x", dmm.calibration.verifydate))

07/04/07

dmm.close()

Function Closes the specified channel or channel pattern in preparation for a DMM

measurement.

Usage dmm.close(<ch_list>)

ch_list: string listing the channel or channel pattern to close.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-124 3700S-901-01 Rev. C / July 2008

dmm.close()

Remarks The actions associate with this function includes:

 Opens previously closed channels if they interfere with measurement including

analog backplane relays 1, 2, and common-side ohms on all slots, if needed. The

opening and closing of channels mimics that of channel.exclusiveslotclose() (on

page 13-43). Therefore, when using a for-loop with dmm.close() (on page 13-123)

command, the last channel on each slot will be closed at the end of the for loop

execution. To have additional analog backplane relays 3 through 6 closed, use

them on an alternate slot or if need to be on same slot then create a channel

pattern. To have additional channels closed, then use patterns. Using patterns, you

must specify all items to close, including analog backplane relays 1 and 2. With

patterns, there is no auto manipulation of analog backplane relays 1 and 2 like

there is with channels.

 Any amp channels will open as well. If there is a need to have multiple amp

channels closed at a time then create a channel pattern.

 Next, this command will close the associated channels and analog backplane

relays which include analog backplane relay 1 and 2 as needed based on

configuration associated with channel (see dmm.getconfig() (on page 13-139))

Analog backplane relays specified by channel.setbackplane() (on page 13-70) are

not used.

 This command will configure the DMM based on the configuration associated with

the channel or channel pattern being closed (see dmm.getconfig() (on page 13-

139)). If the configuration is a default name, the function of that configuration will

be reset back to factory default settings. User must create a unique DMM

configuration to avoid using factory default settings when assigning to a channel

(see dmm.configure.set() (on page 13-129) and dmm.setconfig() (on page 13-168)

commands.)

Details An error will be generated if:

 There is a syntax error in parameter string.

 An empty parameter string is specified.

 The specified channel or channel pattern is invalid.

 The channel number does not exist for slot specified.

 The slot is empty.

 The channel pattern does not exist.

 A forbidden item is specified.

 The specified channel does not support being closed (like a digital I/O channel).

 More than 1 channel or channel pattern specified.

 The channel is paired with another bank for a multi-wire application.

 The channel is an analog backplane relay.

 The channel‟s configuration is 'nofunction'.

Once an error is detected, the command stops processing. Channels will open and

close, and the DMM will be reconfigured only if no error is detected. Otherwise,

channels and DMM remain unchanged.

This command allows you to separate the closing of channels from measuring.

Therefore, you may execute any number of commands between the close and

measure commands to satisfy your application needs.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-125

dmm.close()

Also see channel.exclusiveslotclose() (on page 13-43)

channel.getclose() (on page 13-46)

channel.getstate() (on page 13-56)

dmm.open() (on page 13-154)

Example To close Channel 3 on Slot 3 and prepare the DMM for measuring temperature at

'mytemperature' settings:

dmm.setconfig('3003', 'mytemperature')

dmm.close('3003')

To close a channel pattern called mychans and prepare DMM for measuring

'dcvolts' at factory default settings:

dmm.setconfig('mychans', 'dcvolts')

dmm.close('mychans')

dmm.configure.catalog()

Function Creates an iterator for the user-created DMM configurations.

Usage for name in dmm.configure.catalog() do … end

Remarks Accessing the catalog for user DMM configurations allows the user to print or delete all

configurations in volatile memory. The entries will be enumerated in no particular

order. This will only list user-created DMM configurations; it does not list the factory

default configurations.

Also see dmm.configure.delete() (on page 13-125)

dmm.configure.query() (on page 13-126)

dmm.configure.recall() (on page 13-128)

dmm.configure.set() (on page 13-129)

Example To delete all user-created DMM configurations from volatile memory:

for name in dmm.configure.catalog() do

 dmm.configure.delete(name)

end

To print all user-created DMM configurations in volatile memory:

for name in dmm.configure.catalog() do

 print(name)

end

dmm.configure.delete()

Function Deletes the specified user created DMM configuration from memory.

Usage dmm.configure.delete(name)

name: String containing the name of the DMM configuration to delete

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-126 3700S-901-01 Rev. C / July 2008

dmm.configure.delete()

Remarks The function will delete the specified DMM configuration from memory. An error will be

generated if the name specified does not exist as a user configuration. After executing

this command, the specified name will no longer exist as a valid configuration. Deleting

an existing DMM configuration invalidates an existing scan list.

Also see dmm.configure.catalog() (on page 13-125)

dmm.configure.set() (on page 13-129)

dmm.configure.query() (on page 13-126)

dmm.configure.recall() (on page 13-128)

Example To delete a user configuration called myDCV:

dmm.configure.delete("myDCV")

dmm.configure.query()

Function Provides a list of all of the pertinent DMM settings associated with a configuration.

Usage config = dmm.configure.query(myconfig, myseparator)

myconfig: A string with the name for the DMM configuration being listed.

myseparator: String representing the two-character separator between items. This is

an optional parameter. Default value: , (comma-space delimited)

config: Output string representing the DMM attribute settings of myconfig.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-127

dmm.configure.query()

Remarks This function will list the settings contained within the specified configuration,

myconfig, along with the corresponding DMM attributes contained within that

configuration. A nil response is generated if the specified configuration does not exist,

along with an error message stating the referenced name does not exist. The second

parameter, myseparator, is optional. If not specified, the attributes are comma

delimited within the config response. However, if specified, then the attributes will be

delimited by this two-character separator. If more than two characters are specified, an

error message (string is too long) is generated. To query the factory default settings for

a function, use the desired function for the myconfig parameter. Valid default functions

are:

 "dcvolts"

 "acvolts"

 "dccurrent"

 "accurrent"

 "twowireohms"

 "fourwireohms"

 "temperature"

 "frequency"

 "period"

 "continuity"

 "commonsideohms"

 "nofunction"

To query for the settings associated with the active function, call this function with the

myconfig parameter set to "active".

Also see dmm.configure.catalog() (on page 13-125)

dmm.configure.set() (on page 13-129)

dmm.configure.delete() (on page 13-125)

dmm.configure.recall() (on page 13-128)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-128 3700S-901-01 Rev. C / July 2008

dmm.configure.query()

Example To see the DMM attributes within MyDcv separated by commas:

 MyDcvItems = dmm.configure.query("MyDcv")

 print(MyDcvItems)

To see the DMM attributes within MyDcv separated by newlines:

 MyDcvItems = dmm.configure.query("MyDcv", "\n")

 print(MyDcvItems)

To see the factory default settings for DC volts separated by newlines:

 FactoryDCV = dmm.configure.query("dcvolts", "\n")

 print(FactoryDCV)

To see the DMM attributes for the active function separated by newlines:

 ActiveFunc = dmm.configure.query("active", "\n")

 print(ActiveFunc)

dmm.configure.recall()

Function Recalls a user or factory DMM configuration.

Usage dmm.configure.recall(config)

config: A string representing the name of the DMM configuration to recall.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-129

dmm.configure.recall()

Remarks This command will recall a saved DMM configuration from memory. The DMM

attributes associated with that configuration will be updated to reflect the settings in the

configuration. The ones not pertinent will not be changed. The function associated with

the configuration will become the active one. The previous values of those being

updated will be lost. The specified DMM configuration to recall may be a factory one or

user one.

To recall a factory configuration, send the function name as the config value. Valid

factory configurations are:

 "dcvolts"

 "acvolts"

 "dccurrent"

 "accurrent"

 "twowireohms"

 "fourwireohms"

 "temperature"

 "frequency"

 "period"

 "continuity"

 "commonsideohms"

 "nofunction"

Recalling a factory configuration also changes the corresponding DMM function

(dmm.func) and resets that function‟s attributes to their default values. Settings not

pertaining to the function will remain unchanged.

An error is generated if the specified configuration does not exist in memory.

Also see dmm.configure.set() (on page 13-129)

dmm.configure.delete() (on page 13-125)

dmm.configure.query() (on page 13-126)

dmm.func (on page 13-137)

Example To recall a DMM configuration call "mydmm":

dmm.configure.recall("mydmm")

To recall factory default settings for "temperature":

dmm.configure.recall("temperature")

dmm.configure.set()

Function Creates a DMM configuration with the pertinent attributes based on the selected

function and associates it with the specified name.

Usage dmm.configure.set(config)

config: A string with the name for the DMM configuration being created.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-130 3700S-901-01 Rev. C / July 2008

dmm.configure.set()

Remarks If the configuration specified is being used for an existing DMM configuration, then that

configuration will be overwritten with the new configuration settings, if no errors occur.

The previous configuration associated with config will be lost. All channels that have

this configuration as their associated DMM configurations now will start using the new

attribute settings.

This command creates a copy of the selected function along with its pertinent settings

to volatile memory to be recalled later when desired. If a DMM setting is not pertinent it

will not be stored. Therefore, creating a configuration with dcvolts set as the function

will not store the temperature settings. A DMM configuration has only one function

associate with it and enough settings information to support that function and no more.

An error will be generated if the name being used to create a configuration

corresponds to a factory default configuration.

If the specified name already exists then that configuration will be overwritten with the

new information and the previous configuration will be lost.

Executing a dmm.configure.set on an existing DMM configuration will invalidate an

existing scan list (the DMM configuration may or may not be used in the current scan

list). If the configuration being created does not already exist, the scan list will not be

invalidated.

The maximum number of characters for a named configuration is 30. An error will be

generated if the number of characters in config parameter is greater than 30.

Details These are not persistent through a power cycle. User DMM configurations are part of

the data associated with a saved setup.

Also see dmm.configure.catalog() (on page 13-125)

dmm.configure.delete() (on page 13-125)

dmm.configure.query() (on page 13-126)

dmm.configure.recall() (on page 13-128)

Example To create a DMM configuration as "mydmm":

dmm.configure.set("mydmm")

dmm.connect

Attribute Indicates how the DMM relays should be connected to the analog backplane.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-131

dmm.connect

Usage To read the DMM relay connection setting:

value = dmm.connect

value: Represents the present DMM relay connection setting

To write the DMM relay connection setting:

dmm.connect = value

value: Represents the desired DMM relay connection setting

where value is:

 dmm.CONNECT_NONE or 0 to have no relays connected

 dmm.CONNECT_ALL or 7 to have all relays connected (default value)

 dmm.CONNECT_TWO_WIRE or 1 to have 2-wire relay connected

 dmm.CONNECT_FOUR_WIRE or 3 to have 2-wire & sense relays connected

 dmm.CONNECT_TWO_WIRE_AMPS or 5 to 2-wire & amps relay connected

 dmm.CONNECT_AMPS or 4 to have amps relay connected

Remarks Use the value setting, as indicated in the usage section to indicate, which of the DMM

relays you want connected to the backplane. The relays are bitmapped into the lower

3 bits of the value where bit 0, a value of 1, represents the 2-wire relay. Bit 1, a value

of 2, represents the sense relay and bit 3, a value of 4, represents the amp relay. By

setting the appropriate bit to a 1, then that relay is closed. Likewise, setting it to zero,

opens that relay.

An error will be generated only if the sense relay bit is set to a 1 and if the sense relay

with amps is selected. These two settings correspond to a value of 2 or 6, respectively.

Also, an error will be generated for a value less than 0 or greater than 7.

Default setting is dmm.CONNECT_ ALL.

Details Use of this command is not recommended with the exception of special cases. The

default setting should handle most applications.

Example To connect the DMM 2-wire and amp relays to the analog backplane:

dmm.connect = dmm.CONNECT_TWO_WIRE_AMPS

dmm.dbreference

Attribute Indicates the DB reference setting for the DMM in volts.

Usage To read the DB reference:

value = dmm.dbreference

value: Represents the present DB reference setting in volts

To write the DB reference:

dmm.dbreference = value

value: Represents the desired DB reference in volts (1e-7 to 1000)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-132 3700S-901-01 Rev. C / July 2008

dmm.dbreference

Remarks This is the DB reference setting for the DMM and it applies to the selected function as

indicated by dmm.func. Querying this setting when the selected function does not

support it will cause nil to be returned.

Command only applies when dmm.func = "dcvolts" or "acvolts". For all other functions

an error will be generated if this command is received. Also, an error will be generated

if the value is out of range.

Changing functions with dmm.func (on page 13-137) will reflect the DB reference

setting for that function.

Example To set the DB reference to 5 volts for DC volts:

dmm.func = "dcvolts"

dmm.dbreference = 5

dmm.detectorbandwidth

Attribute Indicates the detector bandwidth setting for the DMM in Hertz.

Usage To read the detector bandwidth:

value = dmm.detectorbandwidth

value: Represents the present detector bandwidth setting in Hertz

To write the detector bandwidth:

dmm.detectorbandwidth = value

value: Represents the desired detector bandwidth in Hertz (3 to 300). Values less than

30, the parameter is adjusted to 3. Values between 3 and 300, the parameter is

adjusted to 30. For values greater than 300, the parameter is adjusted to 300.

Remarks This is the AC detector bandwidth setting for the DMM and it applies to the selected

function as indicated by dmm.func. Querying the aperture when the selected function

does not have a detector bandwidth setting associated with it will cause nil to be

returned.

Command only applies when dmm.func = "acvolts" or "accurrent". For all other

functions an error will be generated if this command is received. Also, an error will be

generated if the value is out of range. The default setting for both functions is 300.

Changing functions with dmm.func (on page 13-137) will reflect the detector bandwidth

setting for that function.

When trying to set the aperture for functions with dmm.aperture (on page 13-110)

attribute, if the detector bandwidth setting is 30 or less, an error message will be

generated.

Example To set the detector bandwidth to 100 Hertz for AC volts:

dmm.func = "acvolts"

dmm.detectorbandwidth = 100 -- this gets adjusted to 30

print(dmm.detectorbandwidth) --> "30"

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-133

dmm.displaydigits

Attribute Indicates the display digits setting for the selected DMM function.

Usage To read the display digits setting:

value = dmm.displaydigits

value: Represents the present display digits setting.

To write the display digits setting:

dmm.displaydigits = value

value: Represents the desired display digits setting. Set to one of the following:

dmm.DIGITS_7_5 or 7 to enable 7.5 display digits

dmm.DIGITS_6_5 or 6 to enable 6.5 display digits

dmm.DIGITS_5_5 or 5 to enable 5.5 display digits

dmm.DIGITS_4_5 or 4 to enable 4.5 display digits

dmm.DIGITS_3_5 or 3 to enable 3.5 display digits

Remarks This is the display digits setting for the DMM and it applies to the selected function as

indicated by dmm.func. Querying the setting when the selected function doesn't

support it will cause nil to be returned.

An error will be generated if the value is invalid.

Changing functions with dmm.func has no effect on this setting.

The factory default is 6 because on "dcvolts" and dmm.reset value is dependent on

function resetting.

Example To enable display digits to 7.5 for dcvolts:

dmm.func = "dcvolts"

dmm.displaydigits = dmm.DIGITS_7_5

dmm.drycircuit

Attribute Indicates the dry circuit setting for the selected DMM function.

Usage To read the dry circuit:

value = dmm.drycircuit

value: Represents the present dry circuit setting

To write the dry circuit:

dmm.drycircuit = value

value Represents the desired dry circuit setting. Use one of the following:

dmm.ON or 1 to enable dry circuit.

dmm.OFF or 0 to disable dry circuit

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-134 3700S-901-01 Rev. C / July 2008

dmm.drycircuit

Remarks This is the dry circuit setting for the DMM and it applies to the selected function as

indicated by dmm.func. Querying the setting when the selected function does not

support it will cause nil to be returned.

This command only applies when dmm.func = "fourwireohms" or "commonsideohms".

All other function settings will generate an error if the command is received. Also, an

error will be generated if the value is invalid.

Changing functions with dmm.func (on page 13-137) will reflect the dry circuit setting

for that function.

The factory default and dmm.reset() (on page 13-161) function value is dmm.OFF.

Example To enable dry circuit for 4-wire ohms:

dmm.func = "fourwireohms"

dmm.drycircuit = dmm.ON

dmm.filter.count

Attribute Indicates the filter count setting for the selected DMM function.

Usage To read the filter count:

value = dmm.filter.count

value: Represents the present filter count setting

To write the filter count:

dmm.filter.count = value

value: Represents the desired filter count setting from 1 to 100

Remarks This is the filter count setting for the DMM and it applies to the selected function as

indicated by dmm.func. Querying the setting when the selected function does not

support it will cause nil to be returned.

This attribute indicates the number of measured readings to yield one filtered

measurements when filtered measurements are enabled.

The command will generate an error when dmm.func = "frequency", "period",

"continuity" or "nofunction". Also, an error will be generated if the value is out of range.

Changing functions with dmm.func (on page 13-137) will reflect the filter count setting

for that function.

The dmm.reset() (on page 13-161) function sets the filter count to 10.

Also see dmm.filter.enable (on page 13-134)

dmm.filter.type (on page 13-135)

Example To set the filter count for 2-wire ohms to 5:

dmm.func = "twowireohms"

dmm.filter.count = 5

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-135

dmm.filter.enable

Attribute Enables or disables filtered measurements for the selected DMM function.

Usage To read the filter enable:

value = dmm.filter.enable

value: Represents the present filter enable setting

To write the filter enable:

dmm.filter.enable = value

value: Represents the desired filter enable setting. Use one of the following:

 dmm.ON or 1 to enable filter measurements

 dmm.OFF or 0 to disable filter measurements

Remarks This is the filter enable setting for the DMM and it applies to the selected function as

indicated by dmm.func. Querying the setting when the selected function does not

support it will cause nil to be returned.

This attribute indicates whether filtered measurements are enabled (or not).

Changing functions with dmm.func (on page 13-137) will reflect the filter enable setting

for that function.

The dmm.reset() (on page 13-161) function disables the filter.

Also see dmm.filter.count (on page 13-134), dmm.filter.type (on page 13-135),

dmm.filter.window (on page 13-136)

Example To enable the filter for 2-wire ohms:

dmm.func = "twowireohms"

dmm.filter.enable = dmm.ON

dmm.filter.type

Attribute Indicates the filter type for the DMM measurements on selected DMM functions.

Usage To read the filter type:

value = dmm.filter.type

value: Represents the present filter type setting

To write the filter type:

dmm.filter.type = value

value: Represents the desired filter type for measurements. Use:

 dmm.FILTER_MOVING_AVG or 0 for moving average filter

 dmm.FILTER_REPEAT_AVG or 1 for repeat filtering

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-136 3700S-901-01 Rev. C / July 2008

dmm.filter.type

Remarks This is the filter type setting for the DMM and it applies to the selected function as

indicated by dmm.func (on page 13-137). Querying the setting when the selected

function does not support it will cause nil to be returned.

There are two averaging filter types to choose from: Repeating and moving. For the

repeating (which is power-on default), the stack (filter count) is filled, and the

conversions are averaged to yield a reading. The stack is then cleared, and the

process starts over.

The moving average filter uses a first-in, first-out stack. When the stack (filter count)

becomes full, the measurement conversions are averaged, yielding a reading. For

each subsequent conversion placed into the stack, the oldest conversion is discarded.

The stack is re-averaged, yielding a new reading.

The command will generate an error when dmm.func = "frequency", "period",

"continuity" or "nofunction". Also, an error will be generated if the value is invalid.

Changing functions with dmm.func (on page 13-137) will reflect the filter type setting

for that function.

The dmm.reset() (on page 13-161) function selects the repeat filter.

Also see dmm.filter.count (on page 13-134), dmm.filter.enable (on page 13-134),

dmm.filter.window (on page 13-136)

Example To set the filter type for 2-wire ohms to moving average:

dmm.func = "twowireohms"

dmm.filter.type = dmm.FILTER_MOVING_AVG

dmm.filter.window

Attribute Indicates the filter window for the DMM measurements

Usage To read the filter window:

value = dmm.filter.window

value: Represents the present filter window setting

To write the filter window:

dmm.filter.window = value

value: Represents the desired filter window for measurements. Use a value between 0

and 10 to indicate percent of range.

Remarks This is the filter window setting for the DMM and it applies to the selected function as

indicated by dmm.func (on page 13-137). Querying the setting when the selected

function does not support it will cause nil to be returned.

This attribute indicates the filter window to use in percent of range.

The command will generate an error when dmm.func = "frequency", "period",

"continuity" or "nofunction". Also, an error will be generated if the value is out of range.

Changing functions with dmm.func (on page 13-137) will reflect the filter window

setting for that function.

The dmm.reset() (on page 13-161) function selects a filter window of 0.1.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-137

dmm.filter.window

Also see dmm.filter.enable (on page 13-134), dmm.filter.count (on page 13-134), dmm.filter.type

(on page 13-135).

Example To set the filter window for 2-wire ohms to 0.25:

dmm.func = "twowireohms"

dmm.filter.window = 0.25

dmm.fourrtd

Attribute Indicates the type of 4-wire RTD being used.

Usage To read the 4-wire RTD type:

value = dmm.fourrtd

value: Represents the present type for 4-wire RTD

To write the 4-wire RTD type:

dmm.fourrtd = value

value: Represents the desired type for 4-wire RTD. Use one of the following for

values:

 dmm.RTD_PT100 or 0 for type PT100

 dmm.RTD_D100 or 1 for type D100

 dmm.RTD_F100 or 2 for type F100

 dmm.RTD_PT385 or 3 for type PT385

 dmm.RTD_PT3916 or 4 for type PT3916

 dmm.RTD_USER or 5 for user specified type

Remarks This attribute is only valid when dmm.func = "temperature". All other configurations

generate an error and return nil when queried. When the function is temperature, the

4-wire RTD is only used when the transducer type is 4-wire RTD (see dmm.transducer

(on page 13-173)). For all other transducer types, the setting will be updated but

ignored until the transducer type is set for 4-wire RTD.

Changing functions with dmm.func (on page 13-137) will reflect the 4-wire RTD setting

for that function.

The dmm.reset() (on page 13-161) function will set this attribute to dmm.RTD_PT100.

Example To set the type of 4-wire RTD for PT3916:

dmm.func = "temperature"

dmm.transducer = dmm.TEMP_FOURRTD

dmm.fourrtd = dmm.RTD_PT3916

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-138 3700S-901-01 Rev. C / July 2008

dmm.func

Attribute Sets or indicates the selected function for the DMM.

Usage To read the function:

myfunc = dmm.func

myfunc: string indicating the presently selected DMM function

To write the function:

dmm.func = myfunc

myfunc: string representing the desired active DMM function

Set myfunc to one of the following:

 "dcvolts" or dmm.DC_VOLTS

 "acvolts", or dmm.AC_VOLTS

 "dccurrent" or dmm.DC_CURRENT

 "accurrent" or dmm.AC_CURRENT

 "twowireohms" or dmm.TWO_WIRE_OHMS

 "fourwireohms" or dmm.FOUR_WIRE_OHMS

 "temperature" or dmm.TEMPERATURE

 "frequency" or dmm.FREQUENCY

 "period" or dmm.PERIOD

 "continuity" or dmm.CONTINUITY

 "commonsideohms" or dmm.COMMON_SIDE_OHMS

 "nofunction" or dmm.NO_FUNCTION

Remarks Setting this attribute changes the selected DMM function and indicates how the other

DMM attributes are to be processed. It does not modify any attribute of the DMM

except the one indicating the selected DMM functionality. However, the DMM gets

updated to use the current values for each attribute that pertains to the newly selected

function. The current values being used are the ones from when the selected function

was last active.

An error will be generated if the setting does not match one of the ones specified in

usage. If an error is found, no change is made to the function.

Default setting is "dcvolts". An error will occur if a user DMM configuration name is

used to set the function.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-139

dmm.func

Details The DMM has a flat view of settings in terms of commands. However, internally, the

DMM maintains settings on per function basis. Therefore, to see a setting for a

particular function, you need to change to that function with this command (dmm.func)

and then write or read the desired setting. For example, to see the NPLC setting for

DC volts:

dmm.func = "dcvolts"

dcv_nplc = dmm.nplc

With the DMM internally maintaining settings on a per function basis, you may change

to a function and write your desired settings. Next, change to another function and

write those desired settings. Now, you may switch back to your original function and

those settings will be there. For example:

dmm.func = dmm.DC_VOLTS

dmm.nplc = 0.5

dmm.range = 10

dmm.func = "twowireohms"

dmm.nplc = 0.1

dmm.range = 100000

dmm.func = "dcvolts"

print(dmm.nplc) 0.5

print(dmm.range) 10

dmm.func = dmm.TWO_WIRE_OHMS

print(dmm.nplc) 0.1

print(dmm.range) 100000

Also see dmm.configure.recall() (on page 13-128)

Example To make "temperature" the active DMM function:

dmm.func = "temperature"

dmm.getconfig()

Function Queries for the DMM configurations associated with channel list parameter items.

Usage config =dmm.getconfig(<ch_list>)

ch_list: A string indicating channels and/or channel patterns to query.

config: A comma-delimited string listing DMM configurations associated with items in

ch_list.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-140 3700S-901-01 Rev. C / July 2008

dmm.getconfig()

Remarks Use this command to query for DMM configurations associated with channels or

channel patterns. The response will be a comma-delimited string listing the

configurations in the same order as specified in ch_list.

The configurations listed in the response indicate how the DMM will be configured

when the corresponding channel or channel pattern is closed with the dmm.close() (on

page 13-123) function or used in a scan list without an overriding DMM configuration.

An error will be generated if:

 Syntax error exists in parameter string.

 An empty parameter string is specified.

 A specified channel or channel pattern is invalid.

 Channel number does not exist for slot based on installed card.

 Slot is empty.

 Channel pattern does not exist.

 Channel being specified does not support a configuration setting like a digital I/O

channel or analog backplane relay.

Command processing will stop once an error is detected and a nil response is

generated.

Also see dmm.setconfig() (on page 13-168)

Example To query channels on Slots 1 and 2:

myconfigs = dmm.getconfig('slot1, slot2')

To query Channels 1 to 10 on Slot 3:

myconfigs = dmm.getconfig('3001:3010')

dmm.inputdivider

Attribute Enables or disables the 10M ohm input divider.

Usage To read the input divider state:

value = dmm.inputdivider

value: Represents the present input divider

To write the input divider state:

dmm.inputdivider = value

value: Represents the desired input divider state.

Use one of the following for value:

 dmm.ON or 1

 dmm.OFF or 0

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-141

dmm.inputdivider

Remarks This attribute is only valid when dmm.func = "dcvolts". All other functions generate an

error and return nil when queried.

Changing functions with dmm.func (on page 13-137) will reflect the 10M ohm input

divider for that function.

The factory default and dmm.reset() (on page 13-161) function value is dmm.OFF.

Example To enable the input divider for DC volts:

dmm.func = "dcvolts"

dmm.inputdivider = dmm.ON

dmm.limit[Y].autoclear where Y = 1 or 2 for limit

number

Attribute Indicates if limit Y should be cleared automatically or not.

Usage To read the auto clear setting:

value = dmm.limit[Y].autoclear

To write the auto clear setting:

dmm.limit[Y].autoclear = value

Use one of the following:

 dmm.ON or 1 to enable auto clear

 dmm.OFF or 0 to disable auto clear

Remarks When this attribute is set to dmm.ON,a limit fail condition will track how the

measurements are taken. If the measurement failed limit, then the fail indication will be

set. If the next measurement passes limit, the failed limit condition clears. Therefore, if

scanning or taking a series of measurements with auto cleared enabled for a limit,

then the last measurement limit dictates the fail indication for the limit. To know if any

of a series of measurements failed the limit, then set the auto clear setting to off. When

set to dmm.OFF, a failed indication will not be cleared automatically and will remain

set until it is cleared by dmm.limit[Y].clear() (on page 13-141). The auto clear setting

affects both the high and low limits of Y.

Also see dmm.measure() (on page 13-150)

Example Enable auto clear on limit 2:

dmm.limit[2].autoclear = dmm.ON

dmm.limit[Y].clear() where Y = 1 or 2 for limit

number

Function Clears the test results of limit Y.

Usage dmm.limit[Y].clear()

Remarks This function clears the test results limit.

Also see dmm.limit[Y].high.fail (on page 13-142)

dmm.limit[Y].low.fail (on page 13-143)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-142 3700S-901-01 Rev. C / July 2008

dmm.limit[Y].clear() where Y = 1 or 2 for limit

number

Example To clear the test results for both the high and low limit 2:

dmm.limit[2].clear()

dmm.limit[Y].enable where Y = 1 or 2 for limit

number

Attribute Enable or disable limit Y testing.

Usage To read the state of limit Y:

value = dmm.limit[Y].enable

To write the state of limit Y:

dmm.limit[Y].enable = value

Set value to:

 dmm.ON or 1 to enable limit Y testing

 dmm.OFF or 0 to disable limit Y testing

Remarks When this attribute is set to dmm.ON, the limit Y testing will occur on each

measurement taken by the DMM whether being requested by the dmm.measure

function or being part of a scan sequence. Limit Y testing involves using the low limit

value (specified by dmm.limit[Y].low.value (on page 13-144)) and high limit value

(specified by dmm.limit[Y].high.value (on page 13-143)). If the measurement value

falls outside either of these limits, then the test fails. Else, it passes. To see the test

results, use the dmm.limit[Y].low.fail (on page 13-143) and dmm.limit[Y].high.fail (on

page 13-142) attributes.

To not use limit Y testing, set the attribute to dmm.OFF. The default setting is

dmm.OFF. With limits disabled, limit testing is not performed after taking a

measurement. Therefore, the status bits are not updated, the fail indication does not

get updated and hardware lines are not generated.

Limits are invalid when dmm.func = "continuity". Trying to use the limit commands with

this function selected will generate an error.

Limits may be enabled with this command, but without assigning the events to a

trigger stimulus for a digital I/O line, there will be no hardware indication of limits. See

the dmm.limit[Y].high and dmm.limit[Y].low commands (listed in the "Also See"

section).

Also see dmm.limit[Y].high.value (on page 13-143)

dmm.limit[Y].high.fail (on page 13-142)

dmm.limit[Y].low.fail (on page 13-143)

dmm.limit[Y].low.value (on page 13-144)

Example Enable limit 2 testing:

dmm.limit[2].enable = dmm.ON

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-143

dmm.limit[Y].high.fail where Y = 1 to 2 for limit

number

Attribute Query for the high test results of limit Y.

Usage To read the high fail indication of limit Y:

value = dmm.limit[Y].high.fail

Remarks This attribute returns the results of high limit Y testing:

 0 indicates test passed – measurement within the high limit

 1 indicates test failed – measurement has exceeded high limit

A failed indication does indicate the high limit caused the failure. You may read the

measurement event register of the status model to see fail indication as well. This

response only has meaning if the limit's auto clear setting is disabled and the limit is

enabled. Otherwise, it will indicate the results of the last limit test when enabled.

Example To query the test results of high limit 2:

results = dmm.limit[2].high.fail

dmm.limit[Y].high.value where Y = 1 or 2 for limit

number

Attribute Indicates the high limit value for limit Y.

Usage To read the high value of limit Y:

value = dmm.limit[Y].high.value

To write the high value of limit Y:

dmm.limit[Y].high.value = value

value: Valid range of -4294967295 to +4294967295

Remarks Use this attribute to specify or query the high limit value of limit Y. When limit Y testing

is enabled (dmm.limit[Y].enable (on page 13-142)), the measurement value must be

greater than this value to avoid causing a fail indication for the limit. The default value

is 1 for limit 1 and 2 for limit 2. You may set or get the value regardless if the limit is set

to a digio trigger stimulus (digio.trigger[N].stimulus =

dmm.trigger.EVENT_LIMIT1_HIGH or dmm.trigger. EVENT_LIMIT2_HIGH).

Also see dmm.limit[Y].high.fail (on page 13-142)

dmm.limit[Y].low.value (on page 13-144)

Example To set high limit of limit 2 to 5:

dmm.limit[2].high.value = 5

dmm.limit[Y].low.fail where Y = 1 or 2 for limit

number

Attribute Query for the low test results of limit Y.

Usage To read the low fail indication of limit Y:

value = dmm.limit[Y].low.fail

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-144 3700S-901-01 Rev. C / July 2008

dmm.limit[Y].low.fail where Y = 1 or 2 for limit

number

Remarks This attribute returns the results of low limit Y testing:

 0 indicates test passed – measurement within the low limit

 1 indicates test failed – measurement has exceeded low limit

A failed indication does indicate the low limit caused the failure. You may read the

measurement event register of the status model to see fail indication as well. This

response only has meaning if the limit's auto clear setting is disabled and the limit is

enabled. Otherwise, it will indicate the results of the last limit test when enabled.

Also see digio.trigger[N].stimulus (on page 13-91)

Example To query the test results of low limit 2:

results = dmm.limit[2].low.fail

dmm.limit[Y].low.value where Y = 1 or 2 for limit

number

Attribute Indicates the low limit value for limit Y.

Usage To read the low value of limit Y:

value = dmm.limit[Y].low.value

To write the low value of limit Y:

dmm.limit[Y].low.value = value

value: Valid range is -4294967295 to +4294967295

Remarks Use this attribute to specify or query the low limit value of limit Y. When limit Y testing

is enabled (dmm.limit[Y].enable (on page 13-142)), the measurement value must be

greater than this value to avoid causing a fail indication for the limit. The default value

is -1 for limit 1 and -2 for limit 2. You may set or get the value regardless if the limit is

set to a digio trigger stimulus (digio.trigger[N].stimulus =

dmm.trigger.EVENT_LIMIT1_LOW or dmm.trigger. EVENT_LIMIT2_LOW).

Also see dmm.limit[Y].low.fail (on page 13-143)

dmm.limit[Y].high.value (on page 13-142)

Example To set low limit of limit 2 to -5:

dmm.limit[2].low.value = -5

dmm.linesync

Attribute Attribute indicating whether line sync is used during the measurement.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-145

dmm.linesync

Usage To read the linesync state:

value = dmm.linesync

To write the linesync state:

dmm.linesync = value

value: Set to one of the following:

 dmm.ON or 1 to enable line sync

 dmm.OFF or 0 to disable line sync

Remarks This attribute is only valid when dmm.func = "dcvolts", "dccurrent", "twowireohms",

"fourwireohms", "temperature", "continuity", and "commonsideohms." All other

functions generate an error and return nil when queried.

Changing functions with dmm.func (on page 13-137) will reflect the line sync setting

for that function.

The factory default and dmm.reset() (on page 13-161) function value is dmm.OFF.

Enabling this attribute will synchronize a trigger to the main power line crossings.

Example To enable line sync on "fourwireohms"

dmm.func = "fourwireohms"

dmm.linesync = dmm.ON

dmm.makebuffer()

Function Creates a user buffer for storing readings.

Usage mybuffer = dmm.makebuffer(buffersize)

buffersize: Maximum number of readings that can be stored.

Remarks These reading buffers are allocated dynamically. This function creates the buffers

where buffersize indicates the maximum number of readings the buffer can store.

These buffers can be deleted by setting mybuffer to nil.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-146 3700S-901-01 Rev. C / July 2008

dmm.makebuffer()

Details Once a buffer is created, the attributes are:

 mybuffer.appendmode = 1 (ON) or 0 (OFF) – default 0 over a bus interface,

but 1 for ones created on the front panel

 mybuffer.basetimeseconds returns the seconds for reading buffer entry 1

(read-only attribute).

 mybuffer.basetimefractional returns the seconds and fractional

seconds for reading buffer entry 1 (read-only attribute).

 mybuffer.capacity for overall buffer size

 mybuffer.collecttimestamps = 1(ON) or 0(OFF) – default 1

 mybuffer.collectchannels = 1(ON) or 0(OFF) – default 1

 mybuffer.n for number of readings stored in buffer currently

 mybuffer.timestampresolution returns the resolution of the time

stamping (read-only attribute).

The following buffer bits indicate buffer statuses:

dmm.buffer.LIMIT1_LOW_BIT or 1

dmm.buffer.LIMIT1_HIGH_BIT or 2

dmm.buffer.LIMIT2_LOW_BIT or 4

dmm.buffer.LIMIT2_HIGH_BIT or 8

dmm.buffer.MEAS_OVERFLOW_BIT or 64

dmm.buffer.MEAS_CONNECT_QUESTION_BIT or 128

Details,

continued

To see readings in buffer:

printbuffer(x, y, mybuffer)

x and y: represent reading numbers desired

To see readings, channels, and units:

printbuffer(x, y, mybuffer, mybuffer.channels,
mybuffer.units)

x and y: represent reading numbers desired

To see time stamps in buffer:

mybuffer.collecttimestamps = 1

print(x, y, mybuffer, mybuffer.timestamps)

x and y: represent readings and time stamps for elements x to y

To see seconds, fractional seconds, and relative time stamps,

mybuffer.collecttimestamps = 1

printbuffer(x,y, mybuffer.seconds)

printbuffer(x,y, mybuffer.fractionalseconds)

printbuffer(x,y, mybuffer.relativetimestamps)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-147

dmm.makebuffer()

Also see Reading buffers (on page 7-12) for more information on reading buffer aspects in the

system

Example To create a user reading buffer named mybuffer2, with a capacity of 300:

mybuffer2 = dmm.makebuffer(300)

To delete mybuffer2:

mybuffer2 = nil

dmm.math.enable

Attribute Enable or disable math operation on measurements.

Usage To read the math operation state:

value = dmm.math.enable

To write the math operation state:

dmm.math.enable = value

value: Set to one of the following:

dmm.ON or 1 to enable math operation on measurements

dmm.OFF or 0 to disable math operation on measurements

Remarks When this attribute is set to dmm.ON, the math operation specified by math format

attribute (dmm.math.format (on page 13-147)) will be performed before completing a

measurement.

To not perform a math operation on a measurement, set the attribute to dmm.OFF.

The default setting is dmm.OFF.

Also see dmm.math.format (on page 13-147)

Example To enable math operation on measurements:

dmm.math.enable = dmm.ON

dmm.math.format

Attribute Specifies the math operation to perform on measurements.

Usage To read the math operation type:

value = dmm.math.format

To write the math operation type:

dmm.math.format = value

Set value to:

 dmm.MATH _NONE or 0

 dmm.MATH_MXB or 1

 dmm.MATH_PERCENT or 2

 dmm.MATH_RECIPROCAL or 3

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-148 3700S-901-01 Rev. C / July 2008

dmm.math.format

Remarks To have no math operation performed on the measurements, set this attribute to

dmm.MATH_NONE. Having this equal dmm.MATH_NONE and enabling math

operation (dmm.math.enable), the equivalent effect is disabling math operation.

Use a setting of dmm.MATH_MXB to have

Y = mX + b where X is the normal measurement

m is user entered constant for scale factor (dmm.math.mxb.mfactor (on page 13-149))

b is user entered constant for offset (dmm.math.mxb.bfactor (on page 13-148))

Y is the result

When using relative offset measurement control (dmm.rel.enable (on page 13-159)),

the rel‟ed reading is used for X.

Use a setting of dmm.MATH_PERCENT to have:

where:

Input is the normal measurement (if using REL, it will be the Rel‟ed value)

Reference is user entered constant (dmm.math.percent (on page 13-150))

Percent is the result

Use a setting of dmm.MATH_RECIPROCAL for 1/X operation, where X is normal or

REL‟ed measurement value.

The desired math operation is performed before any of the enabled limit testing.

Default setting is dmm.MATH_PERCENT.

Also see dmm.math.enable (on page 13-147)

dmm.math.mxb.bfactor (on page 13-148)

dmm.math.mxb.mfactor (on page 13-149)

dmm.math.percent (on page 13-150)

Example To enable the reciprocal operation on measurements:

dmm.math.format = dmm.MATH_RECIPROCAL

dmm.math.enable = dmm.ON

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-149

dmm.math.mxb.bfactor

Attribute Specifies the offset for the y = mx + b operation.

Usage To read the offset for the y = mx + b operation:

value = dmm.math.mxb.bfactor

To write the offset for the y = mx + b operation:

dmm.math.mxb.bfactor = value

value: Valid range is -4294967295 to +4294967295

Remarks This attribute specifies the offset (b) for an mx + b operation.

Also see dmm.math.format (on page 13-147)

dmm.math.mxb.mfactor (on page 13-149)

Example To set the offset for mx +b operation to 50:

dmm.math.mxb.bfactor = 50

dmm.math.mxb.mfactor

Attribute Specifies the scale factor for the y = mx + b operation.

Usage To read the scale factor for y = mx + b operation:

value = dmm.math.mxb.mfactor

To write the scale factor for y = mx + b operation:

dmm.math.mxb.mfactor = value

value: Valid range for value is -4294967295 to +4294967295

Remarks This attribute represents the scale factor (m) for an mx + b operation.

Details dmm.math.format (on page 13-147)

dmm.math.mxb.bfactor (on page 13-148)

Example To set the scale factor for mx +b operation to 0.80:

dmm.math.mxb.mfactor = 0.80

dmm.math.mxb.units

Attribute Specifies the unit character for the y = mx + b operation.

Usage To read unit character for y = mx + b operation:

value = dmm.math.mxb.units

To write unit character for y = mx + b operation:

dmm.math.mxb.units = value

value: Valid characters, A to Z, '[' char for micro symbol (as in µV), use ']' char for ohm

symbol (as in) and use '\\' char for degree symbol (as in °).

Remarks This attribute represents the unit character to use when the math format is set for mx +

b (dmm.math.format = dmm.MATH_MXB).

Default setting is „X‟.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-150 3700S-901-01 Rev. C / July 2008

dmm.math.mxb.units

Also see dmm.math.format (on page 13-147)

Example To set the units for mx +b operation to 'Q':

dmm.math.mxb.units = 'Q'

dmm.math.percent

Attribute Specifies the constant to use for the percent operation.

Usage To read the constant for the percent operation:

value = dmm.math.percent

To write the constant for the percent operation:

dmm.math.percent = value

value: Valid range is -4294967295 to +4294967295

Remarks This attribute represents the constant to use for percent.

Also see dmm.math.format (on page 13-147)

Example To constant for percent operation to 1250:

dmm.math.percent = 1250

To acquire the percent constant:

dmm.math.percent = dmm.measure()

dmm.measure()

Function Handles taking measurements on the DMM without using the trigger model.

Usage There are two ways to use this function:

To return the last reading of the measurement process taken and accounted for

by dmm.measurecount:

reading = dmm.measure()

reading: Contains the last reading of the measurement process

To return the last reading of the measurement process while storing all readings

accounted for by dmm.measurecount:

reading = dmm.measure(rbuffer)

rbuffer: A previously created reading buffer object where all the reading(s) will be

stored.

reading: Contains the last reading of the measurement process

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-151

dmm.measure()

Remarks This function returns only the last actual measurement as reading. To use the

additional information acquired while making a measurement, a reading buffer must be

used. If the instrument is configured to return multiple readings when a measurement

is requested, all readings will be available in the reading buffer if one is designated

and has been created (see rbuffer in Usage), but only the last reading will be returned

as reading.

The dmm.measurecount (on page 13-151) attribute determines how many

measurements are performed. When using a buffer, it also determines the number of

readings to store in the buffer.

Also see dmm.makebuffer() (on page 7-8)

dmm.measurecount (on page 13-151)

dmm.measurewithtime() (on page 13-151)

Example To perform 100 DC voltage measurements and store them in a buffer called "mybuff":

mybuff = dmm.makebuffer(100)

dmm.func = "dcvolts"

dmm.measurecount = 100

dmm.measure(mybuff)

dmm.measurecount

Attribute Indicates the number of measurements to take when a measurement is requested by

dmm.measure.

Usage To read measure count:

count = dmm.measurecount

To write measure count:

dmm.measurecount = count

count: Number of measurements. Maximum value: 450000

Remarks This attribute controls the number of measurements taken any time a measurement is

requested. When using a reading buffer with a measure command, the count also

controls the number of readings to be stored.

It has no effect on the trigger model, and the trigger model does not affect this setting.

The factory default and dmm.reset() (on page 13-161) value is 1.

Also see dmm.makebuffer() (on page 7-8)

dmm.measure() (on page 13-150)

Example To set the measure count on DMM to 50:

dmm.measurecount = 50

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-152 3700S-901-01 Rev. C / July 2008

dmm.measurewithtime()

Function Handles taking measurements on the DMM without using the trigger model and

returns the reading along with time information.

Usage There are two ways to use this function:

 To return the last reading of the measurement process taken and accounted for by

dmm.measurecount:

reading, seconds, fractional = dmm.measurewithtime()

reading: Contains the last reading of the measurement process

seconds: Contains seconds

fractional: Contains fractional seconds

 To return the last reading of the measurement process while storing all readings

accounted for by dmm.measurecount:

reading, seconds, fractional =
dmm.measurewithtime(rbuffer)

reading: Contains the last reading of the measurement process

seconds: Contains seconds

fractional: Contains fractional seconds

Remarks This function returns only the last actual measurement and time information as

reading, seconds, and fractional seconds. To use the additional information acquired

while making a measurement, a reading buffer must be used. If the instrument is

configured to return multiple readings when a measurement is requested, all readings

will be available in rbuffer if one is provided, but only the last measurement and time

information will be returned.

The dmm.measurecount (on page 13-151) attribute determines how many

measurements are performed. When using a buffer, it also determines the number of

readings to store in the buffer.

Also see dmm.makebuffer() (on page 7-8)

dmm.measure() (on page 13-150)

dmm.measurecount (on page 13-151)

Example To perform 100 DC voltage measurements and store then in a buffer called mybuff,

and print the last measurement and time information:

mybuff = dmm.makebuffer(100)

dmm.func = "dcvolts"

dmm.measurecount = 100

reading, seconds, fractional = dmm.measurewithtime(mybuff)

print(reading, seconds, fractional) ®

-1.064005867e-002 1.779155900e+007 1.245658350e-001

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-153

dmm.nplc

Attribute Indicates the integration rate in line cycles for the DMM.

Usage To read the integration rate:

value = dmm.nplc

value: Represents the present integration rate in line cycles

To write the integration rate:

dmm.nplc = value

value: Represents the desired integration in line cycles:

 60 Hertz: 0.0005 to 15

 50 Hertz: 0.0005 to 12

Remarks This is the integration rate setting for the DMM in line cycles. It applies to the selected

function as indicated by dmm.func (on page 13-137). Querying the setting when the

selected function does not support it will cause nil to be returned.

The command generates an error when dmm.func is:

 "frequency"

 "period"

 "continuity"

 "nofunction"

Also, an error will be generated if the value is out of range and dependent on the line

frequency.

Changing functions with dmm.func (on page 13-137) will reflect the integration rate for

that function.

The setting for NPLC may be adjusted based on what the DMM supports. Therefore,

after setting the NPLC, query the value to see if it was adjusted.

The factory default and dmm.reset() (on page 13-161) function value is 1.

Also see dmm.aperture (on page 13-110)

Example To set the NPLC for 2-wire ohms to 0.5:

dmm.func = "twowireohms"

dmm.nplc = 0.5

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-154 3700S-901-01 Rev. C / July 2008

dmm.offsetcompensation

Attribute Indicates the offset compensation setting for the DMM.

Usage To read the offset compensation:

value = dmm.offsetcompensation

value: Represents the present offset compensation setting.

To write the offset compensation:

dmm.offsetcompensation = value

value: Represents the desired offset compensation setting. Set to one of the following:

 dmm.ON or 1 to enable offset compensation

 dmm.OFF or 0 to disable offset compensation

Remarks This is the offset compensation setting for the DMM, and it applies to the selected

function as indicated by dmm.func (on page 13-137). Querying the setting when the

selected function does not support it will cause nil to be returned.

The command applies when dmm.func is:

 "fourwireohms"

 "commonsideohms"

 "temperature"

When dmm.func = "temperature", the command applies only when the transducer type

is 3 or 4-wire RTD (for all others, it is ignored). Set this command like you would for 4-

wire ohm measurements.

All other function settings will generate an error if the command is received. Also, an

error will be generated if the value is invalid.

Changing functions with dmm.func (on page 13-137) will reflect the offset

compensation setting for that function.

The factory default and dmm.reset() (on page 13-161) function value is dmm.OFF.

Example To enable offset compensation for 4-wire ohms:

dmm.func = "fourwireohms"

dmm.offsetcompensation = dmm.ON

dmm.open()

Function Opens the specified channel or channel pattern.

Usage dmm.open(<ch_list>)

ch_list: string listing the channel or channel pattern to open.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-155

dmm.open()

Remarks Aspects associated with this function include:

 Opening the channels and analog backplane relays for a measuring function.

 The configuration (see dmm.getconfig() (on page 13-139)) associated with the

specified channel dictates whether a paired channel is open or not. For channel

patterns, the channels associated with it will be opened. Channel patterns don‟t

support the concept of pairing channels for multi-wire measurements.

 The configuration (see dmm.getconfig() (on page 13-139)) will dictate whether

analog backplane relay 1 and 2 are opened.

 Does not use analog backplane relays specified by channel.setbackplane() (on

page 13-70) function or poles setting set by channel.setpole() (on page 13-79)

function.

An error will be generated if:

 There is a syntax error in parameter string.

 An empty parameter string is specified.

 The specified channel or channel pattern is invalid.

 A channel number does not exist for installed card in slot specified.

 A slot is empty.

 The channel pattern does not exist.

 Does not support being closed like a digital I/O channel.

 Channel is paired with another bank for a multi-wire application.

 Channel‟s configuration is 'nofunction'.

 More than one channel or channel pattern is specified in parameter.

Once an error is detected, the command stops processing. Channels open only if no

error is detected. Otherwise, channels remain unchanged.

This command allows you to separate the opening of channels with closing in a

measuring aspect. Therefore, you may execute any number of commands between

the open and close commands to satisfy your application needs.

Also see channel.getclose() (on page 13-46)

channel.getstate() (on page 13-56)

dmm.close() (on page 13-123)

Example To open Channel 3 on Slot 3:

dmm.open('3003')

To open a channel pattern called 'mychans':

dmm.open('mychans')

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-156 3700S-901-01 Rev. C / July 2008

dmm.opendetector

Attribute Indicates the state of the temperature or 4-wire ohms open lead detector being used.

Usage To read the open lead detector state:

value = dmm.opendetector

value: Represents the present open detector state

To write the open lead detector state:

dmm.opendetector = value

value: Represents the desired open detector state. Set to one of the following:

 dmm.ON or 1 to enable the open lead detector

 dmm.OFF or 0 to disable the open lead detector

Remarks This attribute is valid when dmm.func = "temperature". It also is valid when dmm.func

= "fourwireohms". All other configurations generate an error and return nil when

queried (including "twowireohms"). When on temperature, the open detector setting is

only used when the transducer type is thermocouple. For all other transducer types, it

is ignored.

Changing functions with dmm.func (on page 13-137) will reflect the open detector

setting for that function.

The factory default and dmm.reset() (on page 13-161) function value is dmm.OFF.

Example To enable the thermocouple open detector:

dmm.func = "temperature"

dmm.transducer = dmm.TEMP_THERMOCOUPLE

dmm.opendetector = dmm.ON

dmm.range

Attribute Indicates the range of DMM for the selected function.

Usage To read the range for the selected function:

value = dmm.range

value: Represents the present range for the selected function.

To write the range for the selected function:

dmm.range = value

value: Represents the expected measurement value or desired range for the selected

function.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-157

dmm.range

Remarks This attribute is the range setting for the selected function (see dmm.func (on page 13-

137)) of the DMM. Querying the range when the selected function does not have a

range associated with it will cause nil to be returned.

The range will be selected based on which one best suits the expected measure value

(value parameter). The command is applicable when dmm.func = "dcvolts" (0 to 303,

default 303), "acvolts" (0 to 303, default 303), "dccurrent" (0 to 3.1, default 3.1),

"accurrent" (0 to 3.1, default 3.1), "twowireohms" (0 to 120e6, default 120e6),

"fourwireohms" (0 to 120e6, default 120e6) and "commonsideohms" (0 to 120e6,

default 120e6).

NOTE The values in parentheses represent the valid range setting for each

function.

An error will be generated if the command is received when dmm.func (on page 13-

137) is:

 "temperature"

 "frequency"

 "period"

 "continuity"

 "nofunction".

Also, an error will be generated if parameter value does not make sense for selected

function.

Changing functions with dmm.func (on page 13-137) will reflect the range setting for

that function.

The factory default and dmm.reset() (on page 13-161) function value is 303 because

the default function is "dcvolts".

Set this value to the expected measurement value and the unit will select the range

appropriate to measure that value. Setting the range with this attribute will

automatically disable the auto range setting (dmm.autorange (on page 13-113)

command).

Example To set the range for DC volts to 10:

dmm.func = "dcvolts"

dmm.range = 5

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-158 3700S-901-01 Rev. C / July 2008

dmm.refjunction

Attribute Indicates the type of the thermocouple reference junction.

Usage To read the reference junction type:

value = dmm.refjunction

value: Represents the present reference junction type.

To write the reference junction type:

dmm.refjunction = value

value: Represents the desired reference junction type. Use one of the following

values:

 dmm.REF_JUNCTION_SIMULATED or 0

 dmm.REF_JUNCTION_INTERNAL or 1

 dmm.REF_JUNCTION_EXTERNAL or 2

Remarks This attribute is only valid when dmm.func = "temperature". All other

configurations generate an error and return nil when queried. When on temperature,

the setting is only applicable when the transducer type is set for thermocouple. For all

other transducer types, the reference junction may be set, but will be ignored until the

transducer type is set to thermocouple.

Changing functions with dmm.func (on page 13-137) will reflect the reference junction

setting for that function.

The factory default and dmm.reset() (on page 13-161) function value is

dmm.REF_JUNCTION_INTERNAL.

Details The default value is internal; change to simulated or external as needed.

Example To enable the simulated thermocouple reference junction:

dmm.func = "temperature"

dmm.transducer = dmm.TEMP_THERMOCOUPLE

dmm.refjunction = dmm.REF_JUNCTION_SIMULATED

dmm.rel.acquire()

Function Acquires an internal measurement to store as the relative (REL) level value.

Usage rel_value = print(dmm.rel.acquire())

rel_value: The internal measurement acquired for the relative (REL) level value.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-159

dmm.rel.acquire()

Remarks This function triggers the DMM to take a new measurement for the selected function.

This measurement will then be stored as the new REL level setting.

This function will return the acquired reading or nil, if an error occurred. An error will be

generated if the active function does not support a REL level setting or the DMM is

unable to take the measurement. When an error occurs, the REL level setting

maintains the last valid setting.

The command will generate an error when dmm.func (on page 13-137) equals one of

the following:

 "continuity"

 "nofunction"

After executing this command, use the dmm.rel.level (on page 13-160) attribute to see

the last REL level value that was acquired or set by the user. Setting the REL level

with this acquire function does not use the math, limit, and filter settings. It will be a

calibrated reading as if these settings are disabled.

Also see dmm.rel.level (on page 13-160)

Example To acquire a REL level value for temperature:

dmm.func = "temperature"

rel_value = dmm.rel.acquire()

dmm.rel.enable

Attribute Enables or disables relative measurement control for the DMM.

Usage To read the relative control state:

value = dmm.rel.enable

value: Represents the present relative enable setting.

To write the relative control state:

dmm.rel.enable = value

value: Represents the desired relative measurement control setting. Set to one of the

following:

dmm.ON or 1 to enable relative measurements

dmm.OFF or 0 to disable relative measurements

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-160 3700S-901-01 Rev. C / July 2008

dmm.rel.enable

Remarks This is the relative measurement control setting for the DMM and it applies to the

selected function as indicated by dmm.func (on page 13-137). Querying the setting

when the selected function does not support it will cause nil to be returned.

When relative measurements are enabled, all subsequent measured readings will be

offset by the specified relative offset (see dmm.rel.level (on page 13-160)).

Specifically, each returned measured relative reading will be the result of the following

calculation:

Relative reading = Actual measured reading – Relative offset value

The command will generate an error when dmm.func equals one of the following:

 "continuity"

 "nofunction"

Also, an error will be generated if the value is out of range for the selected function.

Changing functions with dmm.func (on page 13-137) will reflect the relative enable

setting for that function.

The factory default and dmm.reset() (on page 13-161) function value is dmm.OFF.

Also see dmm.rel.level (on page 13-160)

Example To enable the relative measurements for AC current:

dmm.func = "accurrent"

dmm.rel.enable = dmm.ON

dmm.rel.level

Attribute The offset value for relative measurements for the DMM.

Usage To read the relative offset level:

value = dmm.rel.level

value: Represents the present relative offset level.

To write the relative offset level:

dmm.rel.level = value

value: Represents the desired relative offset level.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-161

dmm.rel.level

Remarks This is the relative offset level setting for the DMM. It applies to the selected function

as indicated by dmm.func (on page 13-137). Querying the setting when the selected

function does not support it will cause nil to be returned.

When relative measurements are enabled (see dmm.rel.enable (on page 13-159)), all

subsequent measured readings will be offset by the specified relative offset value.

Specifically, each returned measured relative reading will be the result of the following

calculation:

Relative reading = Actual measured reading – Relative offset value

The command will generate an error when dmm.func (on page 13-137) = "continuity"

or "nofunction". Also, an error will be generated if the value is out of range for the

selected function.

Changing functions with dmm.func (on page 13-137) will reflect the relative level offset

setting for that function.

The factory default and dmm.reset() (on page 13-161) function value is 0.

NOTE Using dmm.rel.level = dmm.measure() to set the REL level will

include math, limits, and filter operations, if enabled. However, using the

dmm.rel.acquire() (on page 13-158) function to set the REL level will not

use these operations, even if enabled.

Also see dmm.rel.enable (on page 13-159)

Example To perform an AC current measurement and use it as the relative offset value:

dmm.func = "accurrent"

dmm.rel.level = dmm.measure() -- see NOTE in Remarks

To acquire a relative offset value:

rel_value = dmm.measure() -- see NOTE in Remarks

dmm.rel.level = rel_value

To acquire a fresh REL level after using dmm.measure() (on page 13-150) to set one:

dmm.rel.enable = dmm.OFF

dmm.rel.level = dmm.measure() -- see NOTE in Remarks

dmm.rel.enable = dmm.ON

To acquire a REL level value for temperature (using dmm.rel.acquire() (on page 13-

158)):

dmm.func = "temperature"

rel_value = dmm.rel.acquire()

dmm.reset()

Function Resets DMM aspects of the system, as indicated by the parameter.

Usage dmm.reset(scope)

scope: A string equaling "active" for active function only to factory default settings or

"all" for all functions back to factory default settings.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-162 3700S-901-01 Rev. C / July 2008

dmm.reset()

Remarks When the parameter equals "active", this command will only reset the DMM aspects of

the system for the active function only. Settings affects are:

 Active dmm function (dmm.func (on page 13-137)) has its pertinent attributes reset

to factory default values.

 Other functions are unchanged.

 DMM configurations (dmm.setconfig() (on page 13-168) and dmm.getconfig() (on

page 13-139)) are unchanged. The rest of the settings are unaffected. To reset the

entire system to factory default settings, use the reset() (on page 13-230)

command. To reset all functions of the DMM, use the dmm.reset("all") command.

When the parameter equals "all", this command will only reset the dmm aspects of the

system to factory default settings. Settings affected are

 Selected dmm function (dmm.func (on page 13-137)) goes to "dcvolts".

 Dmm settings go to defaults for "dcvolts".

 Each other function is reset back to its factory default settings as well.

 The rest of the settings are unaffected. To reset the entire system to factory default

settings, use the reset command. To reset the active function, use this command

with the parameter set to "active".

Also see reset() (on page 13-230)

Example To perform a reset on temperature only:

dmm.func = "temperature"

dmm.reset("active")

To perform a reset on all DMM functions:

dmm.reset("all")

dmm.rtdalpha

Attribute Indicates the user type RTD alpha value.

Usage To read the user type RTD alpha value:

value = dmm.rtdalpha

value: Represents the present user alpha value.

To write user type RTD alpha value:

dmm.rtdalpha = value

value: Represents the desired user alpha value.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-163

dmm.rtdalpha

Remarks This attribute is only valid when dmm.func = "temperature". All other

configurations generate an error and return nil when queried. Errors are also

generated if the parameter value is out of range. The valid range for user alpha is 0 to

0.01. For temperature, this setting is used when the transducer type is set to 3 or 4-

wire RTD. For other transducer types, the setting will be set but ignored until the

transducer type is set to an RTD type.

NOTE The following attributes share common settings and apply to both 3 and 4-

wire RTDs: dmm.rtdalpha, dmm.rtdbeta (on page 13-163), dmm.rtddelta

(on page 13-164), and dmm.rtdzero (on page 13-165). Therefore, when

both 3 and 4-wire RTDs are set to USER type for RTD, switching

transducers between 3 and 4 will cause both to use the same settings (for

example, dmm.rtdalpha, dmm.rtdbeta). If unique settings are desired, they

must be changed, or use two different DMM configurations.

Changing functions with dmm.func (on page 13-137) will reflect the RTD alpha setting

for that function.

The factory default and dmm.reset() (on page 13-161) function value is 0.00385055.

Also see dmm.rtdbeta (on page 13-163)

dmm.rtddelta (on page 13-164)

dmm.rtdzero (on page 13-165)

Example To set user alpha constant for RTD to 0.005:

dmm.func = "temperature"

dmm.transducer = dmm.TEMP_THREERTD or dmm.TEMP_FOURRTD

dmm.rtdalpha = 0.005

dmm.rtdbeta

Attribute Indicates the user beta value for user type RTD.

Usage To read the user type RTD beta value:

value = dmm.rtdbeta

value: Represents the present user type RTD beta value.

To write the user type RTD beta value:

dmm.rtdbeta = value

value: Represents the desired user type RTD beta value.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-164 3700S-901-01 Rev. C / July 2008

dmm.rtdbeta

Remarks This attribute is only valid when dmm.func = "temperature". All other

configurations generate an error and return nil when queried. Also, get errors if

parameter value out of range. The valid range for user beta is 0 to 1.0. For

temperature, this setting is used when the transducer type is set to 3 or 4-wire RTD.

For other transducer types, the setting will be set but ignored until the transducer type

is set to an RTD type.

NOTE The following attributes share common settings and apply to both 3 and 4-

wire RTDs: dmm.rtdalpha (on page 13-162), dmm.rtdbeta, dmm.rtddelta

(on page 13-164), and dmm.rtdzero (on page 13-165). Therefore, when

both 3 and 4-wire RTDs are set to USER type for RTD, switching

transducers between 3 and 4 will cause both to use the same settings (for

example, dmm.rtdalpha, dmm.rtdbeta). If unique settings are desired, they

must be changed, or use two different DMM configurations.

Changing functions with dmm.func (on page 13-137) will reflect the RTD beta setting

for that function.

The factory default and dmm.reset() (on page 13-161) function value is 0.111.

Also see dmm.rtdalpha (on page 13-162)

dmm.rtddelta (on page 13-164)

dmm.rtdzero (on page 13-165)

Example To set user beta constant for RTD to 0.3:

dmm.func = "temperature"

dmm.transducer = dmm.TEMP_THREERTD or dmm.TEMP_FOURRTD

dmm.rtdbeta = 0.3

dmm.rtddelta

Attribute Indicates the user type RTD delta value.

Usage To read the user type RTD delta value:

value = dmm.rtddelta

value: Represents the present user type RTD delta value.

To write the user type RTD delta value:

dmm.rtddelta = value

value: Represents the user type RTD delta value.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-165

dmm.rtddelta

Remarks This attribute is only valid when dmm.func = "temperature". All other

configurations generate an error and return nil when queried. Also, get errors if

parameter value out of range. The valid range for user delta is 0 to 5. For temperature,

this setting is used when the transducer type is set to 3 or 4-wire RTD. For other

transducer types, the setting will be set, but ignored until the transducer type is for an

RTD one.

NOTE The following attributes share common settings and apply to both 3 and 4-

wire RTDs: dmm.rtdalpha (on page 13-162), dmm.rtdbeta (on page 13-

163), dmm.rtddelta, and dmm.rtdzero (on page 13-165). Therefore, when

both 3 and 4-wire RTDs are set to USER type for RTD, switching

transducers between 3 and 4 will cause both to use the same settings (for

example, dmm.rtdalpha, dmm.rtdbeta). If unique settings are desired, they

must be changed, or use two different DMM configurations.

Changing functions with dmm.func (on page 13-137) will reflect the RTD delta setting

for that function.

The factory default and dmm.reset() (on page 13-161) function value is 1.507.

Also see dmm.rtdalpha (on page 13-162)

dmm.rtdbeta (on page 13-163)

dmm.rtdzero (on page 13-165)

Example To set user delta constant for RTD to 3:

dmm.func = "temperature"

dmm.transducer = dmm.TEMP_THREERTD or dmm.TEMP_FOURRTD

dmm.rtddelta = 3

dmm.rtdzero

Attribute Indicates the user type RTD zero value.

Usage To read the user type RTD zero value:

value = dmm.rtdzero

value: Represents the present user type RTD zero value.

To write the user type RTD zero value:

dmm.rtdzero = value

value: Represents the desired user type RTD zero value.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-166 3700S-901-01 Rev. C / July 2008

dmm.rtdzero

Remarks This attribute is only valid when dmm.func = "temperature". All other

configurations generate an error and return nil when queried. Errors will also be

generated if the parameter value is out of range. The valid range for user zero is 0 to

10000. For temperature, this setting is used when the transducer type is set to 3 or 4-

wire RTD. For other transducer types, the setting will be set but ignored until the

transducer type is set for an RTD type.

NOTE The following attributes share common settings and apply to both 3 and 4-

wire RTDs: dmm.rtdalpha (on page 13-162), dmm.rtdbeta (on page 13-

163), dmm.rtddelta (on page 13-164), and dmm.rtdzero. Therefore, when

both 3 and 4-wire RTDs are set to USER type for RTD, switching

transducers between 3 and 4 will cause both to use the same settings (for

example, dmm.rtdalpha, dmm.rtdbeta). If unique settings are desired, they

must be changed, or use two different DMM configurations.

Changing functions with dmm.func (on page 13-137) will reflect the RTD zero setting

for that function.

The factory default and dmm.reset() (on page 13-161) function value is 100.

Also see dmm.rtdalpha (on page 13-162)

dmm.rtdbeta (on page 13-163)

dmm.rtddelta (on page 13-164)

Example To set user zero constant for RTD to 300:

dmm.func = "temperature"

dmm.transducer = dmm.TEMP_THREERTD or dmm.TEMP_FOURRTD

dmm.rtdzero = 300

dmm.savebuffer()

Function Saves data from the specified dynamically-allocated buffer to the USB flash drive

using the specified filename.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-167

dmm.savebuffer()

Usage dmm.savebuffer('<reading buffer name>', '<filename>',

time_format)

reading buffer name: The name of a previously created DMM reading buffer,

specified as a string. Do not pass the reading buffer name without quotes because this

generates a data type error. For example, if the reading buffer is mybuffer, then the

buffer name should be specified as "mybuffer" and not mybuffer.

filename: The destination filename located on the USB flash drive. The filename must

specify the full path (including /usb1/) and include the name of file with the file

extension .csv. If no file extension is specified, .csv will be added to filename.

time_format: This optional parameter indicates what date and time information should

be saved in the file to the thumb drive. Use the following values for time_format:

 dmm.buffer.SAVE_RELATIVE_TIME, which saves relative time stamps only

 dmm.buffer.SAVE_FORMAT_TIME, which is the default if no time format

specified and saves dates, times and fractional seconds

 dmm.buffer.SAVE_RAW_TIME, which saves seconds and fractional seconds

only

 dmm.buffer.SAVE_TIMESTAMP_TIME, which only saves time stamps

For options that save more than one item of time information, each item is comma

delimited. For example, dmm.buffer.SAVE_FORMAT_TIME will have <date>,

<time>, and <fractional seconds> for each reading.

Remarks The first parameter (reading buffer name) represents the reading buffer to be saved.

The second (filename) is the filename of file to save reading buffer data to on USB

flash drive. The third parameter is optional and indicates how the date and time

information from the buffer should be saved. For options that save more than one item

of time information, each item is comma delimited. For example, the default format will

have <date>, <time>, and <fractional seconds) for each reading.

Errors will be generated if reading buffer does not exist or is not a DMM buffer, or if the

destination filename is not specified correctly. The .csv is appended to the filename

(unless the .csv is specified by user). Any specified file extension other than .csv

will generate errors.

Valid destination filename examples:

dmm.savebuffer('mybuffer', '/usb1/mydata')

dmm.savebuffer('mybuffer', '/usb1/mydata.csv')

Invalid destination filename examples:

dmm.savebuffer('mybuffer', '/usb1/mydata.')

-Invalid extension due to period by no following letters for extension.

dmm.savebuffer('mybuffer', '/usb1/mydata.txt')

-Invalid extension. Use .csv or do not specify (no period)

dmm.savebuffer('mybuffer', '/usb1/mydata.txt.csv')

-invalid extension because 2 periods specified (mydata_txt.csv would be

correct).

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-168 3700S-901-01 Rev. C / July 2008

dmm.savebuffer()

Example To save readings from valid DMM buffer named mybuffer with default time information

to a file named mydata.csv on the USB flash drive:

dmm.savebuffer('mybuffer', '/usb1/mydata.csv')

To save readings from mybuffer with relative time stamps to a file named

mydatarel.csv on the USB flash drive:

dmm.savebuffer('mybuffer', '/usb1/mydatarel.csv',
dmm.buffer.SAVE_RELATIVE_TIME)

dmm.setconfig()

Function Sets the DMM configuration associated with items specified in parameter list.

Usage dmm.setconfig(<ch_list>, dmm_config)

ch_list: A string listing the channels and channel patterns to modify.

dmm_config: Name of DMM configuration to assign to items in ch_list.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-169

dmm.setconfig()

Remarks This command will associate the specified DMM configuration (dmm_config) with

the items specified in the parameter channel list (ch_list). The configuration being

assigned determines whether analog backplane relay 1 or 2 get used, based on the

function associated with the configuration when being assigned to a channel. For

channel patterns, the pattern image must include the desired analog backplane relays

along with the desired channels. This command has no effect on the poles setting for a

channel (channel.setpole() (on page 13-79)) or analog backplane relays specified by

channel.setbackplane() (on page 13-70) function.

An error will be generated if:

 A syntax error exists in either parameter.

 An empty parameter string for either parameter is specified.

 There is more than one DMM configuration is specified.

 A specified channel does not exist for the card installed on the slot specified.

 An empty slot is specified.

 The desired DMM functionality is not supported.

 A specified channel is forbidden to close.

 Is an analog backplane relay.

 The specified channel pattern does not exist.

 A non-existing DMM configuration was specified.

 A matrix channel is in channel list parameter (for example, the Model 3730 is 6 x

16 high density matrix card, so an error will be generated if a Model 3730 channel

is included in the channel list parameter).

Once an error is detected, the command stops processing and no channels or channel

patterns are modified. The DMM configuration for channels or channel patterns update

only if no syntax errors exist in parameter and all channels and channel patterns are

valid for having desired DMM configuration.

The factory-default setting is 'nofunction'. This setting must be changed to use a

channel with the dmm.close() (on page 13-123) function. The dmm.close function

generates an error if the associated function of the DMM configuration is

'nofunction'.

Also see dmm.getconfig() (on page 13-139)

channel.setpole() (on page 13-79)

Example To assign 'mydcv' to Channels 1 to 100 on Slots 1 to 3:

dmm.setconfig('1001:3100', 'mydcv')

To assign factory default settings for 'dcvolts' to channels on Slot 5:

dmm.setconfig('slot5', 'dcvolts')

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-170 3700S-901-01 Rev. C / July 2008

dmm.simreftemperature

Attribute Indicates the simulated reference temperature for thermocouples.

Usage To read the simulated reference temperature:

value = dmm.simreftemperature

value: Represents the present simulated reference temperature

To write the simulated reference temperature:

dmm. simreftemperature = value

value: Represents the desired simulated reference temperature in Celsius (0°C to

65°C), in Fahrenheit (32°F to 149°F) or in Kelvin (273°K to 338°K).

Remarks This attribute is only valid when dmm.func = "temperature". All other

configurations generate an error and return nil when queried. When the function is

temperature, the simulated reference temperature is only used when the transducer

type is thermocouples (see dmm.transducer (on page 13-173) attribute). For all other

transducer types, the setting will be updated but ignored until the transducer type is set

for thermocouples.

Changing functions with dmm.func (on page 13-137) will reflect the simulated

reference temperature setting for that function.

The factory default and dmm.reset() (on page 13-161) function value is 23°C.

Example To set 30 degrees Celsius as the simulated reference temperature for thermocouples:

dmm.func = "temperature"

dmm.transducer = dmm.TEMP_THERMOCOUPLE

dmm.units = dmm.UNITS_CELSIUS

dmm.simreftemperature = 30

dmm.thermistor

Attribute Indicates the type of thermistor to use.

Usage To read the thermistor type:

value = dmm.thermistor

value: Represents the present thermistor type in ohms. The value will be one of the

following: 2200, 5000 or 10000.

To write the thermistor type:

dmm.thermistor = value

value: Represents the desired thermistor type in ohms (1950 to 10050). The value

parameter is converted to 2200, 5000 or 10000 as follows:

Parameter Converted value

<3500 2200

Between 3500 and 7500 5000

 7500 10000

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-171

dmm.thermistor

Remarks This attribute is only valid when dmm.func = "temperature". All other

configurations generate an error and return nil when queried. When the function is

temperature, the thermistor attribute is only used when the transducer type is set for

thermistor. For all other transducer types, the setting will be updated but not used until

thermistor is selected for the transducer type. See the attribute dmm.transducer (on

page 13-173).

Changing functions with dmm.func (on page 13-137) reflects the thermistor setting for

that function.

The factory default and dmm.reset() (on page 13-161) function value is 5000 ohms.

Example To set thermistor type to 3000:

dmm.func = "temperature"

dmm.transducer = dmm.TEMP_THERMISTOR

dmm.thermistor = 3000 -- this gets adjusted to 2200

print(dmm.thermistor) --> "2200"

dmm.thermocouple

Attribute Indicates the thermocouple type.

Usage To read the thermocouple type:

value = dmm.thermocouple

value: Represents the present thermocouple type

To write the thermocouple type:

dmm.thermocouple = value

value: Represents the desired thermocouple type. For value, use one of the following:

 dmm.THERMOCOUPLE_J or 0

 dmm.THERMOCOUPLE_K or 1

 dmm.THERMOCOUPLE_T or 2

 dmm.THERMOCOUPLE_E or 3

 dmm.THERMOCOUPLE_R or 4

 dmm.THERMOCOUPLE_S or 5

 dmm.THERMOCOUPLE_B or 6

 dmm.THERMOCOUPLE_N or 7

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-172 3700S-901-01 Rev. C / July 2008

dmm.thermocouple

Remarks This attribute is only valid when dmm.func = "temperature". All other

configurations generate an error and return nil when queried. When the function is

temperature, the thermocouple attribute is only used when the transducer type is

thermocouples (see dmm.transducer (on page 13-173) attribute). For all other

transducer types, the setting will be updated but ignored until the transducer type is set

for thermocouples.

Changing functions with dmm.func (on page 13-137) will reflect the thermocouple

setting for that function.

The factory default and dmm.reset() (on page 13-161) function value is

dmm.THERMOCOUPLE_K.

Example To set thermocouple type to J:

dmm.func = "temperature"

dmm.transducer = dmm.TEMP_THERMOCOUPLE

dmm.thermocouple = dmm.THERMOCOUPLE_J

dmm.threertd

Attribute Indicates the type of three-wire RTD being used.

Usage To read the 3-wire RTD type:

value = dmm.threertd

value: Represents the present type for 3-wire RTD.

To write the 3-wire RTD type:

dmm.threertd = value

value: Represents the desired type for 3-wire RTD.

Use one of the following for value:

 dmm.RTD_PT100 or 0 for type PT100

 dmm.RTD_D100 or 1 for type D100

 dmm.RTD_F100 or 2 for type F100

 dmm.RTD_PT385 or 3 for type PT385

 dmm.RTD_PT3916 or 4 for type PT3916

 dmm.RTD_USER or 5 for user specified type

Remarks This attribute is only valid when dmm.func = "temperature". All other

configurations generate an error and return nil when queried. When the function is

temperature, the three-wire RTD is only used when the transducer type is three-wire

RTD (see dmm.transducer (on page 13-173) attribute). For all other transducer types,

the setting will be updated but ignored until the transducer type is set for three-wire

RTD.

Changing functions with dmm.func (on page 13-137) will reflect the three-wire RTD

setting for that function.

The dmm.reset() (on page 13-161) function will set this attribute to dmm.RTD_PT100.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-173

dmm.threertd

Example To set the type of three-wire RTD for PT3916:

dmm.func = "temperature"

dmm.transducer = dmm.TEMP_THREERTD

dmm.threertd = dmm.RTD_PT3916

dmm.threshold

Attribute Indicates the threshold range.

Usage To read the threshold setting:

value = dmm.threshold

value: Represents the present threshold setting.

To write the threshold setting:

dmm.threshold = value

value: Represents the desired threshold setting. The range for continuity is from 1 to

1000 . For frequency and period, the range is from 0 to 303V.

Remarks This attribute is only valid when dmm.func is equal to:

 "frequency"

 "period"

 "continuity"

All other configurations generate an error and return nil when queried.

For "frequency" and "period", this refers to a threshold voltage range (0 to 303, default

10). For "continuity", it refers to a threshold resistance in ohms (1 to 1000, default 10).

Errors will bet generated if the parameter value does not make sense for selected

function.

Changing functions with dmm.func (on page 13-137) will reflect the threshold setting

for that function.

The factory default and dmm.reset() (on page 13-161) function value is 10 for all

functions that support this attribute.

Example To set the threshold range for frequency to 30:

dmm.func = "frequency"

dmm.threshold = 30

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-174 3700S-901-01 Rev. C / July 2008

dmm.transducer

Attribute Indicates the transducer type.

Usage To read the transducer type:

value = dmm.transducer

value: Represents the present transducer type.

To write the transducer type:

dmm.transducer = value

value: Represents the desired transducer type.

For value, use one of the following:

 dmm.TEMP_THERMOCOUPLE or 1

 dmm.TEMP_THERMISTOR or 2

 dmm.TEMP_THREERTD or 3

 dmm.TEMP_FOURRTD or 4

Remarks This attribute is only valid when dmm.func = "temperature". All other configurations

generate an error and return nil when queried.

NOTE This attribute setting affects what other temperature-supported attributes

get used. There are various attributes that are only applicable when the

transducer type is a certain type. Although the transducer type needs to

match for the attribute setting to be used, the transducer type does not

need to match to change the setting. For example, the transducer type

does not need to be set to dmm.TEMP_FOURRTD to change the

dmm.fourrtd (on page 13-137) attribute setting.

Changing functions with dmm.func (on page 13-137) will reflect the transducer setting

for that function.

The factory default and dmm.reset() (on page 13-161) function value is

dmm.THERMOCOUPLE.

Example To set transducer to thermistor type:

dmm.func = "temperature"

dmm.transducer = dmm.TEMP_THERMISTOR

dmm.units

Attribute Indicates the units for voltage and temperature measurements.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-175

dmm.units

Usage To read the units:

value = dmm.units

value: Represents the present units.

To write the units:

dmm.units = value

value: Represents the desired units.

For value, use one of the following:

 dmm.UNITS_VOLTS or 0

 dmm.UNITS_DECIBELS or 1

 dmm.UNITS_CELSIUS or 2

 dmm.UNITS_KELVIN or 3

 dmm.UNITS_FAHRENHEIT or 4

Remarks This attribute is only valid when dmm.func is equal to:

 "dcvolts"

 "acvolts"

 "temperature".

All other configurations generate an error and return nil when queried. Errors will also

be generated if the parameter value does not make sense for selected function.

The settings of dmm.UNITS_VOLTS and dmm.UNITS_DECIBELS apply when

dmm.func = "dcvolts" or "acvolts". Likewise, settings of dmm.UNITS_FAHRENHEIT ,

dmm.UNITS_CELSIUS, and dmm.UNITS_KELVIN apply when dmm.func =

"temperature".

Changing functions with dmm.func (on page 13-137) will reflect the units setting for

that function.

The factory default and dmm.reset function value is dmm.UNITS_VOLTS.

The factory default for "temperature" is dmm.UNITS_CELSIUS.

Example To set units for temperature measurements to Fahrenheit (°F):

dmm.func = "temperature"

dmm.units = dmm.UNITS_FAHRENHEIT

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-176 3700S-901-01 Rev. C / July 2008

errorqueue functions and attributes

Use the functions and attributes in this group to read the entries in the error

queue.

errorqueue.clear()

Function Clears all entries out of the error queue.

Usage errorqueue.clear()

Remarks This function removes all entries from the error queue.

Details See Error and status messages (on page 17-1) and Status Model (on page 12-1).

Also see errorqueue.count (on page 13-176), errorqueue.next() (on page 13-176)

errorqueue.count

Attribute The number of entries in the error queue.

Usage count = errorqueue.count

Remarks This attribute can be read to determine the number of messages in the error queue.

This is a read-only attribute. Writing to this attribute will generate an error.

Details See Error and status messages (on page 17-1) and Status Model (on page 12-1).

Also see errorqueue.clear() (on page 13-176)

errorqueue.next() (on page 13-176)

Example Reads number of entries in the error queue:

count = errorqueue.count

print(count) 4.000000e+00

The above output indicates that there are four entries in the event queue.

errorqueue.next()

Function Reads an entry from the error queue.

Usage errorcode, message, severity, node =

errorqueue.next()

errorcode: Returns the error code number for the entry.

message: Returns the message that describes the entry.

severity: Returns the severity level (0, 10, 20, 30 or 40).

node: Returns the node number where the error originated.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-177

errorqueue.next()

Remarks Entries are stored in a first-in, first-out (FIFO) queue. This function reads the oldest

entry and removes it from the queue.

 Error codes and messages are listed in order.

 If there are no entries in the queue, code 0, "Queue Is Empty" is returned.

 Returned severity levels include the following:

0 Informational: Indicates no error: "Queue is Empty".

10 Informational: Indicates a status or minor error. Examples: "Reading Available"

and "Reading Overflow".

20 Recoverable: Indicates possible invalid user input. The operation will continue but

action should be taken to correct the error. Examples: "Exponent Too Large" and

"Numeric Data Not Allowed".

30 Serious: Indicates a serious error and may require technical assistance. Example:

"Saved calibration constants corrupted".

40 Fatal: Indicates that the Series 3700 is non-operational and will require service.

Contact information for service is provided at the front of this manual.

In an expanded system, each TSP-LinkTM enabled instrument is assigned a node

number. node returns the node number where the error originated.

Details See Error and status messages (on page 17-1) and Status Model (on page 12-1).

Also see errorqueue.clear() (on page 13-176)

errorqueue.count (on page 13-176)

Example Reads the oldest entry in the error queue:

errorcode, message = errorqueue.next()

print(errorcode, message)

Output: 0.000000e+00 Queue Is Empty

The above output indicates that the queue is empty.

eventlog functions and attributes

Use the functions and attributes in this group to control (read, write, enable,

count, etc.) the event log for LXI aspects.

LXI event log

The LXI event log of a Series 3700 monitors all LAN triggers that the instrument

receives or generates. The LXI event log has nine comma-delimited fields.

Below is an example entry to a LXI event log and a description of the log fields

in order of appearance.

"17:26:35.690 10 Oct 2007, LAN0, 192.168.1.102, LXI, 0,
1192037132, 1192037155.733269000, 0, 0x0"

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-178 3700S-901-01 Rev. C / July 2008

Field

Field Value Field Description

1 “17:26:35.690 10 Oct 2007” Formatted UTC time in 24-hour format including

fractional seconds.

2 “LAN0” Event identifier.

NOTE This event identifier is zero-based (LAN0-

LAN7). When specifying the LAN trigger

using lan.trigger[N], the minimum

value for N is 1. Therefore LAN0 to LAN 7

corresponds to lan.trigger[1]

through lan.trigger[8], respectively.

3 “192.168.1.102” IP address of the device that issued the LAN trigger.

4 "LXI" LXI version identifier. Currently only LXI is defined.

5 “0” LXI Domain number.

6 “1192037132” Sequence number provided by the device that issued

the LAN trigger. This number is incremented after

generation of each LAN trigger.

7 "1192037155.733269000” PTP time formatted as a floating point number.

8 “0” The "overflow" from PTP seconds. Currently, this is “0”.

Also referred to as IEEE-1588 Epoch.

9 "0x0" Hex value of the flag field, which is the logical OR of

several conditions (error=1, retransmission=2,

hardware=4, acknowledgement=8).

eventlog.all()

Function Returns all messages and removes them from the event log.

Usage eventlog.all()

Remarks This function returns all of the messages (return order is from oldest to newest) from

the event log and removes them from the log. The response is a string that has the

messages delimited with a new line character.

Also see LXI event log (on page 11-7)

eventlog.enable (on page 13-179)

eventlog.count (on page 13-179)

eventlog.clear() (on page 13-178)

eventlog.next() (on page 13-180)

eventlog.clear()

Function Clears the event log.

Usage eventlog.clear()

Remarks This attribute erases any messages contained in the event log.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-179

eventlog.clear()

Also see LXI event log (on page 11-7)

eventlog.enable (on page 13-179)

eventlog.count (on page 13-179)

eventlog.next() (on page 13-180)

eventlog.all() (on page 13-178)

eventlog.count

Attribute Reads the number of events contained in the event log.

Usage To read the number of events:

N = eventlog.count

N: The number of events contained in the event log.

Remarks This attribute indicates the present number of events contained in the event log.

Also see LXI event log (on page 11-7)

eventlog.enable (on page 13-179)

eventlog.clear() (on page 13-178)

eventlog.next() (on page 13-180)

eventlog.all() (on page 13-178)

Example To display the present number of events contained the Series 3700 event log:

print(eventlog.count)

eventlog.enable

Attribute Reads or controls event log status.

Usage To read event log status:

status = eventlog.enable

To write event log status:

eventlog.enable = status

status: The enable status of the event log: Use one of the following:

 eventlog.ENABLE or 1: event log enable

 eventlog.DISABLE or 0: event log disable

Remarks This attribute indicates or controls the present status of the Series 3700 event log.

When the event log is disabled (eventlog.DISABLE or 0), no events will be added

to the event log.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-180 3700S-901-01 Rev. C / July 2008

eventlog.enable

Also see LXI event log (on page 11-7)

eventlog.count (on page 13-179)

eventlog.clear() (on page 13-178)

eventlog.next() (on page 13-180)

eventlog.all() (on page 13-178)

Example To display the present status of the Series 3700 event log:

print(eventlog.enable)

eventlog.next()

Function Returns the oldest message from the event log and removes it.

Usage eventlog.next()

Remarks This function returns the oldest message from the event log and removes it. The

message is returned as a string.

Also see LXI event log (on page 11-7)

eventlog.enable (on page 13-179)

eventlog.count (on page 13-179)

eventlog.clear() (on page 13-178)

eventlog.all() (on page 13-178)

exit functions

Use this function to terminate a script that is presently running.

exit()

Function Stops execution of a script.

Usage exit()

Remarks Terminates script execution when called from a script that is being executed.

This command will not wait for overlapped commands to complete before terminating

script execution. If overlapped commands are required to finish, use the

waitcomplete() (on page 3-16)function prior to calling exit.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-181

file functions

Use the file commands when you need to manipulate file input or output with

Series 3700 instruments. These commands reside in the file descriptors and

operate exclusively on the file with which they are associated.

file:close()

Function Closes a file after flushing any data that was written to it with io.write() (on page

9-14) or file:write() (on page 9-11).

Usage file:close()

file: The descriptor of the file to close.

Remarks This command is equivalent to io.close(file). It is not remotely accessible.

file:flush()

Function Flush the buffered data for the specified file

Usage file:flush()

file: The descriptor of the file to flush

Remarks Use this command to flush data written to it by file:write() (on page 9-11) or

io.write() (on page 9-14). Using this function removes the need to close a file

after writing to it and allows it to be left open to write more data. Data may be lost if the

file is not closed or flushed before an application ends. To prevent the loss of data if

there is going to be a time delay before more data is written when you want to keep file

open and not close it, flush the file after writing to it.

file:read()

Function Reads data from a file.

Usage data = file:read(format)

data: The data read from the file. The number of return values matches the number of

values in format.

file: The descriptor of the file to read.

format: A string or number indicating the type of data to be read. Any number of

format parameters may be passed to this command, each corresponding to a returned

data value. The format attribute is optional; the default is "*l".

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-182 3700S-901-01 Rev. C / July 2008

file:read()

Remarks The format parameters may be any of the following:

"*n": Return a number.

"*a": Return the whole file, starting at the current position; return the empty string at

the end of the file.

"*l": Return the next line, skipping the end of line; return nil at the end of file.

n: Return a string with up to n characters; return an empty string if n is zero; return

nil at the end of file.

Any error encountered is logged to the error queue.

This command is not remotely accessible.

file:seek()

Function Sets and gets a file's current position.

Usage position = file:seek(whence, offset)

position: The new file position, measured in bytes from the beginning of the file.

file: The descriptor of the file.

whence: A string indicating the base against which offset is applied. The whence

attribute is optional; the default is "cur".

offset: The intended new position, measured in bytes from a base indicated by

whence. Optional, default is 0.

Remarks The whence parameters may be any of the following:

"set": Beginning of file.

"cur": Current position.

"end": End of file.

If an error is encountered, it is logged to the error queue, and the command returns

nil and the error string.

This command is not remotely accessible.

file:write()

Function Buffer data until a flush (file:flush() (on page 9-10) or io.flush()

(on page 9-12)) or close (file:close() (on page 9-10) or io.close() (on

page 9-12)) operation is performed.

NOTE Data may be lost if the file is not flushed or closed before the application

ends. A write function buffers the data until a flush or close operation is

requested.

Usage file:write(data)

file: The descriptor of the file.

data: The data to write to the file. An arbitrary number of data values may be passed

to this command. All parameters must be either strings or numbers.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-183

file:write()

Remarks Any error encountered is logged to the error queue.

This command is not remotely accessible.

format attributes

Use the format attributes to configure the output formats used by the

printnumber() (on page 13-222) and printbuffer() (on page 13-221) functions.

These attributes can set the data format (ASCII or binary), ASCII precision

(number of digits), and binary byte order (normal or swapped).

format.asciiprecision

Attribute The precision (number of digits) for all numbers printed with the ASCII format.

Usage To read precision:

precision = format.asciiprecision

To write precision:

format.asciiprecision = precision

precision: Set from 1 to 16. Default value: 10.

Remarks This attribute selects the precision (number of digits) for data printed with the print,

printnumber() (on page 13-222), and printbuffer() (on page 13-221) functions. The

precision attribute is only used with the ASCII format. The precision must be a

number between 1 and 16.

 Note that the precision is the number of significant digits printed. There will always

be one digit to the left of the decimal point. Be sure to include this digit when

setting the precision.

 The default and reset precision is 10.

 Overflow readings (9.9E+37) may not appear as expected when ASCII precision is

set to 1 or 16 (the extreme values).

Also see format.byteorder (on page 13-183)

format.data (on page 13-184)

printbuffer() (on page 13-221)

printnumber() (on page 13-222)

Example Sets the ASCII precision to 7 digits and prints a number:

format.asciiprecision = 7

print(2.5)

Output: 2.500000E+00

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-184 3700S-901-01 Rev. C / July 2008

format.byteorder

Attribute The binary byte order for data printed using the printnumber and printbuffer functions.

Usage To read byte order:

order = format.byteorder

To write byte order:

format.byteorder = order

Set order to one of the following values:

 0 or format.NORMAL Most significant byte first.

 0 or format.BIGENDIAN Most significant byte first.

 0 or format.NETWORK Most significant byte first.

 1 or format.SWAPPED Least significant byte first.

 1 or format.LITTLEENDIAN Least significant byte first.

Remarks This attribute selects the byte order that data is written when printing data values

with the printnumber() (on page 13-222) and printbuffer() (on page 13-221)

functions. The byte order attribute is only used with the SREAL, REAL, REAL32,

and REAL64 data formats.

 NORMAL, BIGENDIAN, and NETWORK select the same byte order. SWAPPED

and LITTLEENDIAN select the same byte order. They are alternative identifiers.

Selecting which to use is a matter of preference.

 Select the SWAPPED or LITTLEENDIAN byte order when sending data to a PC-

compatible computer.

Also see format.asciiprecision (on page 13-183)

format.data (on page 13-184)

printbuffer() (on page 13-221)

printnumber() (on page 13-222)

Example Selects the SWAPPED byte order:

format.byteorder = format.SWAPPED

format.data

Attribute The data format for data printed using the printnumber and printbuffer functions.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-185

format.data

Usage To read data format:

fmt = format.data

To write data format:

format.data = fmt

fmt: Set to one of the following values:

1 or format.ASCII ASCII format.

2 or format.SREAL Single precision IEEE-754 binary format.

2 or format.REAL32 Single precision IEEE-754 binary format.

3 or format.REAL Double precision IEEE-754 binary format.

3 or format.REAL64 Double precision IEEE-754 binary format.

Remarks This attribute selects the data format used to print data values with the

printnumber() (on page 13-222) and printbuffer() (on page 13-221) functions.

 The precision of the ASCII format can be controlled with the format.asciiprecision

(on page 13-183) attribute. The byte order of SREAL, REAL, REAL32, and REAL64

can be selected with the format.byteorder (on page 13-183) attribute.

 REAL32 and SREAL select the same single precision format. REAL and REAL64

select the same double precision format. They are alternative identifiers. Selecting

which to use is a matter of preference.

 The IEEE-754 binary formats use 4 bytes each for single precision values and 8

bytes each for double precision values.

 When data is written with any of the binary formats, the response message will start

with "#0" and end with a new line. When data is written with the ASCII format,

elements will be separated with a comma and space.

Also see format.asciiprecision (on page 13-183)

format.byteorder (on page 13-183)

printbuffer() (on page 13-221)

printnumber() (on page 13-222)

Example Selects the ASCII data format:

format.data = format.ASCII

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-186 3700S-901-01 Rev. C / July 2008

fs functions

Use the fs commands to navigate the file system and list the available files on a

flash drive. These commands are part of the Lua FS library.

fs.chdir()

Function Sets the current working directory.

Usage fs.chdir(path)

path: The new working directory path (absolute or relative).

Remarks An error is logged to the error queue if the given path does not exist.

fs.cwd()

Function Returns the absolute path of the current working directory.

Usage path = fs.cwd()

path: The absolute path of the current working directory.

fs.is_dir()

Function Tests whether the specified path refers to a directory.

Usage status = fs.is_dir(path)

status: True if the given path is a directory; otherwise, false.

path: The file system entry path (absolute or relative) to test.

Remarks An error is logged to the error queue if the given path does not exist.

fs.is_file()

Function Tests whether the specified path refers to a file (as opposed to a directory).

Usage status = fs.is_file(path)

status: True if the given path is a file; otherwise, false.

path: The path of the file system entry to test. This path may be absolute or relative to

the current working directory.

Remarks An error is logged to the error queue if the given path does not exist.

fs.mkdir()

Function Creates a directory at the specified path.

Usage fs.mkdir(path)

path: The path of the new directory. This path may be absolute or relative to the

current working directory.

Remarks An error is logged to the error queue if the parent folder of the new directory does not

exist, or if a file system entry already exists at the given path.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-187

fs.readdir()

Function Returns a list of all the file system entries within a specified directory.

Usage files = fs.readdir(path)

files: A list containing the names of all the file system entries that reside in the

specified directory.

path: The directory path. This path may be absolute or relative to the current working

directory.

Remarks This command is non-recursive (that is, entries in subfolders are not returned). An

error is logged to the error queue if the given path does not exist, or does not

represent a directory.

fs.rmdir()

Function Removes a directory from the file system.

Usage fs.rmdir(path)

path: The path of the directory to remove. This path may be absolute or relative to the

current working directory.

Remarks An error is logged to the error queue if the given path does not exist, does not

represent a directory, or if the directory is not empty.

gpib attributes

Use the following attribute to set the GPIB address.

gpib.address

Attribute GPIB address.

Usage To read the GPIB address:

address = gpib.address

To write the GPIB address:

gpib.address = address

address: Set from 0 to 30. Default is 16.

Remarks A new GPIB address takes effect when the command is processed. If there are

response messages in the output queue when this command is processed they

must be read at the new address.

 The user should allow ample time for the command to be processed before

attempting to communicate with the instrument again. After sending this

command, make sure to use the new address to communicate with the

instrument.

 The GPIB address is stored in non-volatile memory. The reset function has no

effect on the address.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-188 3700S-901-01 Rev. C / July 2008

gpib.address

Example To set the GPIB address of the Series 3700 to 26 and then read the address:

gpib.address = 26

address = gpib.address

print(address) 2.600000e+01

io functions

Use the io commands when you need to manipulate file input or output with

Series 3700 instruments. These commands open and close file descriptors and

perform basic I/O operations on a pair of default files, one input and one output.

io.close()

Function Closes the specified file.

Usage io.close(file)

file: A file descriptor to flush and close

Remarks This command is equivalent to file:close() (on page 9-10).

io.flush()

Function Flush the buffered data for the current output file.

Usage io.flush()

Remarks Use this command to flush data written to the current default file by file:write()

(on page 9-11) or io.write() (on page 9-14). Using this command removes the

need to close a file after writing to it and allows it to be left open to write more data.

Data may be lost if the file is not closed or flushed before an application ends. To

prevent the loss of data if there is going to be a time delay before more data is written

when you want to keep file open and not close it, flush the file after writing to it.

io.input()

Function Assigns a previously opened file, or opens a new file, as the default input file.

Usage io.input(filein)

fileout = io.input()

filein: A file descriptor to assign or the path of a file to open as the default input file.

The path may be absolute or relative to the current working directory. This parameter

is optional; if absent, the command returns the absolute path to the current default

input file (fileout).

fileout: The absolute path to the default input file.

Remarks Any error encountered is logged to the error queue.

The remotely-accessible version of this command does not accept a file descriptor

parameter.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-189

io.open()

Function Opens a file for later access.

Usage file, err, errnum = io.open(path, mode)

file: The descriptor of the opened file.

err: A string with an error message an error occurred.

errnum: Number representing the error number.

path: The path of the file to open. This path may be absolute or relative to the current

working directory.

mode: A string representing the intended access mode. The mode attribute is

optional; the default is "r".

Remarks The mode string can be any of the standard C language fopen modes, including:

"r": Read mode.

"w": Write mode.

"a": Append mode.

If an error is encountered, it is logged to the error queue, and the command returns

nil and the error string.

This command is not remotely accessible.

io.output()

Function Assigns a previously opened file or opens a new file as the default output file.

Usage io.output(filein)

fileout = io.output()

filein: A file descriptor to assign, or the path of a file to open, as the default output file.

The path may be absolute or relative to the current working directory. This parameter

is optional; if absent, the command returns the absolute path to the current default

output file (fileout).

fileout: The absolute path to the default output file.

Remarks Any error encountered is logged to the error queue.

The remotely-accessible version of this command does not accept a file descriptor

parameter.

io.read()

Function Reads data from the default input file.

Usage data = io.read(format)

data: The data read from the file. The number of return values matches the number of

values in format.

format: A string or number indicating the type of data to be read. Any number of

format parameters may be passed to this command, each corresponding to a returned

data value. Optional; default is "*l".

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-190 3700S-901-01 Rev. C / July 2008

io.read()

Remarks The format parameters may be any of the following:

"*n": Return a number.

"*a": Return the whole file, starting at the current position; return an empty string at the

end of file.

"*l": Return the next line, skipping the end of line; return nil at the end of file.

n: Return a string with up to n characters; return an empty string if n is zero; return

nil at the end of file.

Any error encountered is logged to the error queue.

io.type()

Function Checks whether obj is a valid file handle.

Usage io.type(obj)

Remarks Returns "file" if obj is an open file handle, "closed file" if obj is a closed file handle,

and nil if obj is not a file handle.

io.write()

Function Buffer data until a flush (file:flush() (on page 9-10) or io.flush()

(on page 9-12)) or close (file:close() (on page 9-10) or io.close() (on

page 9-12)) operation is performed.

NOTE Data may be lost if the file is not flushed or closed before the application

ends. A write buffers the data until a flush or close operation is requested.

Usage io.write(data)

data: The data to write to the file. An arbitrary number of data values may be passed

to this command. All parameters must be either strings or numbers.

Remarks Any error encountered is logged to the error queue.

LAN functions and attributes

Use the functions and attributes in this group to set/read the LAN triggers, as

well as control how LAN aspects of instrument are controlled. Use the lan.config

functions and attributes to make changes before having them take effect. Use

the lan.status functions and attributes to query for current settings.

lan.applysettings()

Function Reinitializes the LAN interface with new settings.

Usage lan.applysettings()

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-191

lan.applysettings()

Remarks This function disconnects from the LAN interface and reinitializes the LAN with the

current configuration settings. This function initiates an overlapped operation. LAN

configuration could be a lengthy operation. Although the function returns immediately,

the LAN initialization will continue to run in the background.

NOTE When this command is executed, all existing LAN connections to the

instrument will be disconnected.

NOTE Even though the LAN configuration settings may not have changed since

the LAN was last connected, new settings may take effect due to the

dynamic nature of DHCP or DLLA configuration.

Example To reinitialize the LAN interface with new settings:

lan.applysettings()

lan.config.autonegotiate

Attribute Configures LAN auto-negotiation state.

Usage To read the auto-negotiation state:

state = lan.config.autonegotiate

To write the auto-negotiation state:

lan.config.autonegotiate = state

state: LAN auto-negotiation state. state may be one of the following values:

 lan.ENABLE or 1: Enables auto-negotiation.

 lan.DISABLE or 0: Disables auto-negotiation.

Remarks This attribute sets the LAN auto-negotiation state. When enabled, the unit will select

the best options for Ethernet speed and duplex. By default, this feature is enabled.

Details Changing this setting from lan.DISABLE to lan.ENABLE will cause the unit to

immediately negotiate new speed and duplex settings. Changing this setting from

lan.ENABLE to lan.DISABLE will cause the unit to immediately use the manually

configured speed and duplex settings.

Example To enable and view LAN auto-negotiation:

lan.config.autonegotiate = lan.ENABLE

print(lan.config.autonegotiate)

 1.000000000e+000

lan.config.dns.address[index]

Attribute Configures DNS server IP addresses.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-192 3700S-901-01 Rev. C / July 2008

lan.config.dns.address[index]

Usage To read the IP address:

dnsaddress = lan.config.dns.address[index]

To write the IP address:

lan.config.dns.address[index] = dnsaddress

index: Entry index (1 or 2)

dnsaddress: DNS server IP address.

Remarks This attribute is an array of DNS server addresses. These addresses take priority for

DNS lookups and will be consulted before any server addresses obtained using

DHCP. This allows local DNS servers to be specified that take priority over DHCP

configured global DNS servers.

Up to two addresses may be specified. The address specified by index 1 will be

consulted first for DNS lookups (the [index] must be either 1 or 2).

Details NOTE Unused entries will be returned as "0.0.0.0" when read.dnsaddress must be

a string specifying the DNS server‟s IP address in dotted decimal notation.

To disable an entry, set its value to "0.0.0.0" or the empty string "".

NOTE Although only two address may be manually specified here, the unit will use

up to three DNS server addresses. If two are specified here, only one

given by a DHCP server will be used. If no entries are specified here, up

to three address given by a DHCP server will be used.

Also see lan.config.dns.domain (on page 13-192)

lan.config.dns.dynamic (on page 13-193)

lan.config.dns.hostname (on page 13-193)

lan.config.dns.verify (on page 13-194)

Example To write a DNS address of 164.109.48.173 as address 1:

dnsaddress = '164.109.48.173'

lan.config.dns.address[1] = dnsaddress

lan.config.dns.domain

Attribute Configures Dynamic DNS domain.

Usage To read the present dynamic DNS domain:

domain = lan.config.dns.domain

To write the dynamic DNS domain:

lan.config.dns.domain = domain

domain: Dynamic DNS registration domain. Use a string of 255 characters or less.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-193

lan.config.dns.domain

Remarks This attribute holds the domain to request during dynamic DNS registration. Dynamic

DNS registration works with DHCP to register the domain specified in this attribute

with the DNS server.

NOTE The length of the fully qualified host name (combined length of the domain

and hostname with separator character) must be less than or equal to 255

characters. Although up to 255 characters can be given here, care must

be taken to be sure the combined length is also no more than 255

characters.

Also see lan.config.dns.dynamic (on page 13-193)

lan.config.dns.hostname (on page 13-193)

lan.config.dns.verify (on page 13-194)

Example To display the present dynamic DNS domain:

print(lan.config.dns.domain)

lan.config.dns.dynamic

Attribute Configures Dynamic DNS registration state.

Usage To read Dynamic DNS registration state:

state = lan.config.dns.dynamic

To write Dynamic DNS registration state:

lan.config.dns.dynamic = state

state: Represents Dynamic DNS registration state. It may be one of the following

values:

 lan.ENABLE or 1: Enables dynamic DNS registration.

 lan.DISABLE or 0: Disables dynamic DNS registration.

Remarks This attribute is used to enable or disable dynamic DNS registration. Dynamic DNS

registration works with DHCP to register the hostname specified in the

lan.config.dns.hostname attribute with the DNS server.

Also see lan.config.dns.hostname (on page 13-193)

Example To display the Dynamic DNS registration state:

print(lan.config.dns.dynamic)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-194 3700S-901-01 Rev. C / July 2008

lan.config.dns.hostname

Attribute Configures Dynamic DNS hostname.

Usage To read Dynamic DNS hostname:

hostname = lan.config.dns.hostname

To write Dynamic DNS hostname:

lan.config.dns.hostname = hostname

hostname: Hostname to use for dynamic DNS registration. The hostname:

 must be a string of 255 characters or less

 start with a letter

 end with a letter or digit

 contain only letters, digits, and hyphens

Remarks This attribute holds the hostname to request during dynamic DNS registration.

Dynamic DNS registration works with DHCP to register the hostname specified in this

attribute with the DNS server.

NOTE The length of the fully qualified host name (combined length of the domain

and hostname with separator character) must be less than or equal to 255

characters. Although up to 255 characters can be given here, care must

be taken to be sure the combined length is also no more than 255

characters.

Also see lan.config.dns.dynamic (on page 13-193)

Example To display the present Dynamic DNS hostname:

print(lan.config.dns.hostname)

lan.config.dns.verify

Attribute Configures DNS hostname verification state.

Usage To read DNS hostname verification state:

state = lan.config.dns.verify

To write DNS hostname verification state:

lan.config.dns.verify = state

state: DNS hostname verification state.state may be one of the following values:

 lan.ENABLE or 1: Enables DNS hostname verification.

 lan.DISABLE or 0: Disables DNS hostname verification.

Remarks This attribute is used to enable or disable DNS hostname verification. If enabled, the

unit will perform DNS lookups to verify that the DNS hostname matches the value

specified by lan.config.dns.hostname (on page 13-193).

Also see lan.config.dns.hostname (on page 13-193)

Example To display present DNS hostname verification state:

print(lan.config.dns.verify)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-195

lan.config.duplex

Attribute Configures LAN duplex mode.

Usage To read LAN duplex mode:

duplex = lan.config.duplex

To write LAN duplex mode:

lan.config.duplex = duplex

duplex: LAN duplex setting can be one of the following values:

 lan.FULL or 1: Selects full-duplex operation.

 lan.HALF or 0: Selects half-duplex operation.

Remarks This attribute selects which duplex mode will be used by the LAN interface when

lan.config.autonegotiate (on page 13-191) is disabled. When lan.config.autonegotiate

(on page 13-191) is enabled, this setting is ignored.

NOTE This attribute does not indicate the actual setting currently in effect. Use

the lan.status attributes to determine the current operating state of the

LAN.

Also see lan.status

Example To display present LAN duplex mode:

print(lan.config.duplex)

lan.config.gateway

Attribute Configures LAN default gateway address.

Usage To read LAN gateway address:

gatewayaddress = lan.config.gateway

To write LAN gateway address:

lan.config.gateway = gatewayaddress

gatewayaddress: LAN default gateway address.

Remarks This attribute specifies the default gateway IP address to use when manual or DLLA

configuration methods are used to configure the LAN. This setting is ignored when

DHCP is used.

NOTE This attribute does not indicate the actual setting currently in effect. Use

the lan.status attributes to determine the current operating state of the

LAN. gatewayaddress must be a string specifying the default gateway‟s IP

address in dotted decimal notation.

Example To display present gateway address:

print(lan.config.gateway)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-196 3700S-901-01 Rev. C / July 2008

lan.config.ipaddress

Attribute Configures LAN IP address.

Usage To read the LAN IP address:

ipaddress = lan.config.ipaddress

To write the LAN IP address:

lan.config.ipaddress = ipaddress

ipaddress: LAN IP address.

Remarks This attribute specifies the LAN IP address to use when the manual configuration

method is used to configure the LAN. This setting is ignored when DLLA or DHCP is

used.

NOTE This attribute does not indicate the actual setting currently in effect. Use the

lan.status attributes to determine the current operating state of the LAN.

ipaddress must be a string specifying the IP address in dotted decimal

notation.

Also see lan.status.ipaddress (on page 13-201)

Example To read the presently set LAN IP address:

ipaddress = lan.config.ipaddress

lan.config.method

Attribute Controls LAN settings configuration method.

Usage To read the method used:

method = lan.config.method

To write the method:

lan.config.method = method

method: LAN settings configuration method. It can be one of the following values:

 lan.AUTO or 1: Selects automatic sequencing of configuration methods.

 lan.MANUAL or 0: Use only manually specified configuration settings.

Remarks This attribute controls how the LAN IP address, subnet mask, default gateway

address, and DNS server addresses are determined.

When method is lan.AUTO, the instrument will first attempt to configure the LAN

settings using Dynamic Host Configuration Protocol (DHCP). If DHCP fails, it will try

Dynamic Link Local Addressing (DLLA). If DLLA fails, it will use the manually

specified settings.

When method is lan.MANUAL, only the manually specified settings will be used.

Neither DHCP nor DLLA will be attempted.

Example To display the current method:

print(lan.config.method)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-197

lan.config.speed

Attribute Configures LAN speed.

Usage To read LAN speed:

speed = lan.config.speed

To write LAN speed:

lan.config.speed = speed

speed: Lan speed setting in Mbps. Setting can be either 10 or 100.

Remarks This attribute selects the transmission speed used by the LAN interface when

lan.config.autonegotiate (on page 13-191) is disabled. When lan.config.autonegotiate

(on page 13-191) is enabled, this setting is ignored.

NOTE This attribute does not indicate the actual setting currently in effect. Use

the lan.status attributes to determine the current operating state of the

LAN.

Also see lan.config.autonegotiate (on page 13-191)

Example To configure LAN speed for 100:

lan.config.speed = 100

lan.config.subnetmask

Attribute Configures LAN subnet mask.

Usage To read the LAN subnet mask:

mask = lan.config.subnetmask

To write the LAN subnet mask:

lan.config.subnetmask = mask

mask: LAN subnet mask value string specifying the subnet mask in dotted decimal

notation.

Remarks This attribute specifies the LAN subnet mask to use when the manual configuration

method is used to configure the LAN. This setting is ignored when DLLA or DHCP is

used.

NOTE This attribute does not indicate the actual setting currently in effect. Use

the lan.status attributes to determine the current operating state of the

LAN.

Also see lan.status

Example To display the LAN subnet mask:

print(lan.config.subnetmask)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-198 3700S-901-01 Rev. C / July 2008

lan.lxidomain

Attribute Sets LXI domain.

Usage To read the LXI domain:

domain = lan.lxidomain

To write the LXI domain:

lan.lxidomain = domain

domain: The LXI domain number (0–255, default = 0).

Remarks This attribute is used to set the LXI domain. It must be a number between 0 and 255.

The default value is 0. All outgoing LXI packets will be generated with this domain

number. All inbound LXI packets will be ignored unless they have this domain

number.

Example To display LXI domain:

print(lan.lxidomain)

lan.pingenable

Attribute Set or read the LAN ping state.

Usage To read the LAN ping state:

pingstate = lan.pingenable

To write the LAN ping state:

lan.pingenable = pingstate

pingstate: Enable or disable ping (0 disables, or 1 enables).

Example To display the present LAN ping state:

print(lan.pingenable)

lan.restoredefaults()

Function Reset LAN settings to their defaults.

Usage lan.restoredefaults()

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-199

lan.restoredefaults()

Remarks This function restores all LAN to their default values. The following list details what

settings are restored.

 lan.autoconnect: lan.DISABLE

 lan.config.autonegotiate: lan.ENABLE

 lan.config.dns.address[N]: 0.0.0.0

 lan.config.dns.domain: ""

 lan.config.dns.dynamic: lan.ENABLE

 lan.config.dns.hostname: ""

 lan.config.dns.verify: lan.ENABLE

 lan.config.duplex: lan.FULL

 lan.config.gateway: 0.0.0.0

 lan.config.ipaddress: 0.0.0.0

 lan.config.method: lan.AUTO

 lan.config.speed: 100

 lan.config.subnetmask: 0.0.0.0

 lan.linktimeout: 20 (seconds)

 lan.lxidomain: 0

 lan.nagle: lan.ENABLE

 lan.timedwait: 20 (seconds)

NOTE This function does not reset the web password. The

localnode.password attribute controls the web password and it can

be reset separately.

Example To reset the LAN settings:

lan.restoredefaults()

lan.status.dns.address[N]

Attribute Reads present DNS server IP addresses.

Usage dnsaddress = lan.status.dns.address[index]

index: Entry index (1, 2, or 3)

dnsaddress: DNS server IP address.

Remarks This attribute is an array of DNS server addresses. Up to three addresses may be in

use.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-200 3700S-901-01 Rev. C / July 2008

lan.status.dns.address[N]

Details NOTE Unused or disabled entries will be returned as "0.0.0.0" when read.

dnsaddress returned is a string specifying the DNS server‟s IP address in

dotted decimal notation.

NOTE Although only two address may be manually specified, the unit will use up

to three DNS server addresses. If two are specified here, only one given

by a DHCP server will be used. If no entries are specified here, up to

three address given by a DHCP server will be used.

Also see lan.config.dns.domain (on page 13-192)

Example To display present DNS address 1 (if it equals 164.109.48.173):

print(lan.status.dns.address[1]

 164.109.48.173

lan.status.dns.hostname

Attribute Reads present DNS fully qualified host name.

Usage To read Dynamic DNS hostname:

hostname = lan.status.dns.hostname

hostname: Fully qualified DNS hostname.

Remarks This attribute holds the fully qualified DNS host name that can be used to reach the

unit. This name includes the DNS domain. If a DNS host name for the unit was not

found, this attribute will hold the IP address in dotted decimal notation.

Also see lan.config.dns.hostname (on page 13-193)

Example To display the present Dynamic DNS hostname:

print(lan.status.dns.name)

lan.status.duplex

Attribute Reads present status of LAN duplex mode.

Usage To read LAN duplex mode:

duplex = lan.status.duplex

duplex: LAN duplex setting can be one of the following values:

 lan.FULL or 1: full-duplex operation.

 lan.HALF or 0: half-duplex operation.

Remarks This attribute indicates which duplex mode is currently in use by the LAN interface.

Also see lan.status

Example To display present LAN duplex mode:

print(lan.status.duplex)

 1.000000000e+000

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-201

lan.status.gateway

Attribute Reads present LAN default gateway address.

Usage gatewayaddress = lan.status.gateway

gatewayaddress: LAN default gateway address.

Remarks This attribute indicates the default gateway IP address setting currently in effect.

Also see lan.config.gateway (on page 13-195)

Example To display present gateway address:

print(lan.status.gateway)

lan.status.ipaddress

Attribute Reads present LAN IP address.

Usage To read the LAN IP address:

ipaddress = lan.config.ipaddress

To write the LAN IP address:

lan.config.ipaddress = ipaddress

ipaddress: LAN IP address specified in dotted decimal notation.

Remarks This attribute indicates the LAN IP address currently in use.

Also see lan.config.ipaddress (on page 13-195)

Example To display the present LAN IP address:

print(lan.status.ipaddress)

lan.status.macaddress

Attribute Reads LAN MAC address.

Usage macaddress = lan.status.macaddress

macaddress: The Series 3700 MAC address.

Remarks This attribute provides the unit's LAN MAC address. The MAC address is a character

string representing the unit's MAC address in hexadecimal notation. The string will

have colons separating the address octets (see example).

Example To display the Series 3700 MAC address if it is "00:60:1A:00:00:57":

print(lan.status.macaddress)

 00:60:1A:00:00:57

lan.status.port.dst

Attribute Reads present LAN dead socket termination port number.

Usage port = lan.status.port.dst

port: Dead socket termination socket port number.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-202 3700S-901-01 Rev. C / July 2008

lan.status.port.dst

Remarks This attribute holds the TCP port number used to reset all other LAN socket

connections.

Example To display the Series 3700 DST port number:

print(lan.status.port.dst)

 5.030000000e+003

lan.status.port.rawsocket

Attribute Reads present LAN raw socket connection port number.

Usage port = lan.status.port.rawsocket

port: Raw socket port number.

Remarks This attribute holds the TCP port number used to connect to the instrument to control it

over a raw socket communication interface.

Example To display the Series 3700 raw socket port number:

print(lan.status.port.rawsocket)

 5.025000000e+003

lan.status.port.telnet

Attribute Reads present LAN telnet connection port number.

Usage port = lan.status.port.telnet

port: Telnet port number.

Remarks This attribute holds the TCP port number used to connect to the instrument to control it

over a telnet interface.

Example To display the Series 3700 TCP port number:

print(lan.status.port.telnet)

 2.300000000e+001

lan.status.port.vxi11

Attribute Reads present LAN VXI-11 connection port number.

Usage port = lan.status.port.vxi11

port: LAN VXI-11 port number.

Remarks This attribute holds the TCP port number used to connect to the instrument to control it

over a VXI-11 protocol connection.

Example To display the Series 3700 VXI-11 number:

print(lan.status.port.vxi11)

 1.024000000e+003

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-203

lan.status.reset()

Function Resets the LAN interface.

Usage lan.status.reset()

Remarks This function performs a lan.restoredefaults() (on page 13-198) followed by a

lan.applysettings() (on page 13-190). To restore the LAN settings without applying

them, use lan.restoredefaults().

Example To reset the LAN interface:

lan.status.reset()

lan.status.speed

Attribute Reads present LAN speed.

Usage speed = lan.status.speed

speed: LAN speed given in Mbps. It will be either 10 or 100.

Remarks This attribute indicates the transmission speed currently in use by the LAN interface.

Example To display the Series 3700 transmission speed presently in use:

print(lan.status.speed)

 1.000000000e+002

lan.status.subnetmask

Attribute Reads present LAN subnet mask.

Usage mask = lan.status.subnetmask

mask: A string specifying the subnet mask in dotted decimal notation.

Remarks This attribute indicates the LAN subnet mask currently in use.

Example To display the Series 3700 subnet mask presently in use:

print(lan.status.subnetmask)

 255.255.255.0

lan.trigger[N].assert()

Function Simulates the occurrence of the trigger and generates the corresponding event id.

Usage lan.trigger[N].assert()

N: The trigger packet over LAN to assert (1–8).

Remarks This function will generate a trigger for the specified LAN packet.

Also see lan.trigger[N].clear() (on page 13-204)

lan.trigger[N].mode (on page 13-205)

lan.trigger[N].overrun (on page 13-206)

lan.trigger[N].stimulus (on page 13-208)

lan.trigger[N].wait() (on page 13-209)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-204 3700S-901-01 Rev. C / July 2008

lan.trigger[N].assert()

Example To create a trigger with LAN packet 5:

lan.trigger[5].assert()

lan.trigger[N].clear()

Function Clear the event detector for a trigger.

Usage lan.trigger[N].clear()

N: The trigger packet over LAN to clear (1–8).

Remarks A trigger‟s event detector remembers if an event has been detected since the last

lan.trigger[packet].wait call. This function clears a trigger‟s event detector and

discards the previous history of the trigger packet.

Also see lan.trigger[N].assert() (on page 13-203)

lan.trigger[N].overrun (on page 13-206)

lan.trigger[N].stimulus (on page 13-208)

lan.trigger[N].wait() (on page 13-209)

Example To clear the event detector with LAN packet 5:

lan.trigger[5].clear()

lan.trigger[N].connect()

Function Connect the lan.trigger instance to the listener(s) specified by protocol and ipaddress.

Usage lan.trigger[N].connect()

Example lan.trigger[1].protocol=lan.MULTICAST

lan.trigger[1].connect()

lan.trigger[1].assert()

lan.trigger[N].connected

Attribute Returns true (if connected) or false (if not connected).

Usage lan.trigger[N].connected

Example lan.trigger[1].protocol=lan.MULTICAST

lan.trigger[1].connect()

print(lan.trigger[1].connected)

false

lan.trigger[N].EVENT_ID

Attribute Event identifier use to route the LAN trigger to other subsystems (using stimulus

properties).

Usage lan.trigger[N].EVENT_ID

Example digio.trigger[14].stimulus = lan.trigger[1].EVENT_ID

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-205

lan.trigger[N].ipaddress

Attribute Specify the address (in dotted decimal) of UDP or TCP listeners. Set to 0.0.0.0 for

MULTICAST.

Usage lan.trigger[N].ipaddress = dotted decimal
(ddd.ddd.ddd.ddd)

Example lan.trigger[3].protocol=lan.TCP

lan.trigger[3].ipaddress=”192.168.1.100”

lan.trigger[3].connect()

lan.trigger[N].mode

Attribute Sets the trigger operation/detection mode.

Usage To read the trigger operation/detection mode:

mode = lan.trigger[N].mode

To write the trigger operation/detection mode:

mode = lan.trigger[N].mode

N: The LAN event number (1-8).

mode: Trigger mode (1-7).

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-206 3700S-901-01 Rev. C / July 2008

lan.trigger[N].mode

Remarks This attribute controls the mode in which the trigger event detector, as well as the

output trigger generator, will operate on the given trigger. These settings are intended

to provide behavior similar to the digital I/O triggers. When setting, mode can be one

of the following values:

 lan.TRIG_EITHER (or 0): Detect rising or falling edge (positive or negative state)

trigger packets as input. Generate a LAN trigger packet with a negative state for

output.

 lan.TRIG_FALLING (or 1): Detect falling edge (negative state) trigger packets as

input. Generate a LAN trigger packet with a negative state for output.

 lan.TRIG_RISING (or 2): Detect rising edge (positive state) trigger packets as

input. Generate a LAN trigger packet with a positive state for output.

 lan.TRIG_RISINGA (or 3): Same as TRIG_RISING. Detect rising edge (positive

state) trigger packets as input. Generate a LAN trigger packet with a positive state

for output.

 lan.TRIG_RISINGM (or 4): Same as TRIG_RISING. Detect rising edge (positive

state) trigger packets as input. Generate a LAN trigger packet with a positive state

for output.

 lan.TRIG_SYNCHRONOUS (or 5): Detect falling edge (negative state) trigger

packets as input. Generate a LAN trigger packet with a positive state for output.

 lan.TRIG_SYNCHRONOUSA (or 6): Detect falling edge (negative state) trigger

packets as input. Generate a LAN trigger packet with a positive state for output.

 lan.TRIG_SYNCHRONOUSM (or 7): Detect rising edge (positive state) trigger

packets as input. Generate a LAN trigger packet with a negative state for output.

The default trigger mode for a trigger is TRIG_EITHER.

TRIG_SYNCHRONOUS is provided for compatibility with the digital I/O triggering on

older firmware. Use of TRIG_SYNCHRONOUSA or TRIG_SYNCHRONOUSM

(instead of TRIG_SYNCHRONOUS) is preferred.

Example To see the present LAN trigger mode of LAN event 1 :

print(lan.trigger[1].mode)

lan.trigger[N].overrun

Attribute Event detector overrun status.

Usage overrun = lan.trigger[N].overrun

N: The trigger packet over LAN to check overrun status (1–8).

overrun: The trigger overrun state for the LAN packet specified.

Remarks This attribute is a read-only attribute that indicates if an event was ignored because

the event detector was already in the detected state when the event occurred. This is

an indication of the state of the even detector built into the synchronization line itself. It

does not indicate if an overrun occurred in any other part of the trigger model, or in any

other construct that is monitoring the event. It also is not an indication of an output

trigger overrun. Output trigger overrun indications are provided in the status model.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-207

lan.trigger[N].overrun

Also see lan.trigger[N].assert() (on page 13-203)

lan.trigger[N].clear() (on page 13-204)

lan.trigger[N].stimulus (on page 13-208)

lan.trigger[N].wait() (on page 13-209)

Example To check the overrun status of a trigger with LAN packet 5:

overrun = lan.trigger[5].overrun

lan.trigger[N].protocol

Attribute Sets LAN protocol to use for sending trigger messages.

Usage To read present LAN protocol:

protocol = lan.trigger[N].protocol

To write present LAN protocol:

lan.trigger[N].protocol = protocol

N: The LAN event number (1-8).

protocol: The protocol to use for the trigger's messages (0, 1, or 2).

Remarks This attribute selects which protocol will be used for sending trigger messages. The

LAN trigger will listen for trigger messages from either protocol but will use the

designated protocol for sending outgoing messages. Call lan.trigger[N].connect after

changing this setting before outgoing event messages can be sent.

protocol must be either lan.TCP (or 0), lan.UDP (or 01), or lan.MULTICAST (or 2).

The default value is lan.TCP. When the lan.MULTICAST protocol is selected, the

ipaddress attribute will be ignored and event messages will be sent to the multicast

address 224.0.23.159.

Example To view LAN protocol to use for sending trigger messages for LAN event 1:

print(lan.trigger[1].protocol)

lan.trigger[N].pseudostate

Attribute Sets the simulated line state for the LAN trigger.

Usage To read the simulated line state for the LAN trigger:

pseudostate = lan.trigger[N].pseudostate

To write the simulated line state for the LAN trigger:

lan.trigger[N].pseudostate = pseudostate

N: The LAN event number (1-8).

pseudosate: The simulated line state (0 or 1).

Remarks This attribute tracks the simulated line state of the LAN trigger. The value can be set to

initialize the pseudo state to known value. Setting this attribute will not cause the LAN

trigger to generate any events or output packets. ON or OFF cannot be used when

setting the pseudosate.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-208 3700S-901-01 Rev. C / July 2008

lan.trigger[N].pseudostate

Example To display the present simulated line state for the LAN event 1:

print(lan.trigger[1].pseudostate)

lan.trigger[N].stimulus

Attribute Event to cause this trigger to assert.

Usage To read the trigger stimulus:

trigstim = lan.trigger[N].stimulus

packet: The trigger packet over LAN to query for stimulus setting.

trigstim: The event identifier being used to trigger the event.

To write the trigger stimulus:

lan.trigger[N].stimulus = trigstim

N: The trigger packet over LAN for which to set the trigger source (1–8).

trigstim: The event identifier to set as the trigger event stimulus.

Remarks This attribute selects which event will cause a LAN trigger packet to be sent for this

trigger. The events may be one of the following:

trigstim may be one of the following (existing trigger event IDs):

 digio.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the digital input line.

 display.trigger.EVENT_ID: The trigger key on the front panel is pressed.

 trigger.EVENT_ID: A *trg message on the active command interface. If GPIB is

the active command interface, a GET message will also generate this event.

 trigger.blender[N].EVENT_ID: A combination of events has occurred.

 trigger.timer[N].EVENT_ID: A delay expired.

 tsplink.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the tsplink trigger line.

 lan.trigger[N].EVENT_ID

 scan.trigger.EVENT_SCAN_READY: Scan Ready Event.

 scan.trigger.EVENT_SCAN_START: Scan Start Event

 scan.trigger.EVENT_CHANNEL_READY: Channel Ready Event

 scan.trigger.EVENT_MEASURE_COMP: Measure Complete Event

 scan.trigger.EVENT_SEQUENCE_COMP: Sequence Complete Event

 scan.trigger.EVENT_SCAN_COMP: Scan Complete Event

 scan.trigger.EVENT_IDLE: Idle Event

NOTE Use the ICL define to set the stimulus value rather than the define value.

Doing this will make the code compatible for future upgrades because they

may need to change when enhancements are added to the instrument.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-209

lan.trigger[N].stimulus

Also see lan.trigger[N].assert() (on page 13-203)

lan.trigger[N].clear() (on page 13-204)

lan.trigger[N].overrun (on page 13-206)

lan.trigger[N].wait() (on page 13-209)

Example To use timer 1 trigger event as the source for LAN packet 5 trigger stimulus:

lan.trigger[5].stimulus = trigger.timer[1].EVENT_ID

lan.trigger[N].wait()

Function Wait for a trigger.

Usage triggered = lan.trigger[N].wait(timeout)

N: The trigger packet over LAN to wait for (1–8).

timeout: Maximum amount of time in seconds to wait for the trigger.

triggered: Trigger detection indication.

Remarks This function will wait for an input trigger. If one or more trigger events were detected

since the last time lan.trigger[N].wait or lan.trigger[N].clear was called, this function will

return immediately.

After waiting for a trigger with this function, the event detector will be automatically

reset and rearmed. This is true regardless of the number of events detected.

Also see lan.trigger[N].assert() (on page 13-203)

lan.trigger[N].clear() (on page 13-204)

lan.trigger[N].overrun (on page 13-206)

lan.trigger[N].stimulus (on page 13-208)

Example To wait for a trigger with LAN packet 5 with a timeout of 3 seconds:

triggered = lan.trigger[5].wait(3)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-210 3700S-901-01 Rev. C / July 2008

localnode functions and attributes

Use the attributes in this group to set the power line frequency, control (on/off)

prompting, and control (hide/show) error messages on the display.

localnode.define.* .MAX_TIMERS

.MAX_DIO_LINES

.MAX_TSPLINK_TRIGS

.MAX_BLENDERS

.MAX_BLENDER_INPUTS

.MAX_LAN_TRIGS

Attribute Indicates the maximum number available for each feature.

Usage To read the maximum number available for a feature:

maxnum = localnode.define.MAX_TIMERS

maxnum = localnode.define.MAX_DIO_LINES

maxnum = localnode.define.MAX_TSPLINK_TRIGS

maxnum = localnode.define.MAX_BLENDERS

maxnum = localnode.define.MAX_BLENDER_INPUTS

maxnum = localnode.define.MAX_LAN_TRIGS

Example To read the maximum number of timers that are available:

maxnum = localnode.define.MAX_TIMERS

localnode.description

Attribute User description of the unit.

Usage localnode.description = description

description = localnode.description

description: User description of the unit.

Remarks This attribute holds a string with an arbitrary description of the unit. This value will

appear on the welcome web page for the unit.

localnode.execute()

Function Execute TSL code.

Usage localnode.execute(chunk)

chunk: Source TSL code to execute.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-211

localnode.execute()

Remarks This function will execute the given TSL code.

NOTE This command cannot actually be used on the local node. It is provided for

the sole purpose of executing scripts on this node from a remote master

node. The localnode prefix to the command is an artifact of command

organization and how remote commands are shared between nodes.

localnode.getglobal()

Function Get a the value of a global variable.

Usage value = localnode.getglobal(name)

name: The global variable name.

value: The value of the variable.

Remarks This function will return the value of the given global variable. This function is provided

to allow code running on a remote master node to retrieve values of variables from

that node. This function should not be used to retrieve the value of a global variable on

the local node when using the local node as the master. Accessing the variable

directly is far more efficient.

NOTE This command is provided for the sole purpose of accessing variables on

this node from a remote master node. The localnode prefix to the

command is an artifact of command organization and how remote

commands are shared between nodes.

localnode.linefreq

Attribute Use to read power line frequency detected at power up.

Usage To read line frequency:

frequency = localnode.linefreq

Remarks To achieve optimum noise rejection when performing measurements at integer

NPLC apertures, the line frequency setting must match the frequency (50Hz or

60Hz) of the AC power line.

 When used in an expanded system (TSP-LinkTM), localnode.linefreq is sent to the

Remote Master node only. Use node[N].linefreq (where N is the node

number) to send the command to any node in the system.

Example To get the line frequency:

print(localnode.linefreq)

localnode.model

Attribute Use to query model number.

Usage value = localnode.model

value: Represents model number.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-212 3700S-901-01 Rev. C / July 2008

localnode.model

Example To print model number:

print(localnode.model)

Output:

3706

localnode.password

Attribute The remote access password.

Usage localnode.password = "password"

Remarks This attribute holds the remote access password. When password usage is enabled,

this password must be supplied to change the configuration or control a unit from a

web page or a remote command interface.

This attribute is write-only and cannot be read.

NOTE The unit will continue to use the old password for all interactions until the

command to change it executes. When changing the password, give the

unit time to execute the command before attempting to use the new

password.

localnode.passwordmode

Attribute The remote access password enable mode.

Usage localnode.passwordmode = mode

mode = localnode.passwordmode

mode: The password enable mode.

Remarks This attribute controls if and where remote access passwords are required. Set this

attribute to one of the values in the table below to enable password checking.

localnode.PASSWORD_NONE: Disable passwords everywhere.

localnode.PASSWORD_WEB: Use passwords on the web interface only.

localnode.PASSWORD_LAN: Use passwords on the web interface and all

Ethernet interfaces.

localnode.PASSWORD_ALL: Use passwords on the web interface and all remote

command interfaces.

localnode.prompts

Attribute Prompting mode.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-213

localnode.prompts

Usage To read prompting state:

prompting = localnode.prompts

To write prompting state:

localnode.prompts = prompting

prompting: Set to 0 to disable or 1 to enable.

Remarks This attribute controls prompting. When it is set to 1, prompts are issued after each

command message is processed by the instrument. When it is set to 0, prompts

are not issued.

 The command messages do not generate prompts. The Series 3700 generates

prompts in response to command messages.

 When the prompting mode is enabled, the Series 3700 generates prompts in

response to command messages. There are three prompts that might be returned:

 "TSP>" is the standard prompt. This prompt indicates that everything is normal and

the command is done processing.

 "TSP?" is issued if there are entries in the error queue when the prompt is issued.

Like the "TSP>" prompt, it indicates the command is done processing. It does not

mean the previous command generated an error, only that there are still errors in

the queue when the command was done processing.

 ">>>>" is the continuation prompt. This prompt is used when downloading scripts.

When downloading scripts, many command messages must be sent as a unit. The

continuation prompt indicates that the instrument is expecting more messages as

part of the current command.

 Test Script Builder requires prompts. It sets the prompting mode behind the

scenes. If you disable prompting, use of the Test Script Builder will hang because it

will be waiting for the prompt that lets it know that the command is done executing.

DO NOT disable prompting with the use of the Test Script Builder.

 When used in an expanded system (TSP-LinkTM), localnode.prompt is sent to the

Remote Master node only. Use node[N].prompt (where N is the node

number) to send the command to any node in the system.

Also see localnode.showerrors (on page 13-217)

Example Enables prompting:

localnode.prompts = 1

localnode.reset()

Function Resets the system.

Usage localnode.reset()

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-214 3700S-901-01 Rev. C / July 2008

localnode.reset()

Remarks A system reset includes a channel.reset('allslots'),

dmm.reset('all'), and a scan.reset(). In addition:

 Other system settings are restored back to factory default settings.

 Existing channel patterns and DMM configurations are deleted.

 All channels and backplane relays open.

 The dmm function is "dcvolts".

 User-created reading buffers are deleted.

Also see channel.reset() (on page 13-68)

dmm.reset() (on page 13-161)

scan.reset() (on page 13-242)

localnode.revision

Attribute Use to query the firmware revision level.

Usage value = localnode.revision

value: Firmware revision level.

Example To output the present revision level:

print(localnode.revision)

Output:

01.00a

localnode.serialno

Attribute Use to query serial number:

Usage To read serial number:

value = localnode.serialno

value: Series 3700's serial number

Example To output the unit's serial number:

print(localnode.serialno)

Output:

01116353

localnode.setglobal()

Function Set a the value of a global variable.

Usage localnode.setglobal(name, value)

name: The global variable name to create.

value: The value to assign to the variable.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-215

localnode.setglobal()

Remarks This function will assign the given value to a global variable. This function is provided

to assign values to variables from a remote master node. This function should not be

used to assign values to global variables on the local node when using the local node

as the master, assigning the value directly is far more efficient.

NOTE This command is provided for the sole purpose of accessing variables on

this NOTE from a remote master node. The localnode prefix to the

command is an artifact of command organization and how remote

commands are shared between nodes.

localnode.settime()

Function Set the current time of the system.

Usage settime(hour, minute, second)

or

localnode.settime(os.time(year = <year>, month = <month>,
day = <day>, hour = <hour>, min = <min>, sec = <sec>))

<year>: A full year that is 2006 or later

<month>: The desired month from 01 to 12

<day>: The desired day from 01 to 31

<hour>: The desired hour from 00 to 23

<minute>: The desired minute from 00 to 59

<second>: The desired second from 00 to 59

Remarks This function sets the date and time of the system based on the os.time response

passed in as its parameter. Use year, month, day, hour, min, and sec to set the time

as desired. The first 3 parameters to os.time are mandatory while the rest are optional.

If the later 3 are not used, they default to noon for that day. The setting of the time and

date does not take into account the time zone. Please update the time for your time

zone.

Example To set the date and time to Oct 3, 2006 at 2:25 pm:

settime(os.time(year = 2006, month = 10, day = 3,

hour =14, min = 25, sec = 0))

localnode.setup.poweron

Attribute The saved setup to recall when the unit is turned on.

Usage To read power on state:

n = localnode.setup.poweron

n: Returned power on state.

To write power on state:

localnode.setup.poweron = n

n: Setup number to recall on power up (0 or 1).

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-216 3700S-901-01 Rev. C / July 2008

localnode.setup.poweron

Remarks Setting this attribute to 0 causes the unit to power up to the factory default (reset)

setup. A setting of 1 causes the unit to power up using a user setup that was

previously saved internally.

Example To set unit to power on with factory default settings:

localnode.setup.poweron = 0

To query power on state:

print(localnode.setup.poweron)

Output (factory default):

0

localnode.setup.recall()

Function Recalls settings from a saved setup.

Usage localnode.setup.recall(location)

location: Setup number to recall (0, 1, or "/usb1/<filename>").

0: Reset setup.

1: Internal setup.

<filename>: Use the name of the desired file contained on a USB flash drive.

Remarks If a number is sent as the parameter:

The number is interpreted as a setup number and the setup is recalled from internal

memory. Setting this attribute to 0 recalls the factory default (reset) setup. Setting this

attribute to 1 recalls the user saved setup from internal memory.

If a string is sent as the parameter:

The string is interpreted as a path and filename and the setup is recalled from the

corresponding file on the USB flash drive. The path may be absolute or relative to the

current working directory. The filename must include the file extension.

Also see localnode.setup.save() (on page 13-216)

Example To recall factory default settings:

localnode.setup.recall(0)

To recall the user saved setup from internal memory:

localnode.setup.recall(1)

To recall a user saved setup stored in a file named KEITHLEY_3730 on a USB flash

drive:

localnode.setup.recall("/usb1/KEITHLEY_3730.set")

localnode.setup.save()

Function Saves the present setup as the user-setup.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-217

localnode.setup.save()

Usage To save to the internal memory location, send no parameters with function:

localnode.setup.save()

To save to the USB flash drive:

localnode.setup.save(location)

location: Setup location to save. Use the format "/usb1/<filename>" where

<filename> is the name of the desired file contained on a USB flash drive. The

location must include the /usb1/. If it includes a file extension, it must be .set. If no

extension is provided, .set will be appended automatically to filename. The .set file

extension is used on front panel to identify setup files to load from thumb drive.

Remarks This function overwrites any previous values with the present setup.

Also see localnode.setup.recall() (on page 13-216)

Example To save the present setup as the internal user setup:

localnode.setup.save()

To save a user saved setup to a file named KEITHLEY_3730 on a USB flash drive:

localnode.setup.save("/usb1/KEITHLEY_3730")

localnode.showerrors

Attribute Automatic display of errors.

Usage To read the show errors state:

errormode = localnode.showerrors

To write the show errors state:

localnode.showerrors = errormode

errormode: Set to 0 or 1.

Remarks If this attribute is set to 1, for any errors that are generated, the unit will

automatically display the errors stored in the error queue, and then clear the

queue. Errors will be processed at the end of executing a command message (just

prior to issuing a prompt if prompts are enabled).

 If this attribute is set to 0, errors will be left in the error queue and must be explicitly

read or cleared.

 When used in an expanded system (TSP-LinkTM), localnode.showerrors is sent to

the Remote Master node only. Use node[N].showerrors (where N is the node

number) to send the command to any node in the system.

Details See errorqueue functions and attributes (on page 13-176).

Also see localnode.prompts (on page 13-212)

Example Displays errors:

localnode.showerrors = 1

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-218 3700S-901-01 Rev. C / July 2008

makegetter functions

Use the functions in this group to set and retrieve a value for an attribute.

makegetter()

Function Creates a function to get the value of an attribute.

Usage getter = makegetter(table, attributename)

table: Read-only table were the attribute is located.

attributename: The string name of the attribute.

getter: Function that returns the value of the given attribute.

Remarks This function creates a function that when called returns the value of the attribute.

This function is useful for aliasing attributes to improve execution speed. Calling

the getter function will execute faster than accessing the attribute directly.

 Creating a getter function is only useful if it is going to be called several times.

Otherwise the overhead of creating the getter function outweighs the overhead of

accessing the attribute directly.

Also see makesetter() (on page 13-218)

Example To create a getter function called getrange:

getrange = makegetter(dmm, "range")

...

r = getrange()

NOTE When getrange is called, it returns the value of dmm.range.

makesetter()

Function Creates a function to set the value of an attribute.

Usage setter = makesetter(table, attributename)

table: Read-only table were the attribute is located.

attributename: The string name of the attribute.

setter: Function that sets the value of the given attribute.

Remarks This function creates a function that when called sets the value of the attribute. This

function is useful for aliasing attributes to improve execution speed. Calling the

setter function will execute faster than accessing the attribute directly.

 Creating a setter function is only useful if it is going to be called several times.

Otherwise the overhead of creating the setter function outweighs the overhead of

accessing the attribute directly.

Also see makegetter() (on page 13-218)

Example Use setrange to set the value of dmm.range for the currently selected function:

setrange = makesetter(dmm, "range")

setrange(5)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-219

memory functions

memory.available()

Function Indicates the memory available in the system.

Usage mem_avail = memory_available()

mem_avail: Comma-delimited string with percentages for available memory.

The string format of mem_avail is "sys_mem, script_mem, pat_mem, config_mem",

where:

sys_mem: Percentage of overall memory in the system

script_mem: Percentage of memory available in the system to store user scripts

pat_mem: Percentage of memory available in the system to store channel patterns

config_mem: Percentage of memory available in the system to store user DMM

configurations

Remarks Use this function to view the available memory in the system overall as well as the

memory available for storing user scripts, for storing channel patterns, and for storing

user DMM configurations. The response to this function is a single string that provides

the overall system memory available as well as the script memory available, channel

pattern memory available, and DMM configuration memory available as comma-

delimited percentages.

Also see memory.used() (on page 13-219)

Example To read the memory available in the system:

MemAvail = memory.available()

To print out the memory in the system:

print(MemAvail)

or

print(memory.available())

Output: 51.56, 92.84, 100.00, 100.00 00

After recalling a setup that was saved internally:

setup.recall(1)

print(memory.available()) -> 11.13, 92.84, 0.16, 97.03

memory.used()

Function Indicates the memory available in the system.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-220 3700S-901-01 Rev. C / July 2008

memory.used()

Usage mem_avail = memory_available()

mem_avail: Comma-delimited string with percentages for available memory.

The string format of mem_avail is "sys_mem, script_mem, pat_mem, config_mem",

where:

sys_mem: Percentage of overall memory in the system

script_mem: Percentage of memory available in the system to store user scripts

pat_mem: Percentage of memory available in the system to store channel patterns

config_mem: Percentage of memory available int he system to store user DMM

configurations

Remarks Use this function to view the used memory in the system overall as well as the

memory used for storing user scripts, for storing channel patterns, and for storing user

DMM configurations. The response to this function is a single string that provides the

overall system memory used as well as the script memory available, channel pattern

memory available, and DMM configuration memory used as comma-delimited

percentages.

Also see memory.available() (on page 13-219)

Example To read the memory used in the system:

MemUsed = memory.used()

To print out the memory used in the system:

print(MemUsed)

or

print(memory.used())

Output: 48.44, 7.16,0.00, 0.00

After recalling a setup that was saved internally:

setup.recall(1)

print(memory.available()) -> 88.87. 7.16, 99.84, 2.97

opc functions

Use this function to set the OPC bit in the status register when all overlapped

commands are completed.

opc()

Function Sets the Operation Complete status bit when all overlapped commands are completed.

Usage opc()

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-221

opc()

Remarks This function will cause the Operation Complete bit in the standard event status

register to be set when all previously started local overlapped commands are

complete. Note that each node will independently set their Operation Complete bits

in their own status models.

 Any nodes not actively performing overlapped commands will set their bits

immediately. All remaining nodes will set their own bits as they complete their own

overlapped commands.

Also see waitcomplete (on page 3-16)

print functions

Use these functions to print.

printbuffer()

Function Prints data from reading buffer.

Usage There are multiple ways to use this function, depending on how many sub-tables are

used:

printbuffer(start_index, end_index, st_1)

printbuffer(start_index, end_index, st_1, st_2)

printbuffer(start_index, end_index, st_1, st_2, ..., st_n)

start_index: Starting index of values to print.

end_index: Ending index of values to print.

st_1, st_2, ... st_n: Sub-tables from which to print values.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-222 3700S-901-01 Rev. C / July 2008

printbuffer()

Remarks Correct usage when there are no outstanding overlapped commands to acquire

data:

 1 <= start_index <= end_index <= n

Where n refers to the index of the last entry in the tables to be printed.

 If end_index < start_index or n < start_index , no data will be printed. If start_index

< 1, 1 will be used as the first index. If n < end_index , n will be used as the last

index.

 When any of the given reading buffers are being used in overlapped commands

that have not yet completed at least to the desired index, this function will return

data as it becomes available.

 When there are outstanding overlapped commands to acquire data, n refers to the

index that the last entry in the table will have after all the measurements have

completed.

 This function prints values from reading buffers. If a specific sub-table is not

specified (for example, "rb1" rather than "rb1.statuses"), the default "readings" sub-

table will be used.

 At least one sub-table must be specified. There is an upper limit that is dictated by

the output format and the maximum output message length. Values will be

interleaved in one message. Care must be taken not to exceed the maximum

output message length.

 All the data will be put in one response message. The response message will be

formatted as dictated by format.data and other associated attributes.

Also see format.data (on page 13-184)

Example This example prints the readings (buf), the units (buf.units), and relative time

stamps (buf.relativetimestamps) for the 1st and 2nd readings in the buffer

named buf:

printbuffer(1,2,buf, buf.units, buf.relativetimestamps)

3.535493836e-002, Volts DC, 0.000000000e+000

-4.749810696e-002, Volts DC, 5.730966000e-002

printnumber()

Function Prints numbers using the format selected for printing reading buffers.

Usage There are multiple ways to use this function, depending on how many numbers are to

be printed:

printnumber(v1)

printnumber(v1 ,v2)

printnumber(v1 ,v2, ..., vn)

v1, v2, ..., vn: Numbers to print.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-223

printnumber()

Remarks This function will print the given numbers using the data format specified by

format.data and other associated attributes.

 At least one number must be given. There is an upper limit that is dictated by the

output format and the maximum output message length. All values will be written in

a single message. Care must be taken not to exceed the maximum output

message length.

Also see printbuffer() (on page 13-221)

format.data (on page 13-184)

Example Prints three measurements that were previously performed:

format.data = format.ASCII

printnumber(i, v, t)

Example of returned data (i, v, t):

1.02345E-04, 8.76542E-02, 5.29372E-01

ptp functions and attributes

Use these functions to configure the IEEE-1588 Precision Time Protocol (PTP).

IEEE-1588 allows multiple devices to synchronize time to a less than 10mS

accuracy. Further information on the protocol, operation, and terminology is

available from the IEEE organization documentation or other third-party sources.

ptp.burst.enable()

Function Enables a special mode for bursts of 1588 packets used to speed up synchronization.

Usage ptp.burst.enable [0|1|ptp.ON|ptp.OFF]

ptp.ON (1)

ptp.OFF (0)

Example ptp.burst.enable=1

print(ptp.burst.enable)

ptp.ds.current()

Function Read-only string that specifies the current delay and offset timing for the instrument. If

this instrument is the master, the values will be zero.

Usage ptp.ds.current()

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-224 3700S-901-01 Rev. C / July 2008

ptp.ds.current()

Details The fields are:

 Steps removed – the number of steps to reach a master. 1 without any boundary

clocks, >1 if one or more boundary clocks are involved

 Offset from Master: the current time offset, in seconds, from the master

 One Way Delay, the current one way network delay (master to slave or slave to

master)

 Master to Slave Delay, the current master to slave network delay, in seconds

 Slave to Master Delay, the current slave to master network delay in seconds

Example print(ptp.ds.current())

Steps removed: 1

Offset from Master: 0.000000012

One Way Delay: 0.000015794

Master to Slave Delay: 0.000015806

Slave to Master Delay: 0.000015709

ptp.ds.default()

Function Read-only string that specifies various characteristics of the current clock.

Usage ptp.ds.default()

Example print(ptp.ds.default())

Clock Communication: 1

Clock Port Field: 0

Clock Stratum: 255

Clock Variance: 0

Clock Followup Capable: 1

Preferred: 0

Initializable: 1

External Timing: 0

Is Boundary Clock: 0

Sync Interval: 1

Number of Ports: 1

Num of Foreign Records: 10

Clock Identifier: DFLT

Clock UUID: 00 60 0c 01 83 ee

Subdomain Name: _DFLT

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-225

ptp.ds.foreignmaster()

Function Read-only string describing information about any “foreign” clocks the instrument

knows about.

Usage ptp.ds.foreignmaster()

Example print(ptp.ds.foreignmaster())

Empty.

ptp.ds.globaltime()

Function Read-only string describing global properties such as UTC offset.

Usage ptp.ds.globaltime()

Example print(ptp.ds.globaltime())

Current UTC Offset: 32

Leap 59: 0

Leap 61: 0

Epoch number: 0

ptp.ds.parent()

Function Read-only string describing characteristics of the current parent clock.

Usage ptp.ds.parent()

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-226 3700S-901-01 Rev. C / July 2008

ptp.ds.parent()

Example print(ptp.ds.parent())

Parent Communication: 1

Parent Port Id: 1

Parent Last Sync Seq: 16140

Parent Followup Capable: 1

Parent External Timing: 0

Parent Variance: -12000

Parent Stats: 0

Observed Variance: 0

Observed Drift: 0

UTC Reasonable: 0

GM Communication: 1

GM Port Id: 1

GM Stratum: 4

GM Variance: -12000

GM Preferred: 0

GM is Boundary Clock: 0

GM Sequence: 16140

Parent UUID: 00 30 d3 09 f8 b2

GM UUID: 00 30 d3 09 f8 b2

GM Identifier: DFLT

ptp.ds.portconfig()

Function Read-only string with information about the clock configuration, including sequence

numbers, port addresses, subdomain address, and UUID.

Usage ptp.ds.portconfig()

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-227

ptp.ds.portconfig()

Example print(ptp.ds.portconfig())

Last Sync Event Seq: 22

Last General Event Seq: 0

Port Communication: 1

Event Port Address: 319

General Port Address: 320

Port Id Field: 1

Burst Enabled: 0

Subdomain Address: 224 0 1 129

Port UUID: 00 60 0c 01 83 ee

Random Number r: 29

Random Number q: 12

Sync Counter: 20

Number of Bursts: 6

Burst Counter: 0

ptp.enable()

Function Enable/disable 1588 on the Series 3700.

Usage ptp.enable [0|1|ptp.ON|ptp.OFF]

ptp.ON (1)

ptp.OFF (0)

Example ptp.enable=1

print(ptp.enable)

ptp.portstate

Attribute Read-only value that indicates the state of the 1588 engine: initializing, faulting,

listening, master, slave, uncalibrated, passive, or disabled (see ptp constants).

Usage ptp.portstate

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-228 3700S-901-01 Rev. C / July 2008

ptp.portstate

Remarks ptp.INITIALIZING (0)

ptp.FAULTY (1)

ptp.DISABLE (2)

ptp.LISTENING (3)

ptp.PRE_MASTER (4)

ptp.MASTER (5)

ptp.PASSIVE (6)

ptp.UNCALIBRATED (7)

ptp.SLAVE (8)

ptp.UNKNOWN (9)

Example print(ptp.portstate)

ptp.preferredmaster.enable()

Function Indicates to 1588 if this unit wants to be a master (if all other qualifiers are equal).

NOTE: This value is not persisted through a power cycle.

Usage ptp.preferredmaster.enable [0|1|ptp.ON|ptp.OFF]

ptp.ON (1)

ptp.OFF (0)

Example ptp.preferredmaster.enable=1

print(ptp.preferredmaster.enable)

ptp.subdomain

Attribute Only instruments in the same subdomain will interact with each other (from a 1588

point of view).

Usage ptp.subdomain = [any 5 character identifier]

subdomain: a qualifier used to group instruments together. The default setting is

_DFLT.

Remarks ptp.subdomain does not take effect until 1588 is restarted (generally using a power

cycle).

Example ptp.subdomain='_DFLT'

print(ptp.subdomain)

ptp.synchronized

Attribute Read-only value that indicates if the 1588 engine is in MASTER or SLAVE state. It

does NOT indicate the PLL is settled.

Usage ptp.synchronized

Example print(ptp.synchronized)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-229

ptp.syncinterval

Attribute Defines the interval between synchronization messages from the master. This must be

set to the same value for all instruments participating in 1588 (for a given subdomain),

both master and slave.

Usage ptp.syncinterval = [0,1,3,4,6]

0: 1 sec

1: 2 sec

3: 8 sec

4: 16 sec

6: 64 sec

Remarks ptp.syncinterval does not take effect until 1588 is restarted (generally using a power

cycle).

Example ptp.syncinterval=1

print(ptp.syncinterval)

ptp.time

Attribute Read-only PTP time that returns seconds and fractionalseconds.

Usage ptp.time

Example sec,fraction=ptp.time()

print(sec+fraction)

ptp.utcoffset

Attribute Current offset, in seconds, between UTC and PTP. If the instrument is a slave, this

value comes from the master (so setting the value will be overwritten on the next

synchronization). The Series 3700 does not keep track of this value through a power

cycle (that is, it defaults to 0 if the 3700 is the master).

Usage ptp.utcoffset

Remarks The Series 3700 is not time-zone aware, so UTC time will be presented as the local

time.

Details UTC Time = PTP Time - UTC Offset

Example ptp.utcoffset=33

print(ptp.utcoffset)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-230 3700S-901-01 Rev. C / July 2008

reset functions

Use this function to return all logical instruments to the default settings.

reset()

Function Resets the logical instruments to the default settings.

Usage reset()

Remarks This function resets all logical instruments in the system. It is equivalent to iterating

over all the logical instruments in the system and calling the reset method of each.

This function is equivalent to system wide reset and includes:

 channel.reset

 dmm.reset('all')

 scan.reset.

It also deletes existing channel patterns and DMM configurations along with channel

labels and user created reading buffers.

scan functions and attributes

Use the functions in this group to specify and configure channels and/or channel

patterns to scan, as well as associated buffers, triggers, or other scanning

aspects.

scan.abort()

Function Aborts a running scan

Usage scan.abort()

Remarks This function will abort a running scan. If no scan is running, it will be ignored.

scan.add()

Function Add scan step to the scan list.

Usage scan.add(<ch_list>, [<dmm_config>])

scan.add(<ch_list>, [<width>])

ch_list: String specifying channels to add, using normal channel list syntax.

dmm_config: Optional string listing the DMM configuration to use with items in

ch_list.

width: Optional value that specifies the width of the channel read.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-231

scan.add()

Remarks Use this function to specify additional channels and channel patterns to scan. These

items are appended to the end of the existing scan list that was specified by the

scan.create() (on page 13-234) command. The items in ch_list are

appended and scanned in the order specified in the parameter list. Specifying a

channel list results in multiple steps being added to the scan.

If the optional dmm_config parameter is not specified, the configuration associated

with that channel or channel pattern is used (see dmm.setconfig() (on page 13-

168) and dmm.getconfig() (on page 13-139)). If a dmm_config is specified,

then that configuration is used for each channel or channel pattern specified in a

temporary override mode. It does not modify the assigned configuration of a channel

or channel list.

The scan list of channels or channel patterns are not updated if any error occurs

during processing of the command. However, steps already added to the scan list with

prior commands remain unchanged with an error detection.

For digital I/O or totalizer channels, the created scan step instructs the scan to read

the given channel and deposit the read value into the specified reading buffer. If no

reading buffer is specified, the channel is read, but the value is lost.

The width parameter is only valid for channels of type digital I/O. Only a width of 1,

2, 3, or 4 is supported. If specified, the scan reads up to four consecutive channels

simultaneously during the scan and deposit the resulting value into the specified

reading buffer.

DAC channels are not supported.

NOTE Because reading buffer time stamps are generated differently for different

channel types, there can be some variance when comparing measurement

time stamps to channel read time stamps.

Also see scan.create() (on page 13-234)

Example To clear the old scan list and to create a new scan list with Channels 1 to 10 on Slot 3

with myDCV, a user DC volts configuration, on all 10 channels and then use

my2wire, a user 2-wire ohms configuration, on all 10 channels:

scan.create('3001:3010', 'myDCV')

scan.add('3001:3010', 'my2wire')

To clear the old scan list and to create a new scan list with Channels 1 to 10 on Slot 3

with myDCV, a user DC volts configuration, on all 10 channels and then my2wire, a

user 2-wire ohms configuration, on each step:

scan.create('')

for chan = 3001, 3010 do

scan.create('' .. chan, 'myDCV')

scan.add('' .. chan, 'my2wire')

end

NOTE With respect to the scan.add function in the above example, the first

parameter ('' .. chan, converts the chan number to a string.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-232 3700S-901-01 Rev. C / July 2008

scan.addwrite()

Function Writes a specified value to a channel at the added step in the scan.

Usage scan.addwrite(<ch_list>, <write value>, [<width>])

ch_list: String specifying channels to add, using normal channel list syntax.

write_value: The value to write to the channel for this scan step.

width: Optional value that specifies the width of the channel write.

Remarks scan.addwrite() is similar to issuing channel.write() at the scan step.

Specifying a channel list results in multiple steps being added to the scan with the

same write value.

For digital I/O channels, only a width of 1, 2, 3, or 4 is supported. Any information (bits)

greater than the specified width are ignored. Values written to inputs are ignored. If no

specified channel is set for output, then an error is generated. If a width crosses

channels, then only the channels set to output are affected.

For totalizer, backplane, and switch channels, there is no valid behavior. Calling on a

specific channel generates an error.

For DAC channels, if the channel mode is changed after the scan is created, the scan

is rebuilt. If the write value is no longer compatible with the new mode, an error is

generated and the scan becomes invalid.

scan.background()

Function Starts a scan and runs the scan in the background.

Usage state, scancount, stepcount,

reading = scan.background(rb_buffer)

rb_buffer: Optional. Reading buffer to use during scanning to store the readings. If not

specified, no readings are stored during the scan.

state: The result of scanning:

 scan.EMPTY or 0

 scan.BUILDING or 1

 scan.RUNNING or 2

 scan.ABORTED or 3

 scan.FAILED or 4

 scan.FAILED_INIT or 5,

 scan.SUCCESS or 6

scancount: is current scan count completed

stepcount: is current step count completed

reading: is the last reading of scan completed if measurements are taken during the

scan.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-233

scan.background()

Remarks This command may specify the reading buffer to use during scanning and the scan is

executed in the background. The reading buffer, if specified, will store the readings

and accompanying attributes desired for the scan. This command starts the scan.

Prior to using this command use scan.create and scan.add to setup scan elements.

Because scan is running in the background, use scan.state (on page 13-243) function

to see current status of scanning.

An error will be generated if the reading buffer does not exist or the parameter is not a

reading buffer.

Also see scan.add() (on page 13-230)

scan.create() (on page 13-234)

scan.execute() (on page 13-236)

scan.list() (on page 13-237)

scan.state() (on page 13-243)

Example To use reading buffer rbbuff1 and run scan in background:

scan.background(rbbuff1)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-234 3700S-901-01 Rev. C / July 2008

scan.bypass

Attribute Indicates whether the first channel of the scan should wait for the channel stimulus

event to be satisfied before closing

Usage To read the bypass state:

bypass = scan.bypass

To write the state of the bypass:

scan.bypass = bypass

bypass: The state of the bypass. Set bypass to one of the following values:

 scan.OFF or 0: Bypass disabled

 scan.ON or 1: Bypass enabled (default)

Remarks When scan.bypass is ON (default), once the scan.trigger.arm.stimulus (on page 13-

244) is satisfied, the first channel of the scan closes regardless of the

scan.trigger.channel.stimulus (on page 13-246) settings. For channels other than the

first, the channel stimulus must be satisfied before the channel action takes place.

With bypass OFF, every channel (including the first) needs to have the

scan.trigger.channel.stimulus (on page 13-246) settings satisfied before the channel

action occurs for that step.

Also see scan.trigger.arm.stimulus (on page 13-244)

scan.trigger.channel.stimulus (on page 13-246)

Example To display the present bypass state:

print(scan.bypass)

To disable the bypass option for scanning:

scan.bypass = scan.OFF

scan.create()

Function Creates a list of channels and/or channel patterns to scan.

Usage scan.create(<ch_list>, dmm_config)

ch_list: A string listing the channels and/or channel patterns to replace existing scan

list.

dmm_config: Optional string listing DMM configuration to use with items in

ch_list.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-235

scan.create()

Remarks Use this function to replace an existing list of channels and/or channel patterns to

scan. The existing scan list is lost after this command. These items purge the old list

and start a new scan list. The items in ch_list will be scanned in the order specified

in the parameter list.

If the optional dmm_config parameter is not specified, the configuration

(dmm.setconfig() (on page 13-168), dmm.getconfig() (on page 13-139)) associated

with that channel or channel pattern will be used. However, if a dmm_config is

specified, that configuration is used for each channel or channel pattern specified in a

temporary override mode. It does not modify the assigned configuration of a channel

or channel list.

An error will occur if:

 A specified channel does not exist.

 A specified channel pattern does not exist (slot empty or not on card).

 A syntax error exists in parameter string.

 An empty parameter string is specified for dmm_config parameter.

 A specified DMM configuration does not exist.

 An analog backplane relay is specified.

 A forbidden channel is specified.

Even with an error, the scan list of channels or channel patterns will be cleared.

Therefore, if the scan list is queried after sending a scan.create command, it will be

empty if an error occurred or the specified new list if no error detected.

Factory default is an empty scan list of channels and DMM configurations. The

function scan.reset() (on page 13-242) clears the list.

To clear the list only, send an empty string for the ch_list parameter.

Also see scan.add() (on page 13-230)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-236 3700S-901-01 Rev. C / July 2008

scan.create()

Example To clear the old scan list without resetting the entire scan configuration aspects:

scan.create("")

To clear the old scan list and to create a new scan list with Channels 1 to 10 on Slot 3

with myDCV, a user DC volts configuration, on all 10 channels and then my2wire, a

user 2-wire ohms configuration, on all 10 channels:

scan.create('3001:3010', 'myDCV')

scan.add('3001:3010', 'my2wire')

To clear the old scan list and to create a new scan list with Channels 1 to 10 on Slot 3

with myDCV, a user DC volts configuration, on all 10 channels and then my2wire, a

user 2-wire ohms configuration, on each step:

scan.create('')

for chan = 3001, 3010 do

scan.add('' .. chan, 'myDCV')

scan.add('' .. chan, 'my2wire')

end

NOTE With respect to the scan.add function in the above example, the first

parameter ('' .. chan, converts the chan number to a string.

scan.execute()

Function Starts a scan and runs it in immediate mode.

Usage state, scancount, stepcount,

reading = scan.execute(rb_buffer)

rb_buffer: Optional reading buffer to use during scanning to store the readings. If not

specified, no readings are stored during the scan.

state: The result of scanning:

 scan.EMPTY or 0

 scan.BUILDING or 1

 scan.RUNNING or 2

 scan.ABORTED or 3

 scan.FAILED or 4

 scan.FAILED_INIT or 5,

 scan.SUCCESS or 6

scancount: is current scan count completed

stepcount: is current step count completed

reading: is the last reading of scan completed, if measurements were taken during the

scan

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-237

scan.execute()

Remarks This command may specify the reading buffer to use during scanning and runs the

scan in immediate mode. The reading buffer, if specified, will store the readings and

accompanying attributes desired for the scan. This command starts the scan. Prior to

using this command use scan.create() (on page 13-234) and scan.add() (on page 13-

230) to setup scan elements.

The command will not exit execution until scanning completes or is aborted by the

user.

An error will be generated if the reading buffer does not exist or the parameter is not a

reading buffer.

Also see scan.add() (on page 13-230)

scan.background() (on page 13-232)

scan.create() (on page 13-234)

scan.list() (on page 13-237)

scan.state() (on page 13-243)

Example To use reading buffer rbbuff1 and run scan in immediate mode:

scan.execute(rbbuff1)

scan.list()

Function Use to query the existing scan list.

Usage MyScanList = scan.list()

MyScanList: a string listing the existing scan step information.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-238 3700S-901-01 Rev. C / July 2008

scan.list()

Remarks This command will list out the existing scan list.

If the scan list is empty, then the string "Empty Scan" is returned. Otherwise, the string

will list each step in the scan along with its information for step, open, close, measure

configuration, and count. For example, an existing scan list may appear as follows:

Init) OPEN...

1) STEP: 2007

 CLOSE: 2007

MEASURE: nofunction COUNT: 1

2) STEP: 2008

 OPEN: 2007

 CLOSE: 2008

MEASURE: nofunction COUNT: 1

3) STEP: 2020

 OPEN: 2008

 CLOSE: 2020 2911

MEASURE: dcvolts COUNT: 1

4) STEP: 2021

 OPEN: 2020 2911

 CLOSE: 2021 2921

MEASURE: dcvolts COUNT: 1

5) STEP: 2016

 OPEN: 2021 2921

 CLOSE: 2016 2911

MEASURE: mydcv1 COUNT: 1

6) STEP: 2017

 OPEN: 2016

 CLOSE: 2017

MEASURE: mydcv1 COUNT: 1

7) OPEN: 2017

Example To display the existing scan list:

print(scan.list())

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-239

scan.measurecount

Attribute Set or query the measure count value for scanning.

Usage To read the count:

count = scan.measurecount

count: Present measure count value being used

To write the count:

scan.measurecount = count

count: Value to set the measure count. Valid range: 1 to 450000.

Remarks This attribute sets the measure count in the trigger model. During a scan, the Series

3700 will iterate through the sequence event detector and measure action of the

trigger model this many times. After performing this count iterations, the Series 3700

will return to check the scan count.

The reset value for this attribute is 1.

Details The measure count value:

 is the number of measurements to take per scan step

 must be set before a scan is started

 applies to all scan steps in the list (the ones already existing in the list as well as

the new ones to be added before the scan is started)

Example To set the measure count to 5:

scan.measurecount = 5

scan.mode

Attribute Use to set or query the scan mode value.

Usage To read the scan mode value:

init = scan.mode

init: The present scan mode setting

To write the scan mode value:

scan.mode = init

init: The desired value of set the scan mode setting. Use one of the following:

 scan.MODE_OPEN_ALL or 0: indicates if an openall on all slots should be

performed before a scan starts (default setting).

 scan.MODE_OPEN_SELECTIVE or 1: indicates that an intelligent open takes

place (see remarks)

 scan.MODE_FIXED_ABR or 2: this setting is equivalent to

MODE_OPEN_SELECTIVE plus the following:

-close all required backplane relays before start of scan

-does not open or close these backplane relays during the scan

-does not open these backplane relays at the end of scan

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-240 3700S-901-01 Rev. C / July 2008

scan.mode

Remarks This attribute, when set to scan.MODE_OPEN_ALL, indicates an openall on all

slots should be performed before a scan starts. Otherwise, when

scan.MODE_OPEN_SELECTIVE, an intelligent open takes place as follows:

If all steps being scanned have a function value of "nofunction" with their DMM

configuration then:

 Open all channels and backplane relays involved in scanning.

 If a closed channel or backplane relay is not involved in scanning it will remain

closed during the scan.

If any step has a DMM configuration with a function set to something other than

"nofunction" then:

 Open analog backplane relays 1 and 2 on all slots.

 Open any common side ohms backplane relays on all slots.

 Open any amps channels on all slots.

 Open all channels and backplane relays involved in scanning.

 If a closed channel or backplane relay is not involved in scanning it will remain

closed during the scan.

 Open all channels on any bank when any backplane relay on that bank is involved

in scanning.

The reset value as well as the default setting for this attribute is

scan.MODE_OPEN_ALL.

Also see scan.reset() (on page 13-242)

Example To set the scan mode setting for scan to open selective:

scan.mode = scan.MODE_OPEN_SELECTIVE

scan.nobufferbackground()

Function Specifies that no reading buffer is used during scanning. Scan is run in background

mode.

Usage state, scancount, stepcount =

scan.nobufferbackground()

state: The result of scanning:

 scan.EMPTY or 0

 scan.BUILDING or 1

 scan.RUNNING or 2

 scan.ABORTED or 3

 scan.FAILED or 4

 scan.FAILED_INIT or 5,

 scan.SUCCESS or 6

scancount: is current scan count completed

stepcount: is current step count completed

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-241

scan.nobufferbackground()

Remarks This command executes the scan in the background. No reading buffer will be used

and an error will be generated if one is specified. This command starts the scan. Prior

to using this command use scan.create() (on page 13-234) and scan.add() (on page

13-230) to setup scan elements.

Because scan is running in the background, use scan.state (on page 13-243) function

to see current status of scanning.

This functions return parameters do not include the DMM reading.

Also see scan.add() (on page 13-230)

scan.background() (on page 13-232) (see this command to run a background scan

with a reading buffer)

scan.create() (on page 13-234)

scan.execute() (on page 13-236)

scan.list() (on page 13-237)

scan.nobufferexecute() (on page 13-241)

scan.state() (on page 13-243)

Example To run the scan in the background without using a reading buffer.

scan.nobufferbackground()

scan.nobufferexecute()

Function Specifies that no reading buffer is used during scanning. Scan is run in immediate

mode.

Usage state, scancount, stepcount =

scan.nobufferexecute()

state: The result of scanning. Use one of the following:

 scan.EMPTY or 0

 scan.BUILDING or 1

 scan.RUNNING or 2

 scan.ABORTED or 3

 scan.FAILED or 4

 scan.FAILED_INIT or 5,

 scan.SUCCESS or 6

 scancount: the current scan count completed

 stepcount: the current step count completed

Remarks This command specifies the reading buffer is not used during scanning and runs the

scan in immediate mode. This command starts the scan. Prior to using this command

use scan.create() (on page 13-234) and scan.add() (on page 13-230) to setup scan

elements. An error will be generated if a reading buffer is specified.

The command will not exit execution until scanning completes or aborted by user.

This functions return parameters do not include the DMM reading.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-242 3700S-901-01 Rev. C / July 2008

scan.nobufferexecute()

Also see scan.add() (on page 13-230)

scan.background() (on page 13-232)

scan.create() (on page 13-234)

scan.execute() (on page 13-236) (see this command to run a scan with a reading

buffer)

scan.list() (on page 13-237)

scan.nobufferbackground() (on page 13-240)

scan.state() (on page 13-243)

Example To start a scan in immediate mode without using a reading buffer:

scan.nobufferexecute()

scan.reset()

Function Resets the scanning aspects of the system to factory default settings.

Usage scan.reset()

Remarks This command will only reset the scan aspects of the system to factory default

settings. Settings affected are:

 Trigger model settings within the scan logical device get reset to factory default

settings. Settings affected are those controlled by scan.bypass (on page 13-233),

scan.measurecount (on page 13-238), scan.mode() (on page 13-239), and

scan.scancount (on page 13-242). Also affected are the stimulus settings for

arming a scan (scan.trigger.arm.stimulus (on page 13-244)), channel stepping

(scan.trigger.channel.stimulus (on page 13-246)), and measuring

(scan.trigger.measure.stimulus (on page 13-247) and

scan.trigger.sequence.stimulus (on page 13-249)).

 The scan list gets cleared so that if the scan list is queried after a reset, the

response will be an empty scan.

The rest of the settings are unaffected. To reset, the entire system to factory default

settings use the reset command.

Also see channel.reset() (on page 13-68)

dmm.reset() (on page 13-161)

reset() (on page 13-230)

Example To perform a reset on the scan aspects of the system:

scan.reset()

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-243

scan.scancount

Attribute Set or query the scan count value.

Usage To read the count:

count = scan.scancount

count: Present scan count value being used

To write the count:

scan.scancount = count

count: Value to set the scan count. Valid range: 1 to 32000.

Remarks This attribute sets the scan count in the trigger model. During a scan, the Series 3700

will iterate through the arm layer of the trigger model this many times. After performing

this count iterations, the Series 3700 will return to idle.

The reset value for this attribute is 1.

Example To set the arm count to 5:

scan.scancount = 5

scan.state()

Function Command to use when running a scan in the background to see present state.

Usage ScanState = scan.state()

Details Command to use when running a scan in the background to see present state. See

scan.execute() (on page 13-236) or scan.background() (on page 13-232) for details on

output. This output matches the return values of execute or background command.

Also see scan.background() (on page 13-232)

scan.execute() (on page 13-236)

Example To see the current scan state:

ScanState = scan.state()

print(ScanState)

or

print(scan.state())

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-244 3700S-901-01 Rev. C / July 2008

scan.stepcount

Attribute Attribute to query to see number of steps in the present scan.

Usage To read the number of steps in the present scan:

ScanStepCount = scan.stepcount

Remarks This is a read only attribute. It is set by the number of steps in the present scan when

the scan was created and/or steps added.

Also see scan.add() (on page 13-230)

Example To see the current scan state:

print(scan.stepcount)

scan.trigger.arm.clear()

Function Clear the arm event detector.

Usage scan.trigger.arm.clear()

Remarks This function will set the arm event detector of the trigger model to the undetected

state.

Example To clear the arm event detector:

scan.trigger.arm.clear()

scan.trigger.arm.set()

Function Set the arm event detector to the detected state.

Usage scan.trigger.arm.set()

Remarks This function will set the arm event detector of the trigger model to the detected state.

Example To set the arm event detector to the detected state:

scan.trigger.arm.set()

scan.trigger.arm.stimulus

Attribute Arm event detector trigger selection.

Usage To read the trigger stimulus:

eventid = scan.trigger.arm.stimulus

eventid: Present trigger stimulus being used for the arm layer.

To write the trigger stimulus:

scan.trigger.arm.stimulus = eventid

eventid: Stimulus source to set for the arm layer

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-245

scan.trigger.arm.stimulus

Remarks This attribute selects which event(s) will cause the arm event detector to enter the

detected state. Set this attribute to 0 to bypass waiting for an event.

eventid may be one of the following (existing trigger event IDs):

 digio.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the digital input line.

 display.trigger.EVENT_ID: The trigger key on the front panel is pressed.

 trigger.EVENT_ID: A *trg message on the active command interface. If GPIB is the

active command interface, a GET message will also generate this event.

 trigger.blender[N].EVENT_ID: A combination of configured events has occurred.

 trigger.timer[N].EVENT_ID: A delay expired.

 tsplink.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the tsplink trigger line.

 lan.trigger[N].EVENT_ID

 scan.trigger.EVENT_SCAN_READY: Scan Ready Event.

 scan.trigger.EVENT_SCAN_START: Scan Start Event

 scan.trigger.EVENT_CHANNEL_READY: Channel Ready Event

 scan.trigger.EVENT_MEASURE_COMP: Measure Complete Event

 scan.trigger.EVENT_SEQUENCE_COMP: Sequence Complete Event

 scan.trigger.EVENT_SCAN_COMP: Scan Complete Event

 scan.trigger.EVENT_IDLE: Idle Event

NOTE Use the ICL define to set the stimulus value rather than the define value.

Doing this will make the code compatible for future upgrades because it

may need to change when enhancements are added to the instrument.

Example To set trigger stimulus of the arm event detector to line 3 of digital I/O:

scan.trigger.arm.stimulus =

digio.trigger[3].EVENT_ID

To clear trigger stimulus of the arm event detector:

scan.trigger.arm.stimulus = 0

scan.trigger.channel.clear()

Function Clear the channel event detector.

Usage scan.trigger.channel.clear()

Remarks This function will clear the channel event detector of the trigger model to the

undetected state.

Example To clear the channel event detector:

scan.trigger.channel.clear()

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-246 3700S-901-01 Rev. C / July 2008

scan.trigger.channel.set()

Function Set the channel event detector to the detected state.

Usage scan.trigger.channel.set()

Remarks This function will set the channel event detector of the trigger model to the detected

state.

Example scan.trigger.channel.set()

scan.trigger.channel.stimulus

Attribute Channel event detector stimulus selection.

Usage To read the trigger stimulus:

eventid = scan.trigger.channel.stimulus

eventid: Present trigger stimulus being used for the channel action.

To write the stimulus:

scan.trigger.channel.stimulus = eventid

eventid: Trigger stimulus to set for the channel action

Remarks This attribute selects which event(s) will cause the channel event detector to enter the

detected state. Set this attribute to 0 to reset this event back to its factory default.

eventid may be one of the following (existing trigger event IDs):

 digio.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the digital input line.

 display.trigger.EVENT_ID: The trigger key on the front panel is pressed.

 trigger.EVENT_ID: A *trg message on the active command interface. If GPIB is the

active command interface, a GET message will also generate this event.

 trigger.blender[N].EVENT_ID: A combination of events has occurred.

 trigger.timer[N].EVENT_ID: A delay expired.

 tsplink.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the tsplink trigger line.

 lan.trigger[N].EVENT_ID

 scan.trigger.EVENT_SCAN_READY: Scan Ready Event.

 scan.trigger.EVENT_SCAN_START: Scan Start Event

 scan.trigger.EVENT_CHANNEL_READY: Channel Ready Event

 scan.trigger.EVENT_MEASURE_COMP: Measure Complete Event

 scan.trigger.EVENT_SEQUENCE_COMP: Sequence Complete Event

 scan.trigger.EVENT_SCAN_COMP: Scan Complete Event

 scan.trigger.EVENT_IDLE: Idle Event

NOTE Use the ICL define to set the stimulus value rather than the define value.

Doing this will make the code compatible for future upgrades because it

may need to change when enhancements are added to the instrument

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-247

scan.trigger.channel.stimulus

Example To set trigger stimulus of the channel event detector to scan start event:

scan.trigger.channel.stimulus =

scan.trigger.EVENT_SCAN_START

scan.trigger.clear()

Function Clear the trigger model.

Usage scan.trigger.clear()

Remarks This function will set the channel, measure and sequence event detectors of the

trigger model to the undetected state.

Example To clear the trigger model:

scan.trigger.clear()

scan.trigger.measure.clear()

Function Clear the measure event detector.

Usage scan.trigger.measure.clear()

Remarks This function will set the measure event detector of the trigger model to the undetected

state.

Example To clear the measure event detector:

scan.trigger.measure.clear()

scan.trigger.measure.set()

Function Set the measure event detector to the detected state.

Usage scan.trigger.measure.set()

Remarks This function will set the measure event detector of the trigger model to the detected

state.

Example To set the measure event detector to the detected state:

scan.trigger.measure.set()

scan.trigger.measure.stimulus

Attribute Measure event detector trigger stimulus selection.

Usage To read the trigger stimulus:

eventid = scan.trigger.measure.stimulus

eventid: the present trigger stimulus being used for the measure event

To write the trigger stimulus:

scan.trigger.measure.stimulus = eventid

eventid: the trigger stimulus to set for the measure event

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-248 3700S-901-01 Rev. C / July 2008

scan.trigger.measure.stimulus

Remarks This attribute selects which event(s) will cause the measure event detector to enter the

detected state. Set this attribute to 0 to bypass waiting for an event.

eventid may be one of the following (existing trigger event IDs):

 digio.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the digital input line.

 display.trigger.EVENT_ID: The trigger key on the front panel is pressed.

 trigger.EVENT_ID: A *trg message on the active command interface. If GPIB is the

active command interface, a GET message will also generate this event.

 trigger.blender[N].EVENT_ID: A combination of events has occurred.

 trigger.timer[N].EVENT_ID: A delay expired.

 tsplink.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the tsplink trigger line.

 lan.trigger[N].EVENT_ID

 scan.trigger.EVENT_SCAN_READY: Scan Ready Event.

 scan.trigger.EVENT_SCAN_START: Scan Start Event

 scan.trigger.EVENT_CHANNEL_READY: Channel Ready Event

 scan.trigger.EVENT_MEASURE_COMP: Measure Complete Event

 scan.trigger.EVENT_SEQUENCE_COMP: Sequence Complete Event

 scan.trigger.EVENT_SCAN_COMP: Scan Complete Event

 scan.trigger.EVENT_IDLE: Idle Event

Use this to start a set of measure count readings that are being triggered by a single

event. To pace each reading by an event, use the sequence trigger stimulus.

NOTE Use the ICL define to set the stimulus value rather than the define value.

Doing this will make the code compatible for future upgrades because it

may need to change when enhancements are added to the instrument.

Also see scan.trigger.sequence.stimulus (on page 13-249)

Example To set trigger stimulus of the measure event detector to channel ready event:

scan.trigger.measure.stimulus =

scan.trigger.EVENT_CHAN_READY

scan.trigger.sequence.clear()

Function Clear the sequence event detector.

Usage scan.trigger.sequence.clear()

Remarks This function will set the sequence event detector to the undetected state.

Example To clear the sequence event detector:

scan.trigger.sequence.clear()

scan.trigger.sequence.set()

Function Set the sequence event detector to the detected state.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-249

scan.trigger.sequence.set()

Usage scan.trigger.sequence.set()

Remarks This function will set the sequence event detector to the detected state.

Example To set the sequence event detector to the detected state:

scan.trigger.sequence.set()

scan.trigger.sequence.stimulus

Attribute Sequence event detector trigger stimulus selection.

Usage To read the trigger stimulus:

eventid = scan.trigger.sequence.stimulus

eventid: Present trigger source being used for the sample event.

To write the trigger stimulus:

scan.trigger.sequence.stimulus = eventid

eventid: Trigger source to set for the sample event

Remarks This attribute selects which event(s) will cause the sequence event detector to enter

the detected state. Set this attribute to 0 to bypass waiting for an event.

eventid may be one of the following (existing trigger event IDs):

 digio.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the digital input line.

 display.trigger.EVENT_ID: The trigger key on the front panel is pressed.

 trigger.EVENT_ID: A *trg message on the active command interface. If GPIB is the

active command interface, a GET message will also generate this event.

 trigger.blender[N].EVENT_ID: A combination of events has occurred.

 trigger.timer[N].EVENT_ID: A delay expired.

 tsplink.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the tsplink trigger line.

 lan.trigger[N].EVENT_ID

 scan.trigger.EVENT_SCAN_READY: Scan Ready Event.

 scan.trigger.EVENT_SCAN_START: Scan Start Event

 scan.trigger.EVENT_CHANNEL_READY: Channel Ready Event

 scan.trigger.EVENT_MEASURE_COMP: Measure Complete Event

 scan.trigger.EVENT_SEQUENCE_COMP: Sequence Complete Event

 scan.trigger.EVENT_SCAN_COMP: Scan Complete Event

 scan.trigger.EVENT_IDLE: Idle Event

Use this to pace each one of the measure count readings with an event. If you don‟t

want to pace the reading, then set this stimulus to 0.

NOTE Use the ICL define to set the stimulus value rather than the define value.

Doing this will make the code compatible for future upgrades because they

may need to change when enhancements are added to the instrument.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-250 3700S-901-01 Rev. C / July 2008

scan.trigger.sequence.stimulus

Also see scan.trigger.measure.stimulus (on page 13-247)

Example To set trigger stimulus of the sequence event detector to channel ready event:

scan.trigger.sequence.stimulus =

scan.trigger.EVENT_CHAN_READY

schedule functions and attributes

Use these functions to configure the scheduled alarm events. These events are

generated at times defined by these ICLs. The generated triggers can then be

used to drive other event driven components, such as digital I/O, scan trigger

model, event blenders, etc. If the system time is driven by IEEE-1588, then the

alarms use that time clock. Otherwise, the alarms use the standard CPU clock.

schedule.alarm[x].enable

Attribute Enable or disable an alarm.

Usage status = schedule.alarm[x].enable

status: The enable or disable status of the alarm. Use one of the following:

 eventlog.ENABLE or 1: enable alarm

 eventlog.DISABLE or 0: disable alarm

Remarks When enabling an alarm with a set start time in the past, the alarm executes

immediately.

When used to start a scan, an alarm time in the past may be missed by the scan start.

The scan clears any pending triggers before it begins and therefore will miss the any

trigger generated from the alarm enable. To ensure this does not happen, start the

scan in the background then enable the alarm.

Example Enable an alarm:

schedule.alarm[1].enable = 1

schedule.alarm[x].EVENT_ID

Function The event identifier constant for use with the stimulus attribute.

Usage schedule.alarm[x].EVENT_ID

Example Command a scan to occur when alarm 1 fires:

scan.trigger.arm.stimulus = schedule.alarm[1].EVENT_ID

schedule.alarm[x].fractionalseconds

Attribute The fractional seconds portion of the alarm time.

Usage schedule.alarm[x].fractionalseconds [= fraction]

Remarks 1588 has too much resolution to represent in a single floating point value so the alarm

times are split into two values (seconds and fractional seconds).

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-251

schedule.alarm[x].fractionalseconds

Example Create an alarm to occur 60.25 seconds from current time in UTC seconds

sec,ns = os.time()

schedule.alarm[1].seconds = sec + 60

schedule.alarm[1].fractionalseconds = ns + 0.5

schedule.alarm[x].period

Attribute The time, in seconds, between adjacent firings of the alarm.

Usage schedule.alarm[x].period

Example Set period of 0.5 seconds between firings of alarms after initial alarm

schedule.alarm[1].period = 0.5

schedule.alarm[x].ptpseconds

Attribute The seconds portion of the alarm time in PTP seconds (see ptp.utcoffset).

Usage schedule.alarm[x].ptpseconds [= seconds]

Remarks 1588 has too much resolution to represent in a single floating point value so the alarm

times are split into two values (seconds and fractional seconds).

Example Create an alarm to occur 30 seconds from current time in PTP seconds.

sec,ns = ptp.time()

schedule.alarm[1].ptpseconds = sec + 30

schedule.alarm[x].repetition

Attribute Specifies the number of times an alarm will repeat after the first alarm firing (the alarm

will fire a total of count+1 times). If 0 and period is non-zero, the alarm will fire

“forever”.

Once an alarm begins, the repetition will count down for each trigger generated. It will

end at zero (0). You must set this repetition back to some value if you intend to reissue

the alarm again. Otherwise, the alarm will either not fire (if period is zero) or will fire

“forever” (if period is non-zero).

Usage schedule.alarm[x].repetition [= count]

Example Set alarm to fire 10 times

schedule.alarm[1].repetition = 10

schedule.alarm[x].seconds

Attribute The seconds portion of the alarm time in UTC seconds (see ptp.utcoffset).

Usage schedule.alarm[x].seconds [= seconds]

Remarks 1588 has too much resolution to represent in a single floating point value so the alarm

times are split into two values (seconds and fractionalseconds).

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-252 3700S-901-01 Rev. C / July 2008

schedule.alarm[x].seconds

Example Create an alarm to occur on March 15, 2008 at 10AM in UTC seconds:

local l_myTime

l_myTime = os.time{year = 2008, month = 3, day = 15, hour
= 10}

schedule.alarm[1].seconds = l_myTime

schedule.disable()

Function Disable all alarms.

Usage schedule.disable()

Example schedule.disable()

setup functions and attributes

Use the functions and attribute in this group to save/recall setups and to set the

power-on setup.

setup.cards()

Function Queries the card model number for each slot of a saved setup.

Usage CardModels = setup.cards()-- for cards associated with internally saved

setup

CardModels = setup.cards('/usb1/<filename>.set') -- for cards

associated with the <filename> on thumb drive. Note: The .set extension needs to be

on the filename specified.

CardModels: A comma-delimited string listing card model for each slot.

Remarks This function will return a comma-delimited string listing the card model for each slot in

the system (from 1 to 6) for the desired saved setup. If no card was installed in the slot

when the setup was saved, a 0 is returned as the card model number.

Details To successfully recall a setup, the card models need to match or a card needs to be

installed in an empty slot of the setup configuration. Otherwise, an error will be

generated.

To recall a setup that was saved when the specified slot card is unavailable, assign a

pseudo card to that slot. For example, assume Slot 3 contained a Model 3720 when

saved. To recall that setup without an actual Model 3720 installed in the system,

assign a pseudo 3720 to Slot 3 with:

slot[3].pseudocard = slot.PSEUDO_3720

When recalling a setup, the slot needs to contain the necessary model, but it doesn't

matter if that model is present with a real card or pseudo card. The instrument does

not differentiate between the two when recalling a setup; they are treated the same. In

this example, both would be seen as the system having a Model 3720 in Slot 3.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-253

setup.cards()

Example To query the cards of the internal saved setup:

CardModels = setup.cards()

print(CardModels)

Output: 3722,0,0,0,0,0

To query the cards associated with mysetup.set on thumb drive:

print(setup.card('/usb1/mysetup.set')) -->
0,3723,3722,3720,0,0

setup.poweron

Attribute The setup to recall when the unit is turned on.

Usage To read the power-on setup:

n = setup.poweron

To write the power-on setup:

setup.poweron = n

n: Setup number to recall on power up (0 or 1).

Remarks Setting this attribute to 0 causes the unit to power up to the factory default (reset) setup.

A setting of 1 causes the unit to power up using a user setup that was previously saved

internally.

Example Sets unit to power on to the factory default settings:

setup.poweron = 0

setup.recall()

Function Recalls settings from a saved setup.

Usage setup.recall(location)

location: Setup number to recall (0, 1, or "/usb1/<filename>").

0: Reset setup.

1: Internal setup.

<filename>: Use the name of the desired file contained on a USB flash drive.

Remarks If a number is sent as the parameter:

 The number is interpreted as a setup number and the setup is recalled from internal

memory. Setting this attribute to 0 recalls the factory default (reset) setup. Setting this

attribute to 1 recalls the user saved setup from internal memory.

If a string is sent as the parameter:

 The string is interpreted as a path and filename and the setup is recalled from the

corresponding file on the USB flash drive. The path may be absolute or relative to the

current working directory.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-254 3700S-901-01 Rev. C / July 2008

setup.recall()

Example To recall factory default settings:

setup.recall(0)

To recall the user-setup (internal):

setup.recall(1)

To recall a user saved setup stored in a file named KEITHLEY_3730 on a USB flash

drive:

setup.recall("/usb1/KEITHLEY_3730.set")

setup.save()

Function Saves the present setup as a user-setup.

Usage To save to the internal memory location, send no parameters with function:

setup.save()

To save to the USB flash drive:

setup.save(location)

location: Setup location to save. Use the format "/usb1/<filename>" where <filename>

is the name of the desired file contained on a USB flash drive.

Remarks This function overwrites any previous values with the present setup. When saving a

setup to an attached USB flash drive, specify "/usb1/" at the start of the filename. The

.set is appended to the filename. Any specified file extension other than .set will

generate errors.

Valid destination filename examples:

setup.save('/usb1/mysetup')

setup.save('/usb1/mysetup.set')

Invalid destination filename examples:

setup.save('/usb1/mysetup.stp.')

-Invalid extension due to ending period followed by no letters for extension.

setup.save('/usb1/mysetup.txt')

-Invalid extension. Use .set or do not specify (no period)

setup.save('/usb1/mysetup.txt.set')

-invalid extension because 2 periods specified (mysetup_txt.set would be

correct).

NOTE The setup files saved to the USB flash drive will always have an extension of

.set.

Example To save the present setup as the internal user setup:

setup.save()

To save a setup to a file named KEITHLEY_3730 on a USB flash drive:

setup.save("/usb1/KEITHLEY_3730")

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-255

slot[X] attributes

The attributes in this group indicate whether a card in slot X (where X = 1 to 6)

supports different features such as pole settings, voltage or 2-wire

measurements, etc.,. To query an attribute, use the print command sending the

attribute as an argument. For example:

print(slot[1].idn)

will output a comma separated string that contains the model number,

description, firmware revision and serial number of the card installed in Slot 1.

slot[X].commonsideohms

Attribute Indicates whether a card in slot X supports common-side 4-wire ohm channels.

Usage commonside = slot[X].commonside ohms

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support common-side 4-wire ohm channels. In these cases, the return value will be

nil. If common side 4-wire ohm channels are supported, the returned value will be 1.

Example To query if Slot 1 supports common-side 4-wire ohm channels:

CommonSideOhms1 = slot[1].commonsideohms

slot[X].digio

Attribute Indicates whether a card in slot X supports digital I/O channels or not.

Usage digio = slot[X].digio

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support digital I/O channels. In these cases, the return value will be nil. If digital I/O

channels are supported, the returned value will be 1.

Example To query if Slot 1 supports digio channels:

Digio1 = slot[1].digio

slot[X].endchannel.amps

Attribute The ending channel that supports amps measurements.

Usage end = slot[X].endchannel.amps

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support amps channels. In these cases, the return value will be nil. If supported,

the return value will be a number representing the ending channel. If only one channel

supports amps, the ending channel will match the starting channel number.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-256 3700S-901-01 Rev. C / July 2008

slot[X].endchannel.amps

Example To query for ending amps channel on Slot 4:

EndAmpsChan = slot[4].endchannel.amps

slot[X].endchannel.analogoutput

Attribute The ending channel that supports a digital analog output (DAC).

Usage end = slot[X].endchannel.analogoutput

[X]: Slot number (1 to 6)

Remarks This attribute does not exist for a slot if a card is not installed or the card installed

does not support analog output channels. In these cases, the return value is nil. If

supported, the return value is a number representing the ending channel. If only one

channel supports analog output, the ending channel matches the starting channel

number.

Example Query for ending analog output channel on Slot 4:

EndAnalogoutputChan = slot[4].endchannel.analogoutput

slot[X].endchannel.digitalio

Attribute The ending channel that supports digital input and output.

Usage end = slot[X].endchannel.digitalio

[X]: Slot number (1 to 6)

Remarks This attribute does not exist for a slot if a card is not installed or the card installed

does not support digital I/O channels. In these cases, the return value is nil. If

supported, the return value is a number representing the ending channel. If only one

channel supports digital I/O, the ending channel matches the starting channel

number.

Example To query for ending digital input channel on Slot 4:

EndDigitalIOChan = slot[4].endchannel.digitalio

slot[X].endchannel.isolated

Attribute The ending channel that supports isolated.

Usage end = slot[X].endchannel.isolated

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support isolated channels. In these cases, the return value will be nil. If supported,

the return value will be a number representing the ending channel. If only one channel

supports isolated, the ending channel will match the starting channel number.

Example Query for ending isolated channel on Slot 4:

EndIsolatedChan = slot[4].endchannel.isolated

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-257

slot[X].endchannel.totalizer

Attribute The ending channel that supports a totalizer.

Usage end = slot[X].endchannel.totalizer

[X]: Slot number (1 to 6)

Remarks This attribute does not exist for a slot if a card is not installed or the card installed

does not support totalizer channels. In these cases, the return value is nil. If

supported, the return value is a number representing the ending channel. If only one

channel supports totalizer, the ending channel matches the starting channel number.

Example To query for starting totalizer channel on Slot 4:

EndTotalizerChan = slot[4].endchannel.totalizer

slot[X].endchannel.voltage

Attribute The ending channel that supports voltage or 2-wire measurements.

Usage end = slot[X].endchannel.voltage

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support voltage channels. In these cases, the return value will be nil. If supported,

the return value will be a number representing the ending channel. If only one channel

supports voltage, the ending channel will match the starting channel number.

Example To query for ending voltage channel on Slot 4:

EndVoltageChan = slot[4].endchannel.voltage

slot[X].idn

Attribute Returns a string containing model number, description, firmware revision and serial

number of the card in slot X.

Usage card_idn = slot[X].idn

[X]: Slot number (1 to 6)

Remarks Returns a comma separated string that contains the model number, description,

firmware revision and serial number of the card installed in slot X. This attribute will

return a string indicating an empty slot if an actual card is not installed and if the slot is

not configured for a pseudo card.

For pseudocards, the response will be model number, description and firmware

revision. When queried, the return value will have "Pseudo" before the card

description. For example, if a Model 3720 Pseudocard is installed in Slot 3:

print(slot[3].idn) 3720,Pseudo Dual 1x30
Multiplexer,00.00a

Example To query for idn information for the card in Slot 1:

card1_idn = slot[1].idn

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-258 3700S-901-01 Rev. C / July 2008

slot[X].interlock.override

Attribute Indicates if a card should error on closing backplane relays if interlock is disengaged.

Usage To read interlock override setting:

value = slot[X].interlock.override

[X]: Slot number (1 to 6)

To write interlock override setting:

slot[X].interlock.override = value

[X]: Slot number (1 to 6)

value: Represents the desired state of the interlock override. Set to one of the

following:

 slot.ON or 1

 slot.OFF or 0 (default setting and reset value)

Remarks This attribute exists only for installed cards that support detecting an interlock break.

Otherwise, the return value will be nil.

If card supports detecting an interlock break, set this attribute to the desired response.

To enable interlock override on the card, set to slot.ON. Otherwise (if an override

performed on card is not desired), set to slot.OFF. This setting applies to all interlocks

on the card.

Example To not have an override performed after detecting an interlock break on Slot 3:

slot[3].interlock.override = slot.OFF

slot[X].interlock.state

Attribute Indicates the interlock state of a card.

Usage To read the interlock state:

value = slot[X].interlock.state

[X]: Slot number (1 to 6)

value: Represents whether the interlocks are engaged or not. Interpret the interlock

state values as follows:

nil: no card is installed or card installed does not support interlocks

0: interlocks 1 and 2 are disengaged on card.

1: interlock 1 is engaged while interlock 2, if it exists, is disengaged.

2: interlock 1 is disengaged while interlock 2 is engaged.

3: interlocks 1 and 2 are engaged on card.

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support detecting an interlock break. In these cases, the return value will be nil.

Use this attribute to query the interlock state for cards that support detecting interlock

break.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-259

slot[X].interlock.state

Example To query the interlock state on Slot 3:

print(slot[3].interlock.state)

slot[X].isolated

Attribute Indicates whether a card in slot X supports isolated channels or not.

Usage isolated_chans = slot[X].isolated

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support isolated channels. In these cases, the return value will be nil. If isolated

channels are supported, the returned value will be 1.

Example To query if Slot 1 supports isolated channels:

IsolatedChan1 = slot[1].isolated

slot[X].matrix

Attribute Indicates whether a card in slot X supports matrix channels or not.

Usage matrix = slot[X].matrix

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support matrix channels. In these cases, the return value will be nil. If matrix

channels are supported, the returned value will be 1.

Example To query if Slot 1 supports matrix channels:

Matrix1 = slot[1].matrix

slot[X].maxvoltage

Attribute Returns the maximum voltage supported by the card in slot X.

Usage maxvolts = slot[X].maxvoltage

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not have a maximum voltage setting. In these cases, the return value will be nil.

This attribute value represents the maximum voltage of all channels on a particular

slot.

Example To query the maximum voltage for card on Slot 2:

maxvolts2 = slot[2].maxvoltage

slot[X].multiplexer

Attribute Indicates whether a card in slot X supports multiplexer channels or not.

Usage mux_chans = slot[X].multiplexer

[X]: Slot number (1 to 6)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-260 3700S-901-01 Rev. C / July 2008

slot[X].multiplexer

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support multiplexer channels. In these cases, the return value will be nil. If

multiplexer channels are supported, the returned value will be 1.

Example To query if Slot 1 supports multiplexer channels:

MuxChan1 = slot[1].multiplexer

slot[X].poles.four

Attribute Indicates if the card supports four-pole.

Usage fourpole = slot[X].poles.four

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support four-pole. In these cases, the return value will be nil. If supported, the

return value will be 1.

Example To query if Slot 3 supports four-pole:

FourPole3 = slot[3].poles.four

slot[X].poles.one

Attribute Indicates if the card supports one-pole.

Usage onepole = slot[X].poles.one

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support one-pole. In these cases, the return value will be nil. If supported, the

return value will be 1.

Example To query if Slot 3 supports one-pole:

OnePole3 = slot[3].poles.one

slot[X].poles.two

Attribute Indicates if the card supports two-pole.

Usage twopole = slot[X].poles.two

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support two-pole. In these cases, the return value will be nil. If supported, the

return value will be 1.

Example To query if Slot 3 supports two-pole:

TwoPole3 = slot[3].poles.two

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-261

slot[X].pseudocard

Attribute Specifies the corresponding pseudo card to implement for the designated slot.

Usage To read pseudo card for slot:

pseudocard = slot[X].pseudocard

[X]: Slot number (1 to 6)

To write pseudo card for slot:

slot[X].pseudocard = pseudocard

[X]: Slot number (1 to 6)

Set pseudocard to one of the following values

 slot.PSEUDO_NONE or 0 for no pseudocard selection

 slot.PSEUDO_3720 or 3720 for Model 3720 Dual 1x30 Multiplexer card

simulation

 slot.PSEUDO_3721 or 3721 for Model 3721 Dual 1x20 Multiplex card

simulation

 slot.PSEUDO_3722 or 3722 for Model 3722 Dual 1x48 Multiplexer card

simulation

 slot.PSEUDO_3723 or 3723 for Model 3723 Dual 1x30 Reed Multiplexer card

simulation

 slot.PSEUDO_3724 or 3724 for Model 3724 Dual 1x30 FET Multiplexer card

simulation

 slot.PSEUDO_3730 or 3730 for Model 3730 6 x 16 High Density Matrix card

simulation

 slot.PSEUDO_3740 or 3740 for Model 3740 32-Channel Isolated Switch card

simulation

 slot.PSEUDO_3750 or 3750 for Model 3750 Multifunction I/O card

Remarks This attribute only exists for a slot if that slot has no card installed in it. Therefore,

trying to use this attribute for a slot with an installed card generates an error when

writing and nil response when reading. After assigning a pseudo card, the valid

commands and attributes based on that pseudo card now exist for that slot. For

example, the slot[X].idn attribute is valid.

Changing a slot's pseudocard card definition from a card to none invalidates an

existing scan list.

Details The response to an idn query is model number, description, and firmware revision.

When queried, the return value has "Pseudo" before the card description. For

example, if a Model 3720 pseudocard is installed in Slot 3:

print(slot[3].idn) 3720,Pseudo Dual 1x30
Multiplexer,00.00a

Example Sets the pseudo card of Slot 6 for Model 3720 card simulation:

slot[6].pseudocard = slot.PSEUDO_3720

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-262 3700S-901-01 Rev. C / July 2008

slot[X].startchannel.amps

Attribute The starting channel that supports amps measurements.

Usage start = slot[X].startchannel.amps

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support amps channels. In these cases, the return value will be nil. If supported,

the return value will be a number representing the starting channel.

Example To query for starting amps channel on Slot 4:

StartAmpsChan = slot[4].startchannel.amps

slot[X].startchannel.analogoutput

Attribute The starting channel that supports digital analog output (DAC).

Usage start = slot[X].startchannel.analogoutput

[X]: Slot number (1 to 6)

Remarks This attribute does not exist for a slot if a card is not installed or the card installed does

not support analog output channels. In these cases, the return value is nil. If

supported, the return value is a number representing the starting channel.

Example To query for starting analog output channel on Slot 4:

StartAnalogOutputChan = slot[4].startchannel.analogoutput

slot[X].startchannel.digitalio

Attribute The starting channel that supports digital input and output.

Usage start = slot[X].startchannel.digitalio

[X]: Slot number (1 to 6)

Remarks This attribute does not exist for a slot if a card is not installed or the card installed does

not support digital I/O channels. In these cases, the return value is nil. If supported,

the return value is a number representing the starting channel.

Example To query for starting digital input channel on Slot 4:

StartDigitalIOChan = slot[4].startchannel.digitalio

slot[X].startchannel.isolated

Attribute The starting channel that supports isolated measurements.

Usage start = slot[X].startchannel.isolated

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support isolated channels. In these cases, the return value will be nil. If supported,

the return value will be a number representing the starting channel.

Example To query for starting isolated channel on Slot 4:

StartIsolatedChan = slot[4].startchannel.isolated

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-263

slot[X].startchannel.totalizer

Attribute The starting channel that supports a totalizer.

Usage start = slot[X].startchannel.totalizer

[X]: Slot number (1 to 6)

Remarks This attribute does not exist for a slot if a card is not installed or the card installed does

not support totalizer channels. In these cases, the return value is nil. If supported,

the return value is a number representing the starting channel.

Example To query for starting totalizer channel on Slot 4:

StartTotalizerChan = slot[4].startchannel.totalizer

slot[X].startchannel.voltage

Attribute The starting channel that supports voltage or 2-wire measurements.

Usage start = slot[X].startchannel.voltage

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support voltage channels. In these cases, the return value will be nil. If supported,

the return value will be a number representing the starting channel.

Example To query for starting voltage channel on Slot 4:

StartVoltageChan = slot[4].startchannel.voltage

slot[X].tempsensor

Attribute Indicates whether a card in slot X supports temperature sensor channels or not.

Usage temp_sensor = slot[X].tempsensor

[X]: Slot number (1 to 6)

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support temperature sensor channels. In these cases, the return value will be nil. If

temperature sensor channels are supported, the returned value will be 1.

Example To query if Slot 1 supports temperature sensor channels:

TempSensors1 = slot[1].tempsensors

slot[X].thermal.state

Attribute Indicates the thermal state of a card, if supported.

Usage value = slot[X].thermal.state

[X]: Slot number (1 to 6)

value: Indicates whether or not the thermal state of card is getting warm to affect the

card's specifications. The thermal state's possible return values:

nil: no card is installed or card installed does not support thermal state detection.

0: Means the thermal conditions on card are okay.

1: Means thermal conditions of the card are at a point where specs may be affected.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-264 3700S-901-01 Rev. C / July 2008

slot[X].thermal.state

Remarks This attribute will not exist for a slot if a card is not installed or the card installed does

not support thermal state detection. In these cases, the return value will be nil. Use

this attribute to query the thermal state only if the card supports detecting thermal

state.

Example To query the thermal state on Slot 3:

print(slot[3].thermal.state)

status functions and attributes

The following provides a brief overview of the status model. For details, see

Status Model (on page 12-1).

Status byte and SRQ

The status byte register receives the summary bits of the five status register

sets, a master summary bit, and two queues. The register sets and queues

monitor the various instrument events. When an enabled event occurs, it sets a

summary bit in the status byte register. When a summary bit of the status byte is

set and its corresponding enable bit is set (as programmed by the user), the

RQS/MSS bit will set to indicate that an SRQ has occurred, and the GPIB SRQ

line will be asserted.

Figure 13-4: Status byte and queues

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-265

status.condition

Attribute Status byte register.

Usage Reads the status byte register:

statbyte = status.condition

Remarks This attribute is used to read the status byte, which is returned as a numeric value.

The binary equivalent of the returned value indicates which register bits are set. The

least significant bit of the binary number is bit 0, and the most significant bit is bit 7.

For example, assume value 129 is returned for the enable register. The binary

equivalent is 10000001. This value indicates that bit B0 (MSB) and bit B7 (OSB) are

set.

The bits of the status byte register are described as follows:

 Bit B0, Measurement Summary Bit (MSB) - Set summary bit indicates that an

enabled measurement event has occurred.

 Bit B1, system summary bit (SSB) - Set summary bit indicates that an enabled

system event has occurred.

 Bit B2, Error Available (EAV) - Set summary bit indicates that an error or status

message is present in the Error Queue.

 Bit B3, Questionable Summary Bit (QSB) - Set summary bit indicates that an

enabled questionable event has occurred.

 Bit B4, Message Available (MAV) - Set summary bit indicates that a response

message is present in the Output Queue.

 Bit B5, Event Summary Bit (ESB) - Set summary bit indicates that an enabled

standard event has occurred.

 Bit B6, Request Service (RQS)/Master Summary Status (MSS) - Set bit indicates

that an enabled summary bit of the status byte register is set. Depending on how it

is used, Bit B6 of the status byte register is either the Request for Service (RQS)

bit or the Master Summary Status (MSS) bit:

- When using the GPIB serial poll sequence of the Series 3700 to obtain the status

byte (serial poll byte), B6 is the RQS bit.

- When using status.condition or the *STB? common command to read the status

byte, B6 is the MSS bit.

 Bit B7, Operation Summary (OSB) - Set summary bit indicates that an enabled

operation event has occurred.

Example Reads the status byte:

statbyte = status.condition print(statbyte)

Output: 1.29000e+02

The above output indicates that bits B0 (MSS) and B7 (OSB) are set.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-266 3700S-901-01 Rev. C / July 2008

status.measurement.* .condition

.enable

.event

.ntr

.ptr

Attribute Measurement event status register set.

Usage To read condition, enable, event, NTR and PTR registers:
measreg = status.measurement.condition

measreg = status.measurement.enable

measreg = status.measurement.event

measreg = status.measurement.ntr

measreg = status.measurement.ptr

To write to enable, NTR, and PTR registers:

status.measurement.enable = measreg

status.measurement.ntr = measreg

status.measurement.ptr = measreg

To set measreg to one of the following values:

 To clears all bits: 0

 To set ROF bit (B7):
status.measurement.READING_OVERFLOW

- or -
status.measurement.ROF

 To set BAV bit (B8):
status.measurement.BUFFER_AVAILABLE

- or -
status.measurement.BAV

Other bits are:

 ULMT1 or UPPER_LIMIT1: Set bit indicates that a reading has exceeded the

upper limit 1 value.

 LLMT1 or LOWER_LIMIT1: Set bit indicates that a reading has exceeded the lower

limit 1 value.

 ULMT2 or UPPER_LIMIT2: Set bit indicates that a reading has exceeded the

upper limit 2 value.

 LLMT2 or LOWER_LIMIT2: Set bit indicates that a reading has exceeded the lower

limit 2 value.

 measreg can also be set to the decimal weight of the bit to be set. For example:

 To set bit B8 (BAV), set measreg to 256 (28).

 To set more than one bit of the register, set measreg to the sum of their decimal

weights. For example, to set bits B7 and B8, set measreg to 384 (128 + 256).

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-267

status.measurement.* .condition

.enable

.event

.ntr

.ptr

Remarks These attributes are used to read or write to the measurement registers.

Reading a status register returns a value. The binary equivalent of the returned value

indicates which register bits are set. The least significant bit of the binary number is bit

0, and the most significant bit is bit 15.

For example, assume value 384 is returned for the register. The binary equivalent is

0000000100000001. This value indicates that bit B7(ROF) and bit B8 (BAV) are set.

The used bits of the measurement registers are described as follows:

 To set bit B0 (LLMT1), set measreg to 1 (20).

 To set bit B1 (ULMT1): set measreg to 2 (21).

 To set bit B2 (LLMT2), set measreg to 4 (22).

 To set bit B3 (ULMT2), set measreg to 8 (23).

 To set bit B7 (ROF), set measreg to 128 (27).

 To set bit B8 (BAV), set measreg to 256 (28).

Example Sets the BAV bit of the measurement enable register:

status.measurement.enable

= status.measurement.BAV

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-268 3700S-901-01 Rev. C / July 2008

status.node_enable

Attribute Status node enable register.

 Reads status node enable register:

nodeenabreg = status.node_enable

Writes to system enable register:

status.node_enable = nodeenabreg

Set nodeenabreg to one of the following values:

 To clear all bits: 0

 To set (enables) MSB bit (B0):

status.MEASUREMENT_SUMMARY_BIT

- or -

status.MSB

 To set (enables) EAV bit (B2):

status.ERROR_AVAILABLE

- or -

status.EAV

 To set (enables) QSB bit (B3):

status.QUESTIONABLE_SUMMARY_BIT

- or -

status.QSB

 To set (enables) MAV bit (B4):

status.MESSAGE_AVAILABLE

- or -

status.MAV

 To set (enables) ESB bit (B5):

status.EVENT_SUMMARY_BIT

- or -

status.ESB

 To set (enables) MSS bit (B6):

status.MASTER_SUMMARY_STATUS

- or -

status.MSS

 To set (enables) OSB bit (B7):

status.OPERATION_SUMMARY_BIT

- or -

status.OSB

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-269

status.node_enable

 nodeenabreg can also be set to the decimal weight of the bit to be set:

To set bit B0 (MSB), set nodeenabreg to 1 (20).

To set bit B2 (EAV), set nodeenabreg to 4 (22).

To set bit B7 (OSB), set nodeenabreg to 128 (27).

To set more than one bit of the register, set nodeenabreg to the sum of their decimal

weights. For example, to set bits B0 and B7, set nodeenabreg to 129 (1 + 128).

Remarks This attribute is used to read or write to the status node enable register.

Reading the node enable status register returns a value. The binary equivalent of the

returned value indicates which register bits are set. The least significant bit of the

binary number is bit 0, and the most significant bit is bit 7.

For example, assume value 129 is returned for the node enable register. The binary

equivalent is 10000001. This value indicates that bit B0 (MSB) and bit B7 (OSB) are

set.

Assigning a value to this attribute enables one or more status events for enabled

system nodes. When an enabled status event occurs, it will set one or more enabled

system node bits of the system registers (see status.system.* (on page 13-280)

registers).

The status node enable register uses most of the same summary events as the

status byte. Bit B1(MSB) is not used, and bit B6 is used as Master Summary Status

(MSS). For details, see status.condition (on page 13-264) register.

Example Sets the MSB bit of the status node enable register:

status.node_enable = status.MSB

status.node_event

Attribute Status node event register.

Usage Reads the status node event register:

nodeeventreg = status.node_event

Remarks This attribute is used to read the status node event register, which is returned as a

numeric value. Reading this register returns a value. The binary equivalent of the

returned value. The least significant bit of the binary number is bit 0, and the most

significant bit is bit 7.

For example, assume value 129 is returned for the event register. The binary

equivalent is 10000001. This value indicates that bit B0 (MSB) and bit B7 (OSB) are

set.

The status node event register uses most of the same summary events as the status

byte. Bit B1(MSB) is not used, and bit B6 is used as Master Summary Status (MSS).

For details, see status.condition (on page 13-264) register.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-270 3700S-901-01 Rev. C / July 2008

status.node_event

Example Reads the status node event register:

nodeeventreg = status. node_event

print(nodeeventreg)

Output: 1.29000e+02

The above output indicates that bits B0 (MSB) and B7 (OSB) are set.

status.operation.* .condition

.enable

.event

.ntr

.ptr

Attribute Operation event status register set.

Usage To read condition, enable, event, NTR and PTR registers:

operreg = status.operation.condition

operreg = status.operation.enable

operreg = status.operation.event

operreg = status.operation.ntr

operreg = status.operation.ptr

To write to enable, NTR and PTR registers:

status.operation.enable = operreg

status.operation.ntr = operreg

status.operation.ptr = operreg

Set operreg to one of the following values:

 0 clears all bits.

 To set CAL bit (B0):
status.operation.CALIBRATING

or
status.operation.CAL

 To set MEAS bit (B4):
status.operation.MEASURING

or
status.operation.MEAS

 To set PRMPTS bit (B11):
status.operation.PROMPTS

- or -
status.operation.PRMPTS

 To set USER bit (B12): status.operation.USER

 To set PROG bit (B14):
status.operation.PROGRAM_RUNNING

- or -
status.operation.PROG

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-271

status.operation.* .condition

.enable

.event

.ntr

.ptr

Remarks operreg can also be set to the decimal weight of the bit to be set.

To set bit B0 (CAL), set operreg to 1 (20).

To set bit B4 (MEAS), set operreg to 16 (24).

To set bit B11 (PRMPTS), set operreg to 2048 (211).

To set bit B12 (USER), set operreg to 4096 (212).

To set bit B14 (PROG), set operreg to 16384 (214).

To set more than one bit of the register, set operreg to the sum of their decimal

weights. For example, to set bits B0 and B4, set operreg to 17 (1 + 16).

Details These attributes are used to read or write to the operation event registers.

Reading a status register returns a value. The binary equivalent of the returned value

indicates which register bits are set. The least significant bit of the binary number is bit

0, and the most significant bit is bit 15.

For example, assume value 17 is returned for the enable register. The binary

equivalent is 0000000000010001. This value indicates that bit B0 (CAL) and bit B4

(MEAS) are set.

The used bits of the operation event registers are described as follows:

 Bit B0, CAL - Set bit indicates that one or more channels are calibrating.

 Bit B4, MEAS - Bit will be set when taking an overlapped measurement, but it will

not set when taking a normal synchronous measurement.

 Bit B11, PRMPTS - Set bit indicates that command prompts are enabled.

 Bit B12, USER - Set bit indicates that an enabled bit in the operation status user

register is set.

 Bit B14, PROG - Set bit indicates that a program is running.

Example Sets the MEAS bit of the operation enable register:

status.operation.enable =

status.operation.MEAS

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-272 3700S-901-01 Rev. C / July 2008

status.operation.user.* .condition

.enable

.event

.ntr

.ptr

Attribute Operation user event register set.

Usage Reads condition, enable, event, NTR and PTR registers:

operreg = status.operation.user.condition

operreg = status.operation.user.enable

operreg = status.operation.user.event

operreg = status.operation.user.ntr

operreg = status.operation.user.ptr

Writes to condition, enable, NTR and PTR registers:

status.operation.user.enable = operreg

status.operation.user.ntr = operreg

status.operation.user.ptr = operreg

Set operreg to one of the following values:

 To clear all bits: 0

 To set user BIT0: status.operation.user.BIT0

 To set user BIT1: status.operation.user.BIT1

 To set user BIT2: status.operation.user.BIT2

 To set user BIT3: status.operation.user.BIT3

 To set user BIT4: status.operation.user.BIT4

 To set user BIT5: status.operation.user.BIT5

 To set user BIT6: status.operation.user.BIT6

 To set user BIT7: status.operation.user.BIT7

 To set user BIT8: status.operation.user.BIT8

 To set user BIT9: status.operation.user.BIT9

 To set user BIT10: status.operation.user.BIT10

 To set user BIT11: status.operation.user.BIT11

 To set user BIT12: status.operation.user.BIT12

 To set user BIT13: status.operation.user.BIT13

 To set user BIT14: status.operation.user.BIT14

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-273

status.operation.user.* .condition

.enable

.event

.ntr

.ptr

 operreg can also be set to the decimal weight of the bit to be set. To set bit X where X

= 1 to 14, set operreg to 2X. For example:

 To set user BIT0, set operreg to 1 (20).

 To set user BIT4, set operreg to 16 (24).

 To set user BIT11, set operreg to 2048 (211).

To set more than one bit of the register, set operreg to the sum of their decimal

weights. For example, to set BIT0 and BIT4, set operreg to 17 (1 + 16).

Remarks These attributes are used to read or write to the operation user registers.

 Bits of the user event register are set by setting the corresponding bits of

the user enable register and the user condition register. For example, the

following will set B1 (Bit 1) of the user event register:

 status.operation.user.enable = 2

 status operation user condition register equals 2 or has bit 2 set.

 Reading a status register returns a value. The binary equivalent of the

returned value indicates which register bits are set. The least significant bit

of the binary number is bit 0, and the most significant bit is bit 15.

For example, assume value 17 is returned for the enable register. The

binary equivalent is 0000000000010001. This value indicates that BIT0 and

BIT4 are set.

Example Sets user BIT0 of the operation user enable register:

status.operation.user.enable =

status.operation.user.BIT0

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-274 3700S-901-01 Rev. C / July 2008

status.questionable.* .condition

.enable

.event

.ntr

.ptr

Attribute Questionable event status register set.

Usage To read condition, enable, event, NTR, and PTR registers:

quesreg = status.questionable.condition

quesreg = status.questionable.enable

quesreg = status.questionable.event

quesreg = status.questionable.ntr

quesreg = status.questionable.ptr

To write to enable, NTR and PTR registers:

status.questionable.enable = quesreg

status.questionable.ntr = quesreg

status.questionable.ptr = quesreg

Set quesreg to one of the following values:

 0 clears all bits

 To set slot interlocks (B1-B6):

status.questionable.n

where n = 2, 4, 8, 16, 32, or 64 (for Slots 1 through 6, respectively).

 To set DMM (B7):
status.questionable.DMM

or
status.questionable.128

 To set CAL bit (B8):
status.questionable.CALIBRATION

or
status.questionable.CAL

or
status.questionable.256

 To set thermal bit (B9-B13):

status.questionable.n

where n = 2, 4, 8, 16, 32, or 64 (for Slots 1 through 6, respectively).

 For slot interlocks bits 1 to 6, for Slots 1 to 6 respectively, set either

SLOTx_INTERLOCK or SxINL where x = 1 to 6, to indicate the interlock

connection of a card in Slot x is in question

 For DMM bit 7, set either DMM_CONNECTION or DMMCON to indicate that the

DMM connection is in question for a measurement taken

 For calibration bit 8, set either CALIBRATION or CAL to indicate that the

calibration of the instrument is in question

 For thermal bits 9 to 14 for Slots 1 to 6, respectively, set either SLOTx_THERMAL

or SxTHR, where x = 1 to 6, to indicate that the thermal aspect of the card in slot x

is in question.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-275

status.questionable.* .condition

.enable

.event

.ntr

.ptr

Remarks These attributes are used to read or write to the questionable status registers.

Reading a status register returns a value. The binary equivalent of the returned value

indicates which register bits are set. The least significant bit of the binary number is bit

0, and the most significant bit is bit 15.

For example, assume value 4352 is returned for the enable register. The binary

equivalent is 0001000100000000. This value indicates that bit B8 (CAL) and bit B12

(S4THR, Slot 4 thermal bit) are set.

The used bits of the questionable event registers are described as follows:

 Bit B1, S1INL - Set bit indicates that the interlock connection of a card in

Slot 1 is in question.

 Bit B2, S2INL - Set bit indicates that the interlock connection of a card in

Slot 2 is in question.

 Bit B3, S3INL - Set bit indicates that the interlock connection of a card in

Slot 3 is in question.

 Bit B4, S4INL - Set bit indicates that the interlock connection of a card in

Slot 4 is in question.

 Bit B5, S5INL - Set bit indicates that the interlock connection of a card in

Slot 5 is in question.

 Bit B6, S6INL - Set bit indicates that the interlock connection of a card in

Slot 6 is in question.

 Bit B7, DMMCON - Set bit indicates that the DMM connection is in question

for a measurement taken.

 Bit B8, CAL - Set bit indicates that the calibration of the instrument is in

question

 Bit B9, S1THR - Set bit indicates that the thermal aspect of a card in Slot 1

is in question.

 Bit B10, S2THR - Set bit indicates that the thermal aspect of a card in Slot

2 is in question.

 Bit B11, S3THR - Set bit indicates that the thermal aspect of a card in Slot

3 is in question.

 Bit B12, S4THR - Set bit indicates that the thermal aspect of a card in Slot

4 is in question.

 Bit B13, S5THR - Set bit indicates that the thermal aspect of a card in Slot

5 is in question.

 Bit B14, S6THR- Set bit indicates that the thermal aspect of a card in Slot

6 is in question.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-276 3700S-901-01 Rev. C / July 2008

status.questionable.* .condition

.enable

.event

.ntr

.ptr

Details quesreg can be set to the decimal weight of the bit to be set:

To set bit B1 (S1INL), set quesreg to 1 (21).

To set bit B2 (S2INL), set quesreg to 4 (22).

To set bit B3 (S3INL), set quesreg to 8 (23).

To set bit B4 (S4INL), set quesreg to 16 (24).

To set bit B5 (S5INL), set quesreg to 32 (25).

To set bit B6 (S6INL), set quesreg to 64 (26).

To set bit B7 (DMMCON), set quesreg to 128 (27).

To set bit B8 (CAL), set quesreg to 256 (28).

To set bit B9 (S1THR), set quesreg to 512 (29).

To set bit B10 (S2THR), set quesreg to 1024 (210).

To set bit B11 (S3THR), set quesreg to 2048 (211).

To set bit B12 (S4THR), set quesreg to 4096 (212).

To set bit B13 (S5THR), set quesreg to 8192 (213).

To set bit B14 (S6THR), set quesreg to 16384 (214).

To set more than one bit of the register, set quesreg to the sum of their decimal

weights. For example, to set bits B8 and B12, set quesreg to 4352 (256 + 4096).

Example To set the CAL bit of the questionable enable register:

status.questionable.enable = status.questionable.CAL

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-277

status.request_enable

Attribute Service request enable register.

Usage Reads service request enable register:

servenabreg = status.request_enable

Writes to system enable register:

status.request_enable = servenabreg

Set servenabreg to one of the following values:

 0 Clears all bits.

 To set (enables) MSB bit (B0):
status.MEASUREMENT_SUMMARY_BIT

- or - status.MSB

 To set (enables) SSB bit (B1): status.SYSTEM_SUMMARY_BIT

- or - status.SSB

 To set (enables) EAV bit (B2): status.ERROR_AVAILABLE

- or - status.EAV

 To set (enables) QSB bit (B3):

status.QUESTIONABLE_SUMMARY_BIT

- or - status.QSB

 To set (enables) MAV bit (B4): status.MESSAGE_AVAILABLE

- or - status.MAV

 To set (enables) ESB bit (B5): status.EVENT_SUMMARY_BIT

- or - status.ESB

 To set (enables) OSB bit (B7): status.OPERATION_SUMMARY_BIT

- or - status.OSB

servenabreg can also be set to the decimal weight of the bit to be set:

To set bit B0 (MSB), set servenabreg to 1 (20).

To set bit B2 (EAV), set servenabreg to 4 (22).

To set bit B7 (OSB), set servenabreg to 128 (27).

To set more than one bit of the register, set servenabreg to the sum of their decimal

weights. For example, to set bits B0 and B7, set servenabreg to 129 (1 + 128).

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-278 3700S-901-01 Rev. C / July 2008

status.request_enable

Remarks This attribute is used to read or write to the service request enable register.

 Reading the service request enable status register returns a value. The binary

equivalent of the returned value indicates which register bits are set. The least

significant bit of the binary number is bit 0, and the most significant bit is bit 7.

 For example, assume value 129 is returned for the node enable register. The binary

equivalent is 10000001. This value indicates that bit B0 (MSB) and bit B7 (OSB) are

set.

 Assigning a value to this attribute enables one or more status events for service

request. When an enabled status event occurs, bit B6 of the status byte sets to

generate an SRQ (service request).

 The service request enable register uses most of the same summary events as the

status byte. Bit B6 (MSS) is not used by the enable register. For details, see

status.condition (on page 13-264) register.

Example Sets the MSB bit of the service request enable register:

status.request_enable = status.MSB

status.request_event

Attribute Service request event register.

Usage Reads the service request event register:

serveventreg = status.request_event

Remarks This attribute is used to read the service request event register, which is returned as a

numeric value. Reading this register returns a value. The binary equivalent of the

returned value. The least significant bit of the binary number is bit 0, and the most

significant bit is bit 7.

For example, assume value 129 is returned for the event register. The binary equivalent

is 10000001. This value indicates that bit B0 (MSB) and bit B7 (OSB) are set.

The service request event register uses most of the same summary events as the

status byte. Bit B6 (MSS) is not used by the event register. For details, see

status.condition (on page 13-264) register.

Example Reads the service request event register:

serveventreg = status.request_event

print(serveventreg)

Output: 1.29000e+02

The above output indicates that bits B0 (MSB) and B7 (OSB) are set.

status.reset()

Function Resets all bits set in the status model.

Usage status.reset()

Remarks This function clears all status data structure registers (enable, event, NTR and PTR) to

their power up states.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-279

status.standard.* .condition

.enable

.event

Attribute Standard event register set.

Usage Reads condition, enable and event registers:

standardreg = status.standard.condition

standardreg = status.standard.enable

standardreg = status.standard.event

Writes to enable register:

status.standard.enable = standardreg

Set standardreg to one of the following values:

0 Clears all bits.

To set the OPC bit (B0):

status.standard.OPERATION_COMPLETE

- or - status.standard.OPC

To set QYE bit (B2): status.standard.QUERY_ERROR

- or - status.standard.QYE

To set DDE bit (B3): status.standard.DEVICE_DEPENDENT_ERROR

- or - status.standard.DDE

To set EXE bit (B4): status.standard.EXECUTION_ERROR

- or - status.standard.EXE

To set CME bit (B5): status.standard.COMMAND_ERROR

- or - status.standard.CME

To set URQ bit (B6): status.standard.USER_REQUEST

- or - status.standard.URQ

To set PON bit (B7): status.standard.POWER_ON

- or - status.standard.PON

standardreg can also be set to the decimal weight of the bit to be set:

To set bit B0 (OPC), set standardreg to 1 (20).

To set bit B2 (QYE), set standardreg to 4 (22).

To set bit B5 (CME), set standardreg to 32 (25).

To set more than one bit of the register, set standardreg to the sum of their decimal

weights. For example, to set bits B0 and B2, set standardreg to 5 (1 + 4).

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-280 3700S-901-01 Rev. C / July 2008

status.standard.* .condition

.enable

.event

Remarks These attributes are used to read or write to the standard status registers.

Reading a status register returns a value. The binary equivalent of the returned value

indicates which register bits are set. The least significant bit of the binary number is bit

0, and the most significant bit is bit 7.

For example, assume value 9 is returned for the enable register. The binary equivalent

is 00001001. This value indicates that bit 0 (OPC) and bit 3 (DDE) are set.

The used bits of the standard event status register are described as follows:

 Bit B0, Operation Complete (OPC) - Set bit indicates that all pending selected

device operations are completed and the Series 3700 is ready to accept new

commands. The bit is set in response to an *OPC command. The ICL function

opc() can be used in place of the *OPC command. See Appendix C for details on

*OPC

 Bit B2, Query Error (QYE) - Set bit indicates that you attempted to read data from

an empty Output Queue.

 Bit B3, Device-Dependent Error (DDE) - Set bit indicates that an instrument

operation did not execute properly due to some internal condition.

 Bit B4, Execution Error (EXE) - Set bit indicates that the Series 3700 detected an

error while trying to execute a command.

 Bit B5, Command Error (CME) - Set bit indicates that a command error has

occurred. Command errors include:

-IEEE-488.2 syntax error -- Series 3700 received a message that does not follow

the defined syntax of the IEEE-488.2 standard.

-Semantic error -- Series 3700 received a command that was misspelled or

received an optional IEEE-488.2 command that is not implemented.

-The instrument received a Group Execute Trigger (GET) inside a program

message.

 Bit B6, User Request (URQ) - Set bit indicates that the LOCAL key on the Series

3700 front panel was pressed.

 Bit B7, Power ON (PON) - Set bit indicates that the Series 3700 has been turned

off and turned back on since the last time this register was read.

Example Sets the PON bit of the standard event enable register:

status.standard.enable =

status.standard.PON

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-281

status.system.* .condition

.enable

.event

Attribute TSP-LinkTM system data structure register set.

Usage To read condition, enable and event registers:

enablereg = status.system.condition

enablereg = status.system.enable

enablereg = status.system.event

To write to enable register:

status.system.enable = enablereg

Set enablereg to one of the following values:

0 Clears all bits.

To set EXT bit (B0):

1 or status.system.EXTENSION_BIT

- or -

1 or status.system.EXT

To set a node bit (Bn); n = 1 to 14.

status.system.NODEn

Remarks In an expanded system (TSP-Link), this attribute is used to read or write to the

system node registers.

 Reading a system node register returns a numeric value whose binary equivalent

indicates which register bits are set. The bits of the system node register are

identified as follows:

B0 - EXT bit B4 - Node 4 B8 - Node 8 B12 - Node 12

B1 - Node 1 B5 - Node 5 B9 - Node 9 B13 - Node 13

B2 - Node 2 B6 - Node 6 B10 - Node 10 B14 - Node 14

B3 - Node 3 B7 - Node 7 B11 - Node 11 B15 - Not used

 For example, assume value 9 is returned for the enable register. The binary

equivalent is 0000000000001001. This value indicates that bit 0 (EXT) and bit 3

(Node 3) are set.

 Assigning a value to the status.system.enable attribute sets the extension bit or a

node bit of the system node enable register.

Also see status.system2.* (on page 13-281)

status.system3.* (on page 13-282)

status.system4.* (on page 13-284)

status.system5.* (on page 13-285)

Example Sets the extension bit of the system enable register:

status.system.enable = status.system.EXT

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-282 3700S-901-01 Rev. C / July 2008

status.system2.* .condition

.enable

.event

Attribute TSP-LinkTM system2 data structure register set.

Usage Reads condition, enable and event registers:

enablereg = status.system2.condition

enablereg = status.system2.enable

enablereg = status.system2.event

Writes to enable register:

status.system2.enable = enablereg

Set enablereg to one of the following values:

0 Clears all bits.

To set EXT bit (B0):

1 or status.system2.EXTENSION_BIT

- or -

1 or status.system2.EXT

To set node bit (Bn); n = 15 to 28.

status.system2.NODEn

Remarks In an expanded system (TSP-Link), this attribute is used to read or write to the

system2 node registers.

 Reading a system2 node register returns a numeric value whose binary equivalent

indicates which register bits are set. The bits of the system2 node register are

identified as follows:

B0 - EXT bit B4 - Node 18 B8 - Node 22 B12 - Node 26

B1 - Node 15 B5 - Node 19 B9 - Node 23 B13 - Node 27

B2 - Node 16 B6 - Node 20 B10 - Node 24 B14 - Node 28

B3 - Node 17 B7 - Node 21 B11 - Node 25 B15 - Not used

 For example, assume value 9 is returned for the enable register. The binary

equivalent is 0000000000001001. This value indicates that bit 0 (EXT) and bit 3

(Node 17) are set.

 Assigning a value to the status.system2.enable attribute sets the extension bit or a

node bit of the system2 node enable register.

Also see status.system.* (on page 13-280)

status.system3.* (on page 13-282)

status.system4.* (on page 13-284)

status.system5.* (on page 13-285)

Example Sets the extension bit of the system2 enable register:

status.system2.enable = status.system2.EXT

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-283

status.system3.* .condition

.enable

.event

Attribute TSP-LinkTM system3 data structure register set.

Usage To read condition, enable and event registers:

enablereg = status.system3.condition

enablereg = status.system3.enable

enablereg = status.system3.event

To write to enable register:

status.system3.enable = enablereg

Set enablereg to one of the following values:

0 Clears all bits.

To set EXT bit (B0)

1 or status.system3.EXTENSION_BIT

1 or status.system3.EXT

To set a node bit (Bn); n = 29 to 42.

status.system3.NODEn

Remarks In an expanded system (TSP- Link), this attribute is used to read or write to the

system3 node registers.

 Reading a system3 node register returns a numeric value whose binary equivalent

indicates which register bits are set. The bits of the system3 node register are

identified as follows:

B0 - EXT B4 - Node

32

B8 - Node 36 B12 - Node 40

B1 - Node

29

B5 - Node

33

B9 - Node 37 B13 - Node 41

B2 - Node

30

B6 - Node

34

B10 - Node

38

B14 - Node 42

B3 - Node

31

B7 - Node

35

B11 - Node

39

B15 - Not used

 For example, assume value 9 is returned for the enable register. The binary

equivalent is 0000000000001001. This value indicates that bit 0 (EXT) and bit 3

(Node 31) are set.

 Assigning a value to the status.system3.enable attribute sets the extension bit or a

node bit of the system3 node enable register.

Also see status.system.* (on page 13-280)

status.system2.* (on page 13-281)

status.system4.* (on page 13-284)

status.system5.* (on page 13-285)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-284 3700S-901-01 Rev. C / July 2008

status.system3.* .condition

.enable

.event

Example Sets the extension bit of the system3 enable register:

status.system3.enable = status.system3.EXT

status.system4.* .condition

.enable

.event

Attribute TSP-LinkTM system4 data structure register set.

Usage To read condition, enable and event registers:

enablereg = status.system4.condition

enablereg = status.system4.enable

enablereg = status.system4.event

To write to enable register:

status.system4.enable = enablereg

Set enablereg to one of the following values:

0 Clears all bits.

To set EXT bit (B0):

1 or status.system4.EXTENSION_BIT

- or -

1 or status.system4.EXT

To set a node bit (Bn); n = 43 to 56.

status.system4.NODEn

Remarks In an expanded system (TSP-Link), this attribute is used to read or write to the

system4 node registers.

 Reading a system4 node register returns a numeric value whose binary equivalent

indicates which register bits are set. The bits of the system4 node register are

identified as follows:

B0-EXT bit B4-Node 46 B8-Node 50 B12-Node 54

B1-Node43 B5-Node47 B9-Node51 B13-Node55

B2-Node44 B6-Node48 B10-Node52 B14-Node56

B3-Node45 B7-Node49 B11-Node53 B15-Not used

 For example, assume value 9 is returned for the enable register. The binary

equivalent is 0000000000001001. This value indicates that bit 0 (EXT) and bit 3

(Node 45) are set.

 Assigning a value to the status.system4.enable attribute sets the extension bit or a

node bit of the system4 node enable register.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-285

status.system4.* .condition

.enable

.event

Also see status.system.* (on page 13-280)

status.system2.* (on page 13-281)

status.system3.* (on page 13-282)

status.system5.* (on page 13-285)

Example Sets the extension bit of the system4 enable register:

status.system4.enable = status.system4.EXT

status.system5.* .condition

.enable

.event

Attribute TSP-LinkTM system5 data structure register set.

Usage To read condition, enable and event registers:

enablereg = status.system5.condition

enablereg = status.system5.enable

enablereg = status.system5.event

To write to enable register:

status.system5.enable = enablereg

Set enablereg to one of the following values:

0 Clears all bits.

To set EXT bit (B0):

1 or status.system5.EXTENSION_BIT

- or -

1 or status.system5.EXT

To set a node bit (Bn); n = 57 to 64.

status.system5.NODEn

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-286 3700S-901-01 Rev. C / July 2008

status.system5.* .condition

.enable

.event

Remarks In an expanded system (TSP-Link), this attribute is used to read or write to the

system5 node registers.

Reading a system5 node register returns a numeric value whose binary equivalent

indicates which register bits are set. The bits of the system5 node register are

identified as follows:

Bit B0 - EXT

bit

Bit B4 - Node

60

Bit B8 - Node 64

Bit B1 - Node

57

Bit B5 - Node

61

Bits B9 through B15 - Not used

Bit B2 - Node

58

Bit B6 - Node

62

Bit B3 - Node

59

Bit B7 - Node

63

For example, assume value 9 is returned for the enable register. The binary equivalent

is 0000000000001001. This value indicates that bit 0 (EXT) and bit 3 (Node 59) are

set.

Assigning a value to the status.system5.enable attribute sets the extension bit or a

node bit of the system5 node enable register.

Also see status.system.* (on page 13-280)

status.system2.* (on page 13-281)

status.system3.* (on page 13-282)

status.system4.* (on page 13-284)

Example Sets the extension bit of the system5 enable register:

status.system5.enable = status.system5.EXT

timer functions

Use the functions in this group to control the timer. The timer can be used to

measure the time it takes to perform various operations. Use the timer.reset()

(on page 13-287) function at the beginning of an operation to reset the timer to

zero, and then use the timer.measure.t() (on page 13-286) at the end of the

operation to measure the elapsed time.

timer.measure.t()

Function Measures the elapsed time since the timer was last reset.

Usage time = timer.measure.t()

time: Returns the elapsed time in seconds. (1 s resolution).

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-287

timer.measure.t()

Remarks This function will return the elapsed time in seconds since the timer was reset.

 The returned resolution for time depends on how long it has been since the timer

was reset. It starts with 1 s resolution and starts to lose resolution after about 2.8

minutes.

Also see timer.reset() (on page 13-287)

Example Resets the timer and then measures the time since the reset:

timer.reset()

...

time = timer.measure.t()

print(time)

Output: 1.469077e+01

The above output indicates that timer.measure.t was executed 14.69077 seconds after

timer.reset.

timer.reset()

Function Resets the timer to 0 seconds.

Usage timer.reset()

Remarks This function will restart the timer at zero.

Also see timer.measure.t() (on page 13-286)

Example Resets the timer and then measures the time since the reset:

timer.reset()

...

time = timer.measure.t()

print(time)

Output: 1.469077e+01

The above output indicates that timer.measure.t was executed 14.69077 seconds after

timer.reset.

trigger functions and attributes

Use the functions in this group to control triggering.

trigger.blender[N].clear()

Function This function clears and resets blender N.

Usage trigger.blender[N].clear()

N: The trigger line (1–2).

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-288 3700S-901-01 Rev. C / July 2008

trigger.blender[N].orenable

Attribute Set orenable attribute for the blender.

Usage To read the trigger blender orenable mode:

orenable = trigger.blender[N].orenable

To write the trigger blender orenable mode:

trigger.blender[N].orenable = orenable

orenable: The desired orenable mode (true/false)

N: The trigger blender (1–2).

Remarks This attribute selects whether the blender will wait for any one event (or-mode) or will

wait for all selected events (and-mode) before signaling an output event.

Set this attribute to true for or-mode.

Set this attribute to false for and-mode.

trigger.blender[N].overrun

Attribute This attribute provides the event detector overrun status for a blender.

Usage overrun = trigger.blender[N].overrun

N: The trigger blender (1–2).

overrun: Trigger overrun state for blender.

Remarks This attribute is a read-only attribute that indicates if an event was ignored because

the event detector was already in the detected state when the event occurred. This is

an indication of the state of the event detector built into the event blender itself.

This attribute does not indicate if an overrun occurred in any other part of the trigger

model or in any other construct that is monitoring the event. It also is not an indication

of an event overrun.

trigger.blender[N].stimulus[M]

 Attribute This attribute provides event detector trigger selection.

Usage To read blender and trigger stimulus event:

eventid = trigger.blender[N].stimulus[M]

To write blender and trigger stimulus event:

trigger.blender[N].stimulus[M] = eventid

N: Event blender number (1–2).

M: Trigger stimulus event (1-4).

eventid: Event to trigger the stimulus action.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-289

trigger.blender[N].stimulus[M]

Remarks This attribute selects which events will trigger the blender. There are 4 acceptors that

can each select a different event.

eventid may be one of the following (existing trigger event IDs):

 digio.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the digital input line.

 display.trigger.EVENT_ID: The trigger key on the front panel is pressed.

 trigger.EVENT_ID: A *trg message on the active command interface. If GPIB is the

active command interface, a GET message will also generate this event.

 trigger.blender[N].EVENT_ID: A combination of events has occurred.

 trigger.timer[N].EVENT_ID: A delay expired.

 tsplink.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the tsplink trigger line.

 lan.trigger[N].EVENT_ID

 scan.trigger.EVENT_SCAN_READY: Scan Ready Event.

 scan.trigger.EVENT_SCAN_START: Scan Start Event

 scan.trigger.EVENT_CHANNEL_READY: Channel Ready Event

 scan.trigger.EVENT_MEASURE_COMP: Measure Complete Event

 scan.trigger.EVENT_SEQUENCE_COMP: Sequence Complete Event

 scan.trigger.EVENT_SCAN_COMP: Scan Complete Event

 scan.trigger.EVENT_IDLE: Idle Event

NOTE Use the ICL define to set the stimulus value rather than the define value.

Doing this will make the code compatible for future upgrades because they

may need to change when enhancements are added to the instrument.

trigger.blender[N].wait()

Function This function waits for a blender trigger event to occur.

Usage triggered = trigger.blender[N].wait(timeout)

N: The trigger blender (1–2).

timeout: Maximum amount of time in seconds to wait for the trigger blender event.

triggered: Trigger detection indication for blender.

Remarks This function will wait for an event blender trigger event. If one or more trigger events

were detected since the last time trigger.blender[N].wait or trigger.blender[N].clear()

(on page 13-287) was called, this function will return immediately.

After detecting a trigger with this function, the event detector will automatically reset

and rearm. This is true regardless of the number of events detected.

trigger.clear()

Function Clears the command interface trigger event detector.

Usage trigger.clear()

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-290 3700S-901-01 Rev. C / July 2008

trigger.clear()

Remarks The trigger event detector remembers if an event has been detected since the last

trigger.wait() (on page 13-290) call. This function clears the trigger's event detector and

discards the previous history of command interface trigger events.

Also see trigger.wait() (on page 13-290)

trigger.wait()

Function Wait for a trigger event.

Usage triggered = trigger.wait(timeout)

timeout: Maximum amount of time in seconds to wait for the trigger.

triggered: Returns true if a trigger was detected. Returns false if no triggers were

detected during the timeout period.

Remarks This function will wait up to timeout seconds for a GPIB GET command or a *TRG

message on the GPIB interface if that is the active command interface or a *TRG

message on the command interface for all other interfaces. If one or more of these

trigger events were previously detected, this function will return immediately.

 After waiting for a trigger with this function, the event detector will be automatically

reset and rearmed. This is true regardless of the number of events detected.

Also see trigger.clear() (on page 13-289)

Example Waits up to 10 seconds for a trigger:

triggered = trigger.wait(10)

print(triggered)

Output: false

The above output indicates that no trigger was detected during the 10 second timeout.

trigger.timer functions and attributes

Use the functions in this group to control the trigger timer.

trigger.timer[N].clear

Attribute Clears trigger time[N].

Usage trigger.timer[N].clear

N: is a trigger.timer value (from 1–4).

Remarks This function clears the specified trigger timer number.

Also see trigger.timer[N].count (on page 13-290)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-291

trigger.timer[N].count

Attribute Retrigger count.

Usage To read:

count = trigger.timer[N].count

To write:

trigger.timer[N].count = count

N: is a trigger timer value (from 1–4).

count: Repeat trigger count.

Remarks This attribute sets the number of times the timer will trigger an event. If this attribute is

set greater than 1, the timer will automatically start the next delay at expiration of a

previous delay.

Also see trigger.timer[N].clear (on page 13-290)

Example To read retrigger count for timer number 1:

print(trigger.timer[1].count)

trigger.timer[N].delay

Attribute The timer interval used when triggered.

Usage To read delay interval:

interval = trigger.timer[N].delay

To write delay interval:

trigger.timer[N].delay = interval

N: is a trigger timer value (from 1–4).

interval: Delay interval in seconds.

Remarks This attribute sets a fixed timer delay. Each time the timer is triggered it will use this

delay period.

trigger.timer[N].delaylist

Attribute An array of timer intervals used when triggered.

Usage To read array of timer intervals:

intervals = trigger.timer[n].delay

To write array of timer intervals:

trigger.timer[n].delay = intervals

n: (In) Trigger timer number.

intervals: (In/Out) Table of delay intervals in seconds.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-292 3700S-901-01 Rev. C / July 2008

trigger.timer[N].delaylist

Remarks This attribute sets an array of timer delays. Each time the timer is triggered it will use

the next delay period from the array. After all elements in the array have been used,

the last element will be used for subsequent triggers.

trigger.timer[N].overrun

Attribute Event detector overrun status.

Usage overrun = trigger.timer[N].overrun

N: is a trigger timer value (from 1–4).

overrun: Trigger overrun state.

Remarks This attribute is a read-only attribute that indicates if an event was ignored because

the event detector was already in the detected state when the event occurred. This is

an indication of the state of the event detector built into the timer itself. It does not

indicate if an overrun occurred in any other part of the trigger model or in any other

construct that is monitoring the delay completion event. It also is not an indication of a

delay overrun.

trigger.timer[N].passthrough

Attribute Trigger pass-through enable.

Usage To read pass-through state:

passthrough = trigger.timer[N].passthrough

To write pass-through state:

trigger.timer[N].passthrough = passthrough

N: is a trigger timer value (from 1–4).

passthrough: Pass-through true/false.

Remarks This attribute enables or disables the timer trigger‟s pass-through mode. When

enabled, triggers are passed through immediately as well as initiating the delay. When

disabled, a trigger will only initiate a delay. passthrough can be either true or false.

trigger.timer[N].stimulus

Attribute Event to cause the delay to start.

Usage To read the stimulus event:

eventid = trigger.timer[N].stimulus

To write the stimulus event:

trigger.timer[N].stimulus = eventid

N: is a trigger timer value (from 1–4).

eventid: Event to trigger the timer delay.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-293

trigger.timer[N].stimulus

Remarks This attribute selects which event will start the timer.

eventid may be one of the following (existing trigger event IDs):

 digio.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the digital input line.

 display.trigger.EVENT_ID: The trigger key on the front panel is pressed.

 trigger.EVENT_ID: A *trg message on the active command interface. If GPIB is the

active command interface, a GET message will also generate this event.

 trigger.blender[N].EVENT_ID: A combination of events has occurred.

 trigger.timer[N].EVENT_ID: A delay expired.

 tsplink.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the tsplink trigger line.

 lan.trigger[N].EVENT_ID

 scan.trigger.EVENT_SCAN_READY: Scan Ready Event.

 scan.trigger.EVENT_SCAN_START: Scan Start Event

 scan.trigger.EVENT_CHANNEL_READY: Channel Ready Event

 scan.trigger.EVENT_MEASURE_COMP: Measure Complete Event

 scan.trigger.EVENT_SEQUENCE_COMP: Sequence Complete Event

 scan.trigger.EVENT_SCAN_COMP: Scan Complete Event

 scan.trigger.EVENT_IDLE: Idle Event

NOTE Use the ICL define to set the stimulus value rather than the define value.

Doing this will make the code compatible for future upgrades because it

may need to change when enhancements are added to the instrument.

Example To print the delay:

print(trigger.timer[1].stimulus)

trigger.timer[N].wait()

Function Wait for a trigger.

Usage triggered = trigger.timer[N].wait(timeout)

N: is a trigger timer value (from 1–4).

timeout: Maximum amount of time in seconds to wait for the trigger.

triggered: Trigger detection indication.

Remarks This function will wait for a timer trigger. If one or more trigger events were detected

since the last time trigger.timer[N].wait or trigger.timer[N].clear (on page 13-290) was

called, this function will return immediately.

After waiting for a trigger with this function, the event detector will be automatically

reset and rearmed. This is true regardless of the number of events detected.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-294 3700S-901-01 Rev. C / July 2008

tsplink functions and attributes

Use the function and attributes in this group to assign node numbers to Series

3700 instruments and initialize the TSP-LinkTM system.

tsplink.group

Attribute The group number of a TSP-LinkTM node.

Usage groupnumber = tsplink.group

tsplink.group = groupnumber

groupnumber: The TSP-Link group number for the node.

Remarks This attribute controls the TSP-Link group number used for DTNS. Set this attribute to

zero to remove the node from all subgroups.

tsplink.master

Attribute The node number of the master node.

Usage master = tsplink.master

master: The node number of the master node.

Remarks This read-only attribute indicates which node is the master node.

tsplink.node

Attribute TSP-LinkTM node number.

Usage To read the node number:

mynode = tsplink.node

To write the node number:

tsplink.node = mynode

mynode: Set node number from 1 to 64. Default value is 2.

Remarks This attribute sets the TSP-Link node number and saves the value in nonvolatile

memory.

 After changing the node number, it will not take effect until the next time

tsplink.reset() (on page 13-294) is executed on any node in the system.

 Each node connected to the TSP-Link must be assigned a different node number.

Example Sets the TSP-Link node to number 2:

tsplink.node = 2

tsplink.reset()

Function Initializes (resets) all nodes (instruments) in the TSP-LinkTM system.

Usage tsplink.reset()

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-295

tsplink.reset()

Remarks This function will erase all knowledge of other nodes connected on the TSP-LinkTM and

will regenerate the system configuration. This function must be called at least once

before any remote nodes can be accessed. If the node number for any instrument is

changed, the TSP-Link must again be initialized.

tsplink.state

Attribute TSP-LinkTM online state.

Usage state = tsplink.state

Remarks This attribute stores the TSP-Link status, either online or offline. The state will be

"offline" after the unit is powered on. After tsplink.reset() (on page 13-294) is

successful, the state will be "online".

 This attribute is read-only.

Example Reads the state of the TSP-Link:

state = tsplink.state

print(state)

 online

tsplink.trigger functions and attributes

The functions in this group control the TSP-LinkTM's trigger event detector.

tsplink.trigger[N].assert()

Function Simulates the occurrence of the trigger and generates the corresponding event id.

Usage tsplink.trigger[N].assert()

N: The trigger line to assert (1–3).

Remarks This function will generate a trigger pulse on the given TSP-LinkTM trigger line.

Also see tsplink.trigger[N].clear() (on page 3-13)

tsplink.trigger[N].mode (on page 3-13)

tsplink.trigger[N].overrun (on page 3-15)

tsplink.trigger[N].release() (on page 3-15)

tsplink.trigger[N].stimulus (on page 13-298)

tsplink.trigger[N].wait() (on page 3-15)

tsplink.trigger[N].clear()

Function Clear the event detector for a trigger.

Usage tsplink.trigger[N].clear()

N: The trigger line (1–3).

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-296 3700S-901-01 Rev. C / July 2008

tsplink.trigger[N].clear()

Remarks A trigger‟s event detector remembers if an event has been detected since the last

tsplink.trigger[N].wait call. This function clears a trigger‟s event detector

and discards the previous history of the trigger line.

Also see tsplink.trigger[N].mode (on page 3-13)

tsplink.trigger[N].overrun (on page 3-15)

tsplink.trigger[N].release() (on page 3-15)

tsplink.trigger[N].stimulus (on page 13-298)

tsplink.trigger[N].wait() (on page 3-15)

tsplink.trigger[N].mode

Attribute The trigger operation/detection mode.

Usage To read trigger operation/detection mode:

mode = tsplink.trigger[N].mode

To write trigger operation/detection mode:

tsplink.trigger[N].mode = mode

N: The trigger line (1–3).

mode: Trigger mode.

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-297

tsplink.trigger[N].mode

Remarks This attribute controls the mode in which the trigger event detector as well as the

output trigger generator will operate on the given trigger line. mode can be one of the

following values:

tsplink.TRIG_BYPASS

Allow direct control of the line.

tsplink.TRIG_EITHER

Detect rising or falling edge triggers as input. Assert a TTL-low pulse for output.

tsplink.TRIG_FALLING

Detect falling edge triggers as input. Assert a TTL-low pulse for output.

tsplink.TRIG_RISING

Use digio.TRIG_RISINGA if the line is in the high output state. Use

digio.TRIG_RISINGM if the line is in the low output state.

tsplink.TRIG_RISINGA

Detect rising edge triggers as input. Assert a TTL-low pulse for output.

tsplink.TRIG_RISINGM

Assert a TTL-high pulse for output. Input edge detection is not possible in this mode.

tsplink.TRIG_SYNCHRONOUS

Detect falling edge triggers as input and latch them low. Assert a TTL-low pulse for

output.

tsplink.TRIG_SYNCHRONOUSA

Detect falling edge triggers as input and automatically latch and drive them low when

detected. Release a latched line for output.

tsplink.TRIG_SYNCHRONOUSM

Detect rising edge triggers as input. Assert a TTL-low pulse for output.

Remarks,

continued

The default trigger mode for a line will be TRIG_BYPASS. In this mode, the line can be

directly controlled as a digital I/O line. When programmed to any other mode, the

output state of the I/O line is controlled by the trigger logic and the user-specified

output state of the line will be ignored.

For compatibility with older firmware, when the trigger mode is set to TRIG_RISING,

the user specified output state of the line will be examined. If the output state selected

when the mode is changed is high, the actual mode used will be TRIG_RISINGA. If

the output state selected when the mode is changed is low, the actual mode used will

be TRIG_RISINGM.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-298 3700S-901-01 Rev. C / July 2008

tsplink.trigger[N].mode

Also see tsplink.trigger[N].assert (on page 3-12)

tsplink.trigger[N].clear() (on page 3-13)

tsplink.trigger[N].overrun (on page 3-15)

tsplink.trigger[N].release() (on page 3-15)

tsplink.trigger[N].stimulus (on page 13-298)

tsplink.trigger[N].wait() (on page 3-15)

tsplink.trigger[N].overrun

Attribute Event detector overrun status.

Usage overrun = tsplink.trigger[N].overrun

overrun: Trigger overrun state.

N: The trigger line (1–3).

Remarks This attribute is a read-only attribute. It indicates if an event was ignored due to the

event detector being in the detected state when the event occurred. This is an

indication of the state of the event detector built into the synchronization line itself.

This attribute does not indicate if an overrun occurred in any other part of the trigger

model or in any other construct that is monitoring the event.

Also see tsplink.trigger[N].assert (on page 3-12)

tsplink.trigger[N].clear() (on page 3-13)

tsplink.trigger[N].mode (on page 3-13)

tsplink.trigger[N].release() (on page 3-15)

tsplink.trigger[N].stimulus (on page 13-298)

tsplink.trigger[N].wait() (on page 3-15)

tsplink.trigger[N].release()

Function Release a latched trigger.

Usage tsplink.trigger[N].release()

N: The trigger line (1–3).

Remarks This function will release a latched trigger on the given TSP-LinkTM trigger line.

Also see tsplink.trigger[N].assert (on page 3-12)

tsplink.trigger[N].clear() (on page 3-13)

tsplink.trigger[N].mode (on page 3-13)

tsplink.trigger[N].overrun (on page 3-15)

tsplink.trigger[N].stimulus (on page 13-298)

tsplink.trigger[N].wait() (on page 3-15)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-299

tsplink.trigger[N].stimulus

Attribute Event to cause this trigger to assert.

Usage tsplink.trigger[N].stimulus()

N: The trigger line (1–3).

Remarks This attribute selects which event will cause the synchronization line to assert a

trigger.

eventid may be one of the following (existing trigger event IDs):

 digio.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the digital input line.

 display.trigger.EVENT_ID: The trigger key on the front panel is pressed.

 trigger.EVENT_ID: A *trg message on the active command interface. If GPIB is the

active command interface, a GET message will also generate this event.

 trigger.blender[N].EVENT_ID: A combination of events has occurred.

 trigger.timer[N].EVENT_ID: A delay expired.

 tsplink.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the

configuration of the line) on the tsplink trigger line.

 lan.trigger[N].EVENT_ID

 scan.trigger.EVENT_SCAN_READY: Scan Ready Event.

 scan.trigger.EVENT_SCAN_START: Scan Start Event

 scan.trigger.EVENT_CHANNEL_READY: Channel Ready Event

 scan.trigger.EVENT_MEASURE_COMP: Measure Complete Event

 scan.trigger.EVENT_SEQUENCE_COMP: Sequence Complete Event

 scan.trigger.EVENT_SCAN_COMP: Scan Complete Event

 scan.trigger.EVENT_IDLE: Idle Event

NOTE Use the ICL define to set the stimulus value rather than the define value.

Doing this will make the code compatible for future upgrades because it

may need to change when enhancements are added to the instrument.

tsplink.trigger[N].wait()

Function Wait for a trigger.

Usage triggered = tsplink.trigger[N].wait(timeout)

N: The trigger line (1–3).

timeout: Maximum amount of time in seconds to wait for the trigger.

triggered: Trigger detection indication.

Remarks This function will wait for an input trigger. If one or more trigger events were detected

since the last time tsplink.trigger[N].wait() or tsplink.trigger[N].clear() (on page 3-13)

was called, this function will return immediately.

After waiting for a trigger with this function, the event detector will be automatically

reset and rearmed. This is true regardless of the number of events detected.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-300 3700S-901-01 Rev. C / July 2008

tspnet functions and attributes

Use the tspnet commands to control, identify, and communicate with TSPTM

devices. You can use these commands with Keithley Instruments and non-

Keithley Intruments devices.

tspnet.clear()

Function Device read clear buffer.

Usage tspnet.clear(<connection id>)

connection id: Integer value used as a handle for other tspnet commands

Remarks This command clears any pending output data available from the device. No data is

returned to the caller. No data is processed.

Errors:

 Invalid Specified Connection

Example tspnet.write(mydevice, 'print([[hello]])')

print(tspnet.readavailable(mydevice))

Output

6.00000000e+000

tspnet.clear(mydevice)

print(tspnet.readavailable(mydevice))

Output

0.00000000e+000

tspnet.connect()

Function Device connection.

Usage To connect to any remote device on the LAN:

<connection id> = tspnet.connect([<ip address>, [<port
number>, <initialize string>]])

To connect to a TSP-enabled remote device on the LAN:

<connection id> = tspnet.connect([<ip address>,
[<password>])

connection id: Integer value used as a handle for other tspnet commands

ip address: String variable for passing the IP address

port number: Optional integer value of the port number

initialize string: String type for the initialization string to send

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-301

tspnet.connect()

Remarks This command connects a device to another device by way of the LAN interface (using

the optionally-specified port number). The default port number is 5025. If the port

number is 23, the interface will use the Telnet protocol (and set appropriate

termination characters) to communicate with the device.

If a port number and initialization string are provided, the remote device is assumed to

be non-TSP-enabled. The Series 3700 does not perform any extra processing, prompt

handling, error handling, or sending of commands. Additionally, the tspnet.tsp

commands do not apply for use on this this remote device.

If no port number and initialization string is provided, the remote device is assumed to

be a Keithley Instruments TSP-enabled device. Depending on the state of

tspnet.tsp.abortonconnect (on page 10-14), the Series 3700 sends an

abort() to the remote device upon connection. The Series 3700 also enables TSP

prompts on the remote device and error management. The Series 3700 places remote

errors from the TSP-enabled device in its own error queue and prefaces these errors

with "Remote Error", followed by an error description. Do not manually change either

the prompt functionality (localnode.prompts) or show errors functionality

(localnode.showerrors) on the remote TSP-enabled device, or subsequent

tspnet.tsp.* commands using the connection may fail.

You can simultaneous connect to a maximum of 32 remote devices.

Errors:

 Connection Failed

 Connection Failed, Timeout

 Invalid IP Address or Port Number

Example To connect to a TSP-enabled device:

mytspdevice = tspnet.connect('10.80.64.216')

To connect to a non-TSP-enabled device:

mydevice = tspnet.connect("192.168.1.51",1394, "*rst\r\n")

tspnet.disconnect()

Function Device disconnection.

Usage tspnet.disconnect(<connection id>)

connection id: Integer value used as a handle for other tspnet commands

Remarks This command disconnects the two devices by closing the connection.

For Keithley Instruments TSPTM devices, this results in any remotely running

commands or scripts being aborted (terminated).

Errors:

 Invalid Specified Connection

Example tspnet.disconnect(mydevice)

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-302 3700S-901-01 Rev. C / July 2008

tspnet.execute()

Function Executes a command string on the remote device.

Usage [variable =] tspnet.execute(<connection id>, <command
string>, [<format string>])

connection id: Integer value used as a handle for other tspnet commands

command string: Command to send to instrument.

format string: Definition of format string for the input field using zeros (0), the decimal

point (.), the polarity sign (+), and 'E' for exponent.

Remarks This command sends the command string to the connection device. A termination is

added to the command string when it is sent to the device (see

tspnet.termination() (on page 10-11)). Optionally, when a format string is

specified, the command waits for a string from the device. The Series 3700 decodes

the output string according to the format specified in the format string and returns this

output string as arguments from the function (see tspnet.read() (on page 10-8)

for format specifiers).

When this command is sent to a TSP-enabled device, the Series 3700 suspends

operation until a timeout error is generated or until the device responds, even if no

format string is specified. The TSP prompt from the remote device is read and thrown

away. The Series 3700 places any remotely-generated errors into its error queue.

When the optional format string is not specified, this command is equivalent to

tspnet.write() (on page 10-7), except that a termination is automatically added

to the end of the line.

Errors:

 Invalid Specified Connection

 Write Failed, Timeout

 Write Failed

 Read Failed, Timeout

 Read Failed, Aborted

 Read Failed

 Remote Error, <remote error generated by command>

Example Command remote device to run script named 'runmyscript()':

tspnet.execute(mydevice, 'runmyscript()')

Command remote device to execute a *idn?:

tspnet.termination(mydevice, tspnet.TERM_CRLF)

tspnet.execute(mydevice, ‘*idn?’)

print("instrument write/read returns:: " ,
tspnet.read(id_instr))

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-303

tspnet.idn()

Function Retrieves response of remote device to '*IDN?'

Usage <idn string> = tspnet.idn(<connection id>)

idn_string: Response as a string type

connection id: Integer value used as a handle for other tspnet commands

Remarks Sends the '*idn?' string to the remote device and retrieves its response.

Errors:

 Invalid Specified Connection

 Connection Not Available

 Connection Failed, Aborted

 Write Failed, Timeout

 Write Failed

 Read Failed, Timeout

 Read Failed

 Read Failed, Aborted

Example Retrieve and print response of 'IDN?*' from the remote device:

print(tspnet.idn(mydevice))

KEITHLEY INSTRUMENTS INC.,MODEL 3706,34345656,01.02a

tspnet.read()

Function Reads data from remote device.

Usage [variable =] tspnet.read(<connection id>, [<format
string>])

connection id: Integer value used as a handle for other tspnet commands

format string: Definition of format string for the input field using zeros (0), the decimal

point (.), the polarity sign (+), and 'E' for exponent.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-304 3700S-901-01 Rev. C / July 2008

tspnet.read()

Remarks This command reads available data from the device (as indicated by the format string)

and returns the number of arguments (as indicated by the format string).

The format string can contain the following identifiers:

%[width]s Read data until the specific length

%[max width]t Read data until the specific length or delimitated by

punctuation

%[max width]n Read data until a newline and/or carriage return

%d Read a number (delimitated by punctuation)

If no format is specified, the command returns a string containing the data until a new

line is reached. If no data is available, the Series 3700 will hold off operation until the

requested data is available or until a timeout error is generated. Use

tspnet.timeout to specify the timeout period.

A maximum of 10 specifiers are allowed in a format string.

When reading from a TSP-enabled remote device, the Series 3700 removes TSP

prompts and places any errors received from the remote device into its own error

queue. The Series 3700 prefaces errors from the remote device with "Remote Error,"

and followed by with the error number and error description.

Errors:

 Invalid Specified Connection

 Read Failed, Timeout

 Read Failed, Aborted

 Read Failed

 Remote Error, <remote error generated by command>

Example Send “*idn?” to remote device:

tspnet.write(id_instr,"*idn?\r\n")

Read and print response from remote device:

print("instrument write/read returns:: " ,
tspnet.read(id_instr))

tspnet.readavailable()

Function Device read output available.

Usage [<num bytes> =] tspnet.readavailable(<connection id>)

connection id: Integer value used as a handle for other tspnet commands

Remarks This command checks to see if any output data is available from the device. No data is

read. It is intended to allow TSPTM scripts to continue to run without waiting on a

remote command to finish.

Errors:

 Invalid Specified Connection

 Read Failed

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-305

tspnet.readavailable()

Example x = tspnet.readavailable(mydevice)

tspnet.reset()

Function Device all disconnection.

Usage tspnet.reset()

Remarks This command disconnects the all devices currently connected.

For Keithley Instruments TSPTM devices, this results in any remotely running

commands or scripts being terminated.

Errors:

 <none>

Example tspnet.reset()

tspnet.termination()

Function Device line termination.

Usage <termination type> = tspnet.termination(<connection id>,
[<termination type>])

connection id: Integer value used as a handle for other tspnet commands

termination type: tspnet.TERM_LF, tspnet.TERM_CR,

tspnet.TERM_CRLF, or tspnet.TERM_LFCR

Remarks This setting sets and gets the termination characters used to determine the end of a

line for lines being received by a connection. It also is used to terminate lines being

sent to a connection. Pass the optional set value to set the termination. The current

value is always returned. There are four possible values: LF, CR, CRLF, or LFCR. For

TSPTM devices, the default is LF. For non-TSP devices, the default is CRLF. The

termination character resets to default when a connection is terminated.

Errors:

 Invalid Specified Connection

 Invalid Termination

Example Set termination character:

tspnet.termination(mydevice, tspnet.TERM_LF)

Gets termination character and evaluates if set to LF. Response of "1" means true, set

to <termination type>. Response of "0" means false, not set to

<termination type>:

print(tspnet.termination(mydevice) == tspnet.TERM_LF)

Output:

1.0000000e+000

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-306 3700S-901-01 Rev. C / July 2008

tspnet.timeout

Attribute Sets timeout value for tspnet.connect(), tspnet.execute(), and

tspnet.read() commands.

Usage tspnet.timeout [= <seconds value>]

seconds value: Value in seconds

Remarks This setting sets the duration the tspnet.connnect, tspnet.read, and

tspnet.execute commands will wait for a response. The time is specified in

seconds. The default value is 5.0 seconds. The timeout may contain fractional

seconds but is only accurate to the nearest 10mS. The timeout may be between 0.0

and 30 seconds.

Errors:

 Invalid Timeout

Example tspnet.timeout = 10.0

tspnet.tsp.abort()

Function Aborts device execution.

Usage tspnet.tsp.abort(<connection id>)

connection id: Integer value used as a handle for other tspnet commands

Remarks This convenience command simply sends an "abort" string to a device.

Errors:

 Invalid Specified Connection

 Connection Not Available

 Write Failed

Example tspnet.tsp.abort()

tspnet.tsp.abortonconnect

Attribute Abort on connect.

Usage tspnet.tsp.abortonconnect [= <value>]

value: tspnet.TRUE or tspnet.FALSE

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-307

tspnet.tsp.abortonconnect

Remarks This setting determines if the Series 3700 sends abort() when it attempts to

connect using tspnet.connect() (on page 10-5) to a TSPTM-enabled device. The

default value is tspnet.TRUE (or non-zero).

Sending the abort() command on connection causes any other active interfaces

being used on that device to close to ensure you have obtained access to the remote

device.

Connecting to a TSP device without issuing an abort() command, or when

tspnet.tsp.abortonconnect (on page 10-14) is set to tspnet.FALSE, can

result in the Series 3700 suspending operation until it receives a response back from

the device or until a timeout error generates.

Errors:

 <none>

Example tspnet.tsp.abortonconnect = tspnet.FALSE

tspnet.tsp.rbtablecopy()

Function Copies a reading buffer synchronous table from a device.

Usage <array> = tspnet.tsp.rbtablecopy(<connection id>, <name>,
[<start index>, <end index>])

connection id: Integer value used as a handle for other tspnet commands

name: Parameter name from a listed group

start index: Integer start value

end index: Integer end value

Remarks This convenience command reads the data from a reading buffer on a remote device

and returns an array of numbers or a string representing the data. The name argument

identifies the reading buffer name and synchronous table to copy. The optional start

index and end index specify the portion of the reading buffer to read. If no index is

specified, the entire buffer will be copied.

This command is limited to transferring 50,000 readings at a time.

Errors:

 Invalid Specified Connection

 Write Failed, Timeout

 Write Failed

 Read Failed, Timeout

 Read Failed, Aborted

 Read Failed

 Invalid Reading Buffer Table

 Invalid Index Range

 Out of Memory

 Remote Error, <remote error generated by command>

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-308 3700S-901-01 Rev. C / July 2008

tspnet.tsp.rbtablecopy()

Example table = tspnet.tsp.rbtablecopy(mytspdevice,

'myremotebuffername.readings', 1, 3)

print(table[1], table[2], table[3])

Output:

4.5653423423e-1 4.5267523423e-1 4.5753543423e-1

times = tspnet.tsp.rbtablecopy(mytspdevice,
'myremotebuffername.timestamps', 1, 3)

print(times)

Output

01/01/2008 10:10:10.0000013,01/01/2008
10:10:10.0000233,01/01/2008 10:10:10.0000576

tspnet.tsp.runscript()

Function Load and runs a script on a device.

Usage tspnet.tsp.runscript(<connection id>, [<name>,] <script>)

connection id: Integer value used as a handle for other tspnet commands

name: Optional parameter name from a listed group

script: The actual script itself as a string, enclosed in quotes

Remarks This convenience command downloads a script to a device and runs it. It automatically

adds the appropriate loadscript and endscript around the script, captures any errors,

and reads back any prompts. No additional substitutions are done on the text.

The script is automatically loaded, compiled, and run. If there are no runnable lines

(contains only functions), running has no effect.

To load only and run at a later time, simply make sure the script contains only

functions. Use tspnet.execute() to execute those functions at a later time.

This command is appropriate only for TSPTM-enabled devices.

If no name is specified, one will be generated internally.

Errors:

 Invalid Specified Connection

 Write Failed, Timeout

 Write Failed

 Read Failed, Timeout

 Read Failed, Aborted

 Read Failed

 Remote Error, <remote error generated by command>

Example tspnet.tsp.runscript(mytspdevice, 'mytest',
'print([[start]]) for d = 1,10 do print([[work]]) end
print[[end]]')

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-309

tspnet.write()

Function Write strings to remote device.

Usage tspnet.write(<connection id>, <input string>)

connection id: Integer value used as a handle for other tspnet commands

input string: String type used for writing to the remote instrument

Remarks The tspnet.write() command sends the command string to the connection device. It

does not wait for command completion on the remote device.

The Series 3700 sends the input string to the remote device exactly as indicated. The

input string must contain any necessary new lines, termination, or other indicators.

Errors:

 Invalid Specified Connection

 Write Failed, Timeout

 Write Failed

Example Command remote device to run script named 'runmyscript':

tspnet.write(mydevice, 'runmyscript()\n')

Send a *idn? to a remote device:

tspnet.write(id_instr,"*idn?" .. "\r\n")

or

tspnet.write(id_instr,"*idn?\r\n")

upgrade functions

Use the functions in this section to perform upgrades.

upgrade.previous()

Function Upgrades a previous version of the Series 3700 firmware.

Usage upgrade.previous()

Remarks This command is equivalent to manually performing an upgrade to a previous version

from the front panel. The functions will search the flash drive for a file to upgrade the

unit and upgrade if one is found (if a file is not found, the function errors).

upgrade.unit()

Function Upgrades the Series 3700 firmware.

Usage upgrade.unit()

Remarks This command is equivalent to manually performing an upgrade from the front panel.

The functions will search the flash drive for a file to upgrade the unit and upgrade if

one is found (if a file is not found, the function errors).

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-310 3700S-901-01 Rev. C / July 2008

userstring functions

Use the functions in this group to store/retrieve user-defined strings in

nonvolatile memory.

userstring.add()

Function Adds a user-defined string to non- volatile memory.

Usage userstring.add(name, value)

name: The name for the string.

value: The string to associate with the name.

Remarks This function will associate the string value with the string name and store the pair in

nonvolatile memory. The value associated with the given name can be retrieved with

the userstring.get() (on page 13-311) function.

Also see userstring.catalog() (on page 13-311)

userstring.delete() (on page 13-311)

userstring.get() (on page 13-311)

Example Stores user-defined strings in non- volatile memory:

userstring.add("assetnumber", "236")

userstring.add("department", "Widgets")

userstring.add("contact", "John Doe")

userstring.catalog()

Function Creates an iterator for the user string catalog.

Usage for name in userstring.catalog() do

... end

Remarks Accessing the catalog for user string names allows the user to print or delete all string

name values in nonvolatile memory. The entries will be enumerated in no particular

order.

Also see userstring.add() (on page 13-310)

userstring.delete() (on page 13-311)

userstring.get() (on page 13-311)

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

3700S-901-01 Rev. C / July 2008 13-311

userstring.catalog()

Example To delete all user strings in non- volatile memory:

for name in userstring.catalog() do

userstring.delete(name)

end

To print all user string name value pairs in nonvolatile memory:

for name in userstring.catalog() do

print(name .. " = " .. userstring.get(name))

end

Output: department = Widgets

assetnumber = 236

contact = John Doe

The above output lists the user strings added in the "Example" for the userstring.add()

(on page 13-310) function. Notice that they are not listed in the order that they were

added.

userstring.delete()

Function Deletes a user-defined string from nonvolatile memory.

Usage userstring.delete(name)

name: Name of the user string.

Remarks This function will delete from non- volatile memory the string that is associated with the

string name.

Also see userstring.add() (on page 13-310)

userstring.catalog() (on page 13-310)

userstring.get() (on page 13-311)

Example Deletes user-defined strings from nonvolatile memory:

userstring.delete("assetnumber")

userstring.delete("department")

userstring.delete("contact")

userstring.get()

Function Retrieves a user-defined string from nonvolatile memory.

Usage value = userstring.get(name)

name: Name of the user string.

value: Returns the string value associated with name.

Remarks This function will retrieve from non- volatile memory the string that is associated with

the string name.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

13-312 3700S-901-01 Rev. C / July 2008

userstring.get()

Also see userstring.add() (on page 13-310)

userstring.catalog() (on page 13-310)

userstring.delete() (on page 13-311)

Example Retrieves the value for a user string from nonvolatile memory:

value = userstring.get("assetnumber")

print(value)

Output: 236

waitcomplete functions

This function waits for all overlapped commands to complete.

waitcomplete()

Function Wait for all overlapped commands to complete.

Usage waitcomplete([group])

group: Optional TSP-LinkTM group on which to wait.

Remarks This function will wait for all overlapped operations within given group to complete. A

group number may only be specified from the master node. If no group is specified,

the local group will be used. If zero is given for the group, this function will wait for all

nodes in the system.

NOTE Any nodes that are not assigned to a group (their group number is zero) will

be considered to be part of the master's group.

This function will wait for all previously started overlapped commands to complete.

Currently the Series 3700 has no overlapped commands implemented. However,

other TSPTM-enabled products like the Series 3700 has overlapped commands.

Therefore, when the Series 3700 is a TSP master to a slave device with overlapped

commands, use this function to wait until all overlapped operations are completed.

In this section:

Introduction ... 14-1

Verification test requirements .. 14-2

Performing the verification test procedures 14-5

Series 3700 verification tests .. 14-6

Introduction

Use the procedures in this section to verify that the Keithley Instruments Series

3700 System Switch/Multimeter's accuracy is within the limits stated in the

instrument‟s one-year accuracy specifications. Verifying the accuracy of your

Series 3700 is recommended:

 When you first receive the instrument to make sure that it was not damaged

during shipment

 To verify that the unit meets factory specifications

 To determine if calibration is required

 Following calibration to make sure that calibration was performed properly

WARNING The information in this section is intended for qualified

service personnel only. Do not attempt these procedures

unless you are qualified to do so.

 Some of these procedures may expose you to hazardous

voltages, that if contacted, could cause personal injury or

death. Use appropriate safety precautions when working

with hazardous voltages.

 For the plug-in modules, the maximum common-mode

voltage (voltage between any plug-in module terminal and

chassis ground) is 300V DC or 300V RMS. Exceeding this

value may cause a breakdown in insulation, creating a

shock hazard.

Section 14

Verification

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-2 3700S-901-01 Rev. C / July 2008

NOTE If the instrument is still under warranty and its performance is outside

specified limits, contact your Keithley Instruments representative or

the factory to determine the correct course of action.

Verification test requirements

Be sure that you perform these verification tests:

 Under the proper environmental conditions

 After the specified warmup period

 Using the correct line voltage

 Using the proper test equipment

 Using the specified output signal and reading limits

Environmental conditions

Conduct the verification procedures in a location that has:

 An ambient temperature of 18°C to 28°C (65°F to 82°F)

 A relative humidity of less than 80%, unless otherwise noted

Warmup period

NOTE At the factory, units are calibrated without any switch cards installed

and all slots are covered with blank slot covers. The slot covers come

installed on the unit when it is shipped.

 If it is more convenient to calibrate the unit with switch cards installed,

make sure all channels are open and any empty slots are covered

with blank slot covers.

Allow the System Switch/Multimeter to warm up for at least two hours before

performing calibration.

If the instrument has been subjected to temperature extremes (those outside the

ranges stated in Environmental conditions (on page 14-2)), allow extra time for

the instrument‟s internal temperature to stabilize. Typically, you need to allow

one extra hour to stabilize a unit that is 10°C (18°F) outside the specified

temperature range.

Also, allow the test equipment to warm up for the minimum time specified by the

manufacturer.

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-3

Line power

The Series 3700 requires a line voltage of 100V to 240V (±10%), and a line

frequency of 50Hz or 60Hz.

NOTE The instrument automatically senses the line frequency at power-up.

Recommended test equipment

The following table summarizes recommended verification equipment. You can

use alternate equipment if that equipment has specifications equal to or greater

than those listed in the table. Note, however, that test equipment uncertainty will

add to the uncertainty of each measurement. Generally, test equipment

uncertainty should be at least four times better (more accurate) than

corresponding Series 3700 specifications.

NOTE The Keithley Instruments Model 3706-190 backplane connector board

is an accessory that can be used to make connections to the

calibrator. Additional boards, such as a 4-wire short or the discrete

resistors, would also be convenient to eliminate rewiring for different

setups used in verification.

Manufacturer Model Description Used for: Uncertainty

Fluke 5700 Calibrator All DCV, ACV, DCI, ACI,

and resistance

See NOTE.

Fluke 5725 Amplifier High voltage, high current See NOTE.

HP 3458 DMM 10µA, 100µA DCI range See NOTE.

Agilent 33220A Function

generator

Frequency See NOTE.

N/A N/A 4-wire short DCV, resistance zeros N/A

N/A N/A 1 Ohm discrete

resistor

1 Ohm range +/- 20ppm

N/A N/A 10 Ohm discrete

resistor

10 Ohm range +/- 20ppm

NOTE Refer to the manufacturer's specifications to calculate the uncertainty,

which will vary for each test point.

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-4 3700S-901-01 Rev. C / July 2008

Verification limits

The verification limits stated in this section have been calculated using only the

Series 3700 one-year accuracy specifications, and they do not include test

equipment uncertainty. If a particular measurement falls outside the allowable

range, recalculate new limits based both on the Series 3700 specifications and

corresponding test equipment specifications.

Example reading limit calculation

The following is an example of how reading limits have been calculated. Assume

you are testing the 10V DC range using a 10V input value. Using the Series

3700 one-year accuracy specification for 10V DC of ± (25ppm of reading +

2ppm of range), the calculated limits are:

Reading limits = 10V ± [(10V × 25ppm) + (10V × 2ppm)]

Reading limits = 10V ± (0.00025 + 0.00002)

Reading limits = 10V ± 0.00027V

Reading limits = 9.99973V to 10.00027V

Calculating resistance reading limits

Resistance reading limits must be recalculated based on the actual calibration

resistance values supplied by the equipment manufacturer. Calculations are

performed in the same manner as shown in the preceding example, using the

actual calibration resistance values instead of the nominal values in the example

when performing your calculations.

For example, assume that you are testing the 10k range using an actual

10.03k calibration resistance value. Using Series 3700 one-year 10k range

accuracy of (60ppm of reading + 4ppm of range), the calculated reading limits

are:

Reading limits = 10.03k [(10.03k x 60ppm) + (10.03k x 6ppm)]

Reading limits = 10.03k [(0.000618) + (0.0000618)]

Reading limits = 10.03k ± 0.0006798

Reading limits = 10.0293202k to 10.0306798k

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-5

Restoring factory defaults

To restore the instrument to its factory front panel (bench) defaults before

performing the verification procedures:

1. Press the MENU key.

2. Turn the navigation wheel to highlight SETUP and then press the ENTER

key.

3. Turn the navigation wheel to highlight RESET and then press the ENTER

key.

Performing the verification test procedures

The following topics provide a summary of verification test procedures, as well

as items to take into consideration before performing any verification test.

Test summary

 Verifying DC voltage (on page 14-6)

 Verifying AC voltage (on page 14-9)

 Verifying DC current 10µA to 100µA ranges (on page 14-11)

 Verifying DC current 1mA to 3A ranges (on page 14-13)

 Verifying AC current 1mA to 3A ranges (on page 14-15)

 Verifying frequency (on page 14-18)

 Verifying 4-wire resistance (on page 14-19)

 Verifying 2-wire resistance (on page 14-21)

 Verifying dry circuit resistance (on page 14-22)

 Verifying 1-OHM and 10-OHM resistance ranges (on page 14-24)

 Verifying zeros using a 4-wire short (on page 14-25)

If the Series 3700 is not within specifications and not under warranty, calibrate

the unit.

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-6 3700S-901-01 Rev. C / July 2008

Test considerations

When performing the verification procedures:

 Be sure to restore factory front panel defaults as outlined in Restoring

factory defaults (on page 14-5).

 Make sure that the test equipment is properly warmed up and connected to

the Series 3700 terminals.

 Be sure the test equipment is set up for the proper function and range.

 Do not connect test equipment to the Series 3700 through a scanner,

multiplexer, or other switching equipment.

WARNING The input/output terminals of the digital multimeter (DMM)

and switch cards are rated for connection to circuits rated

Installation Category I only, with transients rated less than

1500V peak. Do not connect the DMM or switch card

terminals to CAT II, CAT III, or CAT IV circuits.

 Connections of the DMM or switch card terminals to

circuits higher than CAT I can cause damage to the

equipment or expose the operator to hazardous voltages.

Series 3700 verification tests

Perform these tests to verify the accuracy of your Series 3700 at the analog

backplane connector.

Verifying DC voltage

Check DC voltage accuracy by applying accurate voltages from the DC voltage

calibrator to the Series 3700 analog backplane connector and verifying that the

displayed readings fall within specified limits.

CAUTION Do not exceed 300V peak between INPUT HI and INPUT LO

because instrument damage may occur.

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-7

To verify DC voltage accuracy:

NOTE Use shielded, low-thermal connections when testing the 100mV and

1V ranges to avoid errors caused by noise or thermal effects. Connect

the shield to the calibrator‟s output LO terminal.

1. Connect the Series 3700 HI and LO INPUT pins to the DC voltage calibrator

as shown in the "DC voltage verification" below.

2. Select the DC volts function.

3. Set the Series 3700 to the 100mV range.

4. If REL is needed, set the calibrator output to 0.00000mV DC and allow the

reading to settle.

5. Enable the Series 3700 REL mode.

6. Source positive and negative full-scale and half-scale voltages for each of

the ranges listed in the table below. For each voltage setting, be sure that

the reading is within stated limits.

Figure 14-1: DC voltage verification

DC voltage verification data

Use the following values to verify the performance of the Series 3700. Actual

values depend on the published specifications (see Example reading limit

calculation (on page 14-4)).

Connect to the Fluke 5700A Calibrator

Description Range

(V)

Test point

(V)

Lower limit (V) Upper limit (V)

Rel Series 3700 1.00E-01 0.00E+00 N/A N/A

Verify DCV

100mV

1.00E-01 1.00E-01 9.999610E-02 1.000039E-01

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-8 3700S-901-01 Rev. C / July 2008

Connect to the Fluke 5700A Calibrator

Description Range

(V)

Test point

(V)

Lower limit (V) Upper limit (V)

Verify DCV

100mV

1.00E-01 5.00E-02 4.999760E-02 5.000240E-02

Verify DCV

100mV

1.00E-01 -5.00E-02 -5.000240E-02 -4.999760E-02

Verify DCV

100mV

1.00E-01 -1.00E-01 -1.000039E-01 -9.999610E-02

Rel Series 3700 1.00E+00 0.00E+00 N/A N/A

Verify DCV 1V 1.00E+00 1.00E+00 9.999680E-01 1.000032E+00

Verify DCV 1V 1.00E+00 5.00E-01 4.999830E-01 5.000170E-01

Verify DCV 1V 1.00E+00 -5.00E-01 -5.000170E-01 -4.999830E-01

Verify DCV 1V 1.00E+00 -1.00E+00 -1.000032E+00 -9.999680E-01

Verify DCV 10V 1.00E+01 1.00E+01 9.999730E+00 1.000027E+01

Verify DCV 10V 1.00E+01 5.00E+00 4.999855E+00 5.000145E+00

Verify DCV 10V 1.00E+01 0.00E+00 -2.000000E-05 2.000000E-05

Verify DCV 10V 1.00E+01 -5.00E+00 -5.000145E+00 -

4.999855E+00

Verify DCV 10V 1.00E+01 -1.00E+01 -1.000027E+01 -

9.999730E+00

Verify DCV 100V 1.00E+02 1.00E+02 9.999540E+01 1.000046E+02

Verify DCV 100V 1.00E+02 5.00E+01 4.999740E+01 5.000260E+01

Verify DCV 100V 1.00E+02 0.00E+00 -6.000000E-04 6.000000E-04

Verify DCV 100V 1.00E+02 -5.00E+01 -5.000260E+01 -

4.999740E+01

Verify DCV 100V 1.00E+02 -1.00E+02 -1.000046E+02 -

9.999540E+01

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-9

Connect to the Fluke 5700A Calibrator

Description Range

(V)

Test point

(V)

Lower limit (V) Upper limit (V)

Verify DCV 300V 3.00E+02 3.00E+02 2.999862E+02 3.000138E+02

Verify DCV 300V 3.00E+02 1.50E+02 1.499922E+02 1.500078E+02

Verify DCV 300V 3.00E+02 0.00E+00 -1.800000E-03 1.800000E-03

Verify DCV 300V 3.00E+02 -1.50E+02 -1.500078E+02 -

1.499922E+02

Verify DCV 300V 3.00E+02 -3.00E+02 -3.000138E+02 -

2.999862E+02

Verifying AC voltage

Check AC voltage accuracy by applying accurate voltages from the AC voltage

calibrator to the Series 3700 analog backplane connector and verifying that the

displayed readings fall within specified limits.

CAUTION Do not exceed 300V peak between INPUT HI and INPUT LO, or

8 × 107VHz input, because instrument damage may occur.

To verify AC voltage accuracy:

NOTE Use shielded, low-thermal connections when testing the 100mV and

1V ranges to avoid errors caused by noise or thermal effects. Connect

the shield to the calibrator‟s output LO terminal.

1. Connect the Series 3700 HI and LO INPUT pins to the DC voltage calibrator

as shown in "AC voltage verification" below.

2. Select the AC volts function.

3. Set the Series 3700 to the 100mV range. Make sure that REL is disabled.

4. Source AC voltages for each of the frequencies and ranges are summarized

in the ACV verification data (on page 14-10) table. For each setting, be sure

that the reading is within stated limits.

5. Repeat steps 3 and 4 for each item in the table.

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-10 3700S-901-01 Rev. C / July 2008

Figure 14-2: AC voltage verification

ACV verification data

Use the following values to verify the performance of the Series 3700. Actual

values depend on published specifications (see Example reading limit

calculation (on page 14-4)).

Connect to the Fluke 5700A calibrator

Description Range (V) Test point

(V)

Lower limit (V) Upper limit (V)

Verify ACV 100mV @ 20Hz 1.00E-01 1.00E-01 9.897000E-02 1.010300E-01

Verify ACV 100mV @ 1kHz 1.00E-01 1.00E-01 9.992000E-02 1.000800E-01

Verify ACV 100mV @ 50kHz 1.00E-01 1.00E-01 9.984000E-02 1.001600E-01

Verify ACV 100mV @

100kHz

1.00E-01 1.00E-01 9.932000E-02 1.006800E-01

Verify ACV 1V @ 20Hz 1.00E+00 1.00E+00 9.992000E-01 1.000800E+00

Verify ACV 1V @ 1kHz 1.00E+00 1.00E+00 9.992000E-01 1.000800E+00

Verify ACV 1V @ 50kHz 1.00E+00 1.00E+00 9.984000E-01 1.001600E+00

Verify ACV 1V @ 100kHz 1.00E+00 1.00E+00 9.932000E-01 1.006800E+00

Verify ACV 10V @ 1kHz 1.00E+01 1.00E+01 9.992000E+00 1.000800E+01

Verify ACV 10V @ 50kHz 1.00E+01 1.00E+01 9.984000E+00 1.001600E+01

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-11

Connect to the Fluke 5700A calibrator

Description Range (V) Test point

(V)

Lower limit (V) Upper limit (V)

Verify ACV 10V @ 100kHz 1.00E+01 1.00E+01 9.932000E+00 1.006800E+01

Verify ACV 100V @ 1kHz 1.00E+02 1.00E+02 9.992000E+01 1.000800E+02

Verify ACV 100V @ 50kHz 1.00E+02 1.00E+02 9.984000E+01 1.001600E+02

Verify ACV 100V @ 100kHz 1.00E+02 1.00E+02 9.932000E+01 1.006800E+02

Verify ACV 300V @ 1kHz 3.00E+02 3.00E+02 2.997600E+02 3.002400E+02

Verify ACV 300V @ 50kHz 3.00E+02 3.00E+02 2.995200E+02 3.004800E+02

Connect to the Fluke 5725A amplifier

Description Range (V) Test point

(V)

Lower limit (V) Upper limit (V)

Verify ACV 300V @ 100kHz 3.00E+02 3.00E+02 2.979600E+02 3.020400E+02

Verifying DC current 10µA to 100µA ranges

Check DC current accuracy by applying accurate current from the DC current

calibrator to the Series 3700 analog backplane connector and verifying that the

displayed readings fall within specified limits.

To verify DC current accuracy:

1. Set up the Series 3700 for DC current and the range being tested. Make

sure REL is disabled.

2. Verify the zero test point for each range without any connection to the

equipment and verify that the readings fall within specified limits.

3. Connect the Series 3700 AMPS and LO INPUT pins to the DC current

calibrator as shown in the "DC current verification 10uA to 100uA ranges

diagram" below.

4. Set up the HP3458A to the DC current function and range.

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-12 3700S-901-01 Rev. C / July 2008

5. Set the calibrator to source zero current and rel both the Series 3700 and

the HP3458A.

6. Source DC current for each of the test points summarized in the DC voltage

verification data (on page 14-7) table. For each setting, be sure that the

reading is within stated limits.

Figure 14-3: DC current verification 10µA to 100µA ranges

DC current verification data 10µA to 100µA ranges

Use the following values to verify the performance of the Series 3700. Actual

values depend on published specifications (see Example reading limit

calculation (on page 14-4)).

Connect HP3458A in series with 5700 calibrator

Description Range (A) Test

point(A)

Lower limit (A) Upper limit (A)

Verify 10µA Zero 1.00E-05 0.00E+00 -3.000000E-10 3.000000E-10

Verify DC Curr 10µA 1.00E-05 1.00E-05 9.994700E-06 1.000530E-05

Verify DC Curr 10µA 1.00E-05 -1.00E-05 -1.000530E-05 -9.994700E-06

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-13

Connect HP3458A in series with 5700 calibrator

Description Range (A) Test

point(A)

Lower limit (A) Upper limit (A)

Verify 100µA Zero 1.00E-04 0.00E+00 -3.000000E-09 3.000000E-09

Verify DC Curr 100µA 1.00E-04 1.00E-04 9.994910E-05 1.000509E-04

Verify DC Curr 100µA 1.00E-04 -1.00E-04 -1.000509E-04 -9.994910E-05

Verifying DC current 1mA to 3A ranges

Check DC current accuracy by applying accurate current from the DC current

calibrator to the Series 3700 analog backplane connector and verifying that the

displayed readings fall within specified limits.

NOTE The Fluke 5725A amplifier is only needed when verifying the 3A

range.

To verify DC current accuracy:

1. Connect the Series 3700 AMPS and LO INPUT pins to the DC current

calibrator as shown in the "DC current verification 1mA to 3A ranges

diagram" below, using the Keithley Instruments Model 3706-751 fixture

cable.

2. Select the DC current function.

3. Set the Series 3700 to the applicable ranges. Make sure that REL is

disabled.

4. Source DC current for each of the test points summarized in the DC current

verification data table. For each setting, be sure that the reading is within

stated limits.

Figure 14-4: DC current verification 1mA to 3A ranges

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-14 3700S-901-01 Rev. C / July 2008

Figure 14-5: DC current verification 3A range diagram

DC current verification data 1mA to 3A ranges

Use the following values to verify the performance of the Series 3700. Actual

values depend on published specifications (see Example reading limit

calculation (on page 14-4)).

Remove HP3458A, only connect the 5700

Description Range

(A)

Test point

(A)

Lower limit (A) Upper limit

(A)

Verify 1mA Zero 1.00E-03 0.00E+00 -9.000000E-09 9.000000E-09

Verify DC Curr 1mA 1.00E-03 1.00E-03 9.994910E-04 1.000509E-03

Verify DC Curr 1mA 1.00E-03 -1.00E-03 -1.000509E-03 -9.994910E-04

Verify 10mA Zero 1.00E-02 0.00E+00 -9.000000E-08 9.000000E-08

Verify DC Curr 10mA 1.00E-02 1.00E-02 9.994910E-03 1.000509E-02

Verify DC Curr 10mA 1.00E-02 -1.00E-02 -1.000509E-02 -9.994910E-03

Verify 100mA Zero 1.00E-01 0.00E+00 -9.000000E-07 9.000000E-07

Verify DC Curr

100mA

1.00E-01 1.00E-01 9.994910E-02 1.000509E-01

Verify DC Curr

100mA

1.00E-01 -1.00E-01 -1.000509E-01 -9.994910E-02

Verify DC Curr 1A 1.00E+00 1.00E+00 9.991900E-01 1.000810E+00

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-15

Remove HP3458A, only connect the 5700

Description Range

(A)

Test point

(A)

Lower limit (A) Upper limit

(A)

Verify DC Curr 1A 1.00E+00 -1.00E+00 -1.000810E+00 -9.991900E-01

Connect to the Fluke 5725A amplifier

Description Range

(A)

Test point

(A)

Lower limit (A) Upper limit

(A)

Verify DC Curr 3A 3.00E+00 3.00E+00 2.996355E+00 3.003645E+00

Verify DC Curr 3A 3.00E+00 -3.00E+00 -3.003645E+00 -

2.996355E+00

Verifying AC current 1mA to 3A ranges

Check AC current accuracy by applying accurate current from the AC current

calibrator at specific frequencies to the Series 3700 analog backplane connector

and verifying that the displayed readings fall within specified limits.

To verify AC current accuracy:

1. Set up the Series 3700 for AC current and the range being tested. Make

sure REL is disabled.

2. Source AC current for the 1mA to 1A range test points summarized in "AC

current calibration diagram" below. For each setting, be sure that the

reading is within stated limits.

3. Install the Fluke 5725A amplifier.

4. Source AC current for the 3A range test points summarized in the AC

current verification data 1mA to 1A ranges (on page 14-16) table. Be sure

that the 3A readings are within stated limits.

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-16 3700S-901-01 Rev. C / July 2008

Figure 14-6: AC current verification 1mA to 1A range

Figure 14-7: AC current verification 3A range

AC current verification data 1mA to 1A ranges

Use the following values to verify the performance of the Series 3700. Actual

values depend on published specifications (see Example reading limit

calculation (on page 14-4)).

Connect to the Fluke 5700A calibrator

Description Range

(A)

Test point

(A)

Lower limit (A) Upper limit

(A)

Verify AC Curr 1mA @ 20Hz 1.00E-03 1.00E-03 9.989000E-04 1.001100E-03

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-17

Connect to the Fluke 5700A calibrator

Description Range

(A)

Test point

(A)

Lower limit (A) Upper limit

(A)

Verify AC Curr 1mA @ 1kHz 1.00E-03 1.00E-03 9.989000E-04 1.001100E-03

Verify AC Curr 1mA @ 5kHz 1.00E-03 1.00E-03 9.989000E-04 1.001100E-03

Verify AC Curr 10mA @ 40Hz 1.00E-02 1.00E-02 9.989000E-03 1.001100E-02

Verify AC Curr 10mA @ 1kHz 1.00E-02 1.00E-02 9.989000E-03 1.001100E-02

Verify AC Curr 10mA @ 5kHz 1.00E-02 1.00E-02 9.989000E-03 1.001100E-02

Verify AC Curr 100mA @

40Hz

1.00E-01 1.00E-01 9.989000E-02 1.001100E-01

Verify AC Curr 100mA @

1kHz

1.00E-01 1.00E-01 9.989000E-02 1.001100E-01

Verify AC Curr 100mA @

5kHz

1.00E-01 1.00E-01 9.989000E-02 1.001100E-01

Verify AC Curr 1A @ 40Hz 1.00E+00 1.00E+00 9.977000E-01 1.002300E+00

Verify AC Curr 1A @ 1kHz 1.00E+00 1.00E+00 9.977000E-01 1.002300E+00

Verify AC Curr 1A @ 5kHz 1.00E+00 1.00E+00 9.977000E-01 1.002300E+00

AC current verification data 3A range

Use the following values to verify the performance of the Series 3700. Actual

values depend on published specifications (see Example reading limit

calculation (on page 14-4)).

Connect to the Fluke 5725A amplifier

Description Range

(A)

Test point

(A)

Lower limit (A) Upper limit

(A)

Verify AC Curr 3A @

40Hz

3.00E+00 3.00E+00 2.993100E+00 3.006900E+00

Verify AC Curr 3A @

1kHz

3.00E+00 3.00E+00 2.993100E+00 3.006900E+00

Verify AC Curr 3A @

5kHz

3.00E+00 3.00E+00 2.993100E+00 3.006900E+00

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-18 3700S-901-01 Rev. C / July 2008

Verifying frequency

To verify the Series 3700 frequency function:

1. Connect the Agilent 33220A function generator to the Series 3700 INPUT

pins.

2. Set the function generator to output a 1kHz, 5V RMS sine wave.

3. Select the Series 3700 frequency function by pressing the FREQ key.

4. Verify that each Series 3700 frequency reading is within the limits contained

in the table contained in Frequency verification data (on page 14-18).

Figure 14-8: Frequency verification

Frequency verification data

Use the following values to verify the performance of the Series 3700. Actual

values depend on published specifications (see Example reading limit

calculation (on page 14-4)).

Connect the Agilent 33220A Generator

Description Range

(V)

Frequency (Hz) Lower limit (Hz) Upper limit

(Hz)

Verify Frequency 1kHz 1.00E+01 1.00E+03 9.999167E+02 1.000083E+03

Verify Frequency 10kHz 1.00E+01 1.00E+04 9.999167E+03 1.000083E+04

Verify Frequency

100kHz

1.00E+01 1.00E+05 9.999167E+04 1.000083E+05

Verify Frequency

250kHz

1.00E+01 2.50E+05 2.499797E+05 2.500203E+05

Verify Frequency

500kHz

1.00E+01 5.00E+05 4.999597E+05 5.000403E+05

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-19

Verifying 4-wire resistance

Check the normal resistance function by connecting accurate resistance values

to the Series 3700 analog backplane connector and verifying that the displayed

readings fall within specified limits.

CAUTION Do not exceed 300V peak between INPUT HI and INPUT LO

because instrument damage may occur.

To verify 4-wire resistance accuracy:

1. Using shielded, Teflon-insulated or equivalent cables in a 4-wire

configuration, connect the Series 3700 INPUT and SENSE pins to the

calibrator as shown for 100 to 10M ranges.

2. Set the calibrator for 4-wire resistance with external sense on.

3. Select the Series 3700 4-wire resistance function.

4. Select the SLOW integration rate with the RATE key.

5. Set the Series 3700 for the 100 range, and make sure the FILTER is on.

Enable OC+ (offset-compensated ohms). Use OC+ for 100 and 1k range

verification only. See Enabling/disabling offset-compensated ohms in the

User's manual.

6. Recalculate reading limits based on actual calibrator resistance values.

7. Source the nominal full-scale resistance values for the 100 to 10M

ranges summarized in the 4-wire resistance verification data (on page 14-

20) table. Recalculate the limits based on the actual value of the resistor and

verify the reading is within the calculated limits.

Figure 14-9: Resistance verification

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-20 3700S-901-01 Rev. C / July 2008

4-wire resistance verification data

Use the following values to verify the performance of the Series 3700. Actual

values depend on published specifications (see Calculating resistance reading

limits (on page 14-4)).

Connect to the Fluke 5700A calibrator

Description Range (Ohms) Test point

(Ohms)

Lower limit (Ohms) Upper limit

(Ohms)

Verify 4W Res 100 Ohm

*

1.00E+02 1.00E+02 9.999310E+01 1.000069E+02

Verify 4W Res 1k Ohm 1.00E+03 1.00E+03 9.999360E+02 1.000064E+03

Verify 4W Res 10k Ohm 1.00E+04 1.00E+04 9.999360E+03 1.000064E+04

Verify 4W Res 100k Ohm 1.00E+05 1.00E+05 9.999360E+04 1.000064E+05

Verify 4W Res 1M Ohm 1.00E+06 1.00E+06 9.999560E+05 1.000044E+06

Verify 4W Res 10M Ohm 1.00E+07 1.00E+07 9.995900E+06 1.000410E+07

NOTE The asterisk (*) designates the ranges that offset compensation is

being used.

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-21

Verifying 2-wire resistance

Check the normal resistance function by connecting accurate resistance values

to the Series 3700 analog backplane connector and verifying that the displayed

readings fall within specified limits.

CAUTION Do not exceed 300V peak between INPUT HI and INPUT LO

because instrument damage may occur.

To verify normal resistance accuracy:

1. Using shielded, Teflon-insulated or equivalent cables in a 2-wire

configuration, connect the Series 3700 INPUT and SENSE pins to the

calibrator as shown in the "2-wire resistance verification diagram" below.

2. Disable the external sense on the calibrator.

3. Set the Series 3700 to the 2-wire resistance function, set to the proper

range.

4. Source a nominal 100k -100M resistance value. Recalculate the limits

based on the actual value of the resistor and verify that the reading is within

the calculated limits.

Figure 14-10: 2-wire resistance verification

2-wire resistance verification data

Use the following values to verify the performance of the Series 3700. Actual

values depend on published specifications (see Calculating resistance reading

limits (on page 14-4)).

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-22 3700S-901-01 Rev. C / July 2008

Description Range (Ohms) Test point

(Ohms)

Lower limit (Ohms) Upper limit

(Ohms)

Verify 2W Res 100k Ohm 1.00E+05 1.00E+05 9.999360E+04 1.000064E+05

Verify 2W Res 1M Ohm 1.00E+06 1.00E+06 9.999360E+05 1.000064E+06

Verify 2W Res 10M Ohm 1.00E+07 1.00E+07 9.995900E+06 1.000410E+07

Verify 2W Res 100M

Ohm

1.00E+08 1.00E+08 9.979700E+07 1.002030E+08

Verifying dry circuit resistance

Check the dry circuit resistance function by connecting accurate resistance

values to the Series 3700 analog backplane connector and verifying that the

displayed readings fall within specified limits.

CAUTION Do not exceed 300V peak between INPUT HI and INPUT LO

because instrument damage may occur.

To verify dry circuit resistance accuracy:

1. Using shielded, Teflon-insulated or equivalent cables in a 4-wire

configuration, connect the Series 3700 INPUT and SENSE pins to the

calibrator as shown for 100 to 10M ranges.

2. Set the calibrator for 4-wire resistance with external sense on.

3. Select the Series 3700 4-wire resistance function.

4. Select the SLOW integration rate with the RATE key.

5. Enable dry circuit resistance function (see Enabling/disabling dry circuit

ohms in the User's manual).

6. Set the Series 3700 for the 100 range, and make sure the FILTER is on.

Enable OC+ (offset-compensated ohms). Use OC+ for 100 and 1kOhm

range verification. See Enabling/disabling offset-compensated ohms in the

User's manual.

7. Recalculate reading limits based on actual calibrator resistance values.

8. Source the nominal full-scale resistance values for the 100 to 2k ranges

summarized in the Dry circuit resistance verification data (on page 14-23)

table. Verify that the readings are within calculated limits.

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-23

Figure 14-11: Resistance verification

Dry circuit resistance verification data

Use the following values to verify the performance of the Series 3700. Actual

values depend on published specifications (see Calculating resistance reading

limits (on page 14-4)).

Description Range (Ohms) Test point

(Ohms)

Lower limit (Ohms) Upper limit

(Ohms)

Verify Dry Circuit 100

Ohm *

1.00E+02 1.00E+02 9.997800E+01 1.000220E+02

Verify Dry Circuit 1k Ohm 1.00E+03 1.00E+03 9.995200E+02 1.000480E+03

Verify Dry Circuit 2k Ohm 2.00E+03 1.90E+03 1.898320E+03 1.901680E+03

NOTE The asterisk (*) designates the ranges that offset compensation is

being used.

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-24 3700S-901-01 Rev. C / July 2008

Verifying 1-OHM and 10-OHM resistance ranges

Check the normal resistance function by connecting accurate resistance values

to the Series 3700 analog backplane connector and verifying that the displayed

readings fall within specified limits.

CAUTION Do not exceed 300V peak between INPUT HI and INPUT LO

because instrument damage may occur.

To verify normal resistance accuracy:

1. Connect the 1 discrete resistor to the Series 3700 input.

2. For the dry circuit test points, enable the dry circuit resistance attribute

(DRY+).

3. Select the SLOW integration rate with the RATE key.

4. Set the Series 3700 for the 1 range, and make sure the FILTER is on.

Enable OC+ (offset-compensated ohms). Use OC+ for 1 and 10 range

verification.

5. Recalculate reading limits based on actual discrete resistor resistance

values.

6. Repeat using the 10 discrete resistor on the 10 range.

Figure 14-12: Verifying discrete resistance

Discrete resistance verification data

Use the following values to verify the performance of the Series 3700. Actual

values depend on published specifications (see Calculating resistance reading

limits (on page 14-4)).

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-25

1 Ohm discrete resistor applied

Description Range (Ohms) Test point

(Ohms)

Lower limit (Ohms) Upper limit

(Ohms)

Verify Res 1 Ohm * 1.00E+00 1.00E+00 9.998600E-01 1.000140E+00

Verify Dry Circuit 1 Ohm

*

1.00E+00 1.00E+00 9.998500E-01 1.000150E+00

10 Ohm discrete resistor applied

Description Range (Ohms) Test point

(Ohms)

Lower limit (Ohms) Upper limit

(Ohms)

Verify Res 10 Ohm * 1.00E+01 1.00E+01 9.999310E+00 1.000069E+01

Verify Dry Circuit 10 Ohm

*

1.00E+01 1.00E+01 9.998500E+00 1.000150E+01

NOTE The asterisk (*) designates the ranges that offset compensation is

being used.

Verifying zeros using a 4-wire short

Check the zeros of various test points while the 4-wire is connected to the

Series 3700 analog backplane connector and verify that the displayed readings

fall within specified limits.

CAUTION Do not exceed 300V peak between INPUT HI and INPUT LO

because instrument damage may occur.

To verify DC voltage and resistance zeros:

1. Select the DC volts function.

2. Set the Series 3700 to the 100mV range.

3. Connect the 4-wire short to the Series 3700 analog backplane connector

and allow to settle for 5 minutes (do not use REL).

4. Verify the 100mV zero is within specification (see the 4-wire short applied

verification data (on page 14-26) table).

5. Set the Series 3700 to the 1V range.

6. Allow to settle for 30 seconds (do not use REL).

7. Verify the 1V zero is within specification (see the 4-wire short applied

verification data (on page 14-26) table).

Section 14: Verification Series 3700 System Switch/Multimeter Reference Manual

14-26 3700S-901-01 Rev. C / July 2008

To verify resistance using the 4-wire short:

1. With the 4-wire short still applied, select the Series 3700 4-wire resistance

function.

2. Select the SLOW integration rate with the RATE key.

3. Set the Series 3700 for the 1 range, and make sure the FILTER is on.

Enable OC+ (offset-compensated ohms). Use OC+ for 1 and 10 range

verification.

4. Verify the 1 range zero is within specification (see the 4-wire short applied

verification data (on page 14-26) table).

5. Set the Series 3700 for the 10 range (make sure the FILTER is on and

OC+ is still enabled).

6. Verify the 10 range zero is within specification (see the 4-wire short

applied verification data (on page 14-26) table).

Figure 14-13: 4-wire short diagram

4-wire short applied verification data

Use the following values to verify the performance of the Series 3700. Actual

values depend on published specifications (see Calculating resistance reading

limits (on page 14-4)).

4-wire short applied

Description Range (V) Test point (V) Lower limit (V) Upper limit (V)

Verify Zeros 100mV DC 1.00E-01 0.00E+00 -9.000000E-07 9.000000E-07

Verify Zeros 1V DC 1.00E+00 0.00E+00 -2.000000E-06 2.000000E-06

Series 3700 System Switch/Multimeter Reference Manual Section 14: Verification

3700S-901-01 Rev. C / July 2008 14-27

Description Range (Ohms) Test point

(Ohms)

Lower limit (Ohms) Upper limit

(Ohms)

Verify Zeros 1 Ohm * 1.00E+00 0.00E+00 -8.000000E-05 8.000000E-05

Verify Zeros 10 Ohm * 1.00E+01 0.00E+00 -9.000000E-05 9.000000E-05

NOTE The asterisk (*) designates the ranges that offset compensation is

being used.

This completes the verification procedure.

In this section:

Overview ... 15-1

Environmental conditions .. 15-2

Calibration considerations ... 15-3

Calibration ... 15-4

Remote calibration procedure ... 15-5

Overview

Use the procedures in this section to calibrate the Keithley Instruments Series

3700 System Switch/Multimeter.

WARNING The information in this section is intended for qualified

service personnel only. Do not attempt these procedures

unless you are qualified to do so.

 Some of these procedures may expose you to hazardous

voltages, that if contacted, could cause personal injury or

death. Use appropriate safety precautions when working

with hazardous voltages.

 For the plug-in modules, the maximum common-mode

voltage (voltage between any plug-in module terminal and

chassis ground) is 300V DC or 300V RMS. Exceeding this

value may cause a breakdown in insulation, creating a

shock hazard.

All procedures in this section require accurate calibration equipment to supply

precise DC and AC voltages, DC and AC currents, and resistance values.

Calibration can be performed any time by an operator using the Instrument

Control Language (ICL) commands sent either over the IEEE-488 bus or

Ethernet. DC-only or AC-only calibration may be performed individually, if

desired.

Section 15

Calibration

Section 15: Calibration Series 3700 System Switch/Multimeter Reference Manual

15-2 3700S-901-01 Rev. C / July 2008

Environmental conditions

Conduct the verification procedures in a location that has:

 An ambient temperature of 18°C to 28°C (65°F to 82°F)

 A relative humidity of less than 80%, unless otherwise noted

Warmup period

NOTE At the factory, units are calibrated without any switch cards installed

and all slots are covered with blank slot covers. The slot covers come

installed on the unit when it is shipped.

 If it is more convenient to calibrate the unit with switch cards installed,

make sure all channels are open and any empty slots are covered

with blank slot covers.

Allow the System Switch/Multimeter to warm up for at least two hours before

performing calibration.

If the instrument has been subjected to temperature extremes (those outside the

ranges stated in Environmental conditions (on page 14-2)), allow extra time for

the instrument‟s internal temperature to stabilize. Typically, you need to allow

one extra hour to stabilize a unit that is 10°C (18°F) outside the specified

temperature range.

Also, allow the test equipment to warm up for the minimum time specified by the

manufacturer.

Line power

The Series 3700 requires a line voltage of 100V to 240V (±10%), and a line

frequency of 50Hz or 60Hz.

NOTE The instrument automatically senses the line frequency at power-up.

Series 3700 System Switch/Multimeter Reference Manual Section 15: Calibration

3700S-901-01 Rev. C / July 2008 15-3

Calibration considerations

When performing the calibration procedures:

 Make sure that the equipment is properly warmed up and connected to the

appropriate input jacks.

 Make sure the calibrator is in OPERATE mode before you complete each

calibration step.

 Always let the source signal settle before calibrating each point.

 If an error occurs during calibration, the Series 3700 will generate an

appropriate error message. See Error summary (on page 17-1) for more

information.

WARNING The input/output terminals of the digital multimeter (DMM)

and switch cards are rated for connection to circuits rated

Installation Category I only, with transients rated less than

1500V peak. Do not connect the DMM or switch card

terminals to CAT II, CAT III, or CAT IV circuits.

 Connections of the DMM or switch card terminals to

circuits higher than CAT I can cause damage to the

equipment or expose the operator to hazardous voltages.

Calibration cycle

Perform calibration at least once a year, or every 90 days to ensure the unit

meets the corresponding specifications.

Recommended equipment

The following table lists the recommended equipment and settings you need for

DC-only, and AC-only calibration procedures. Alternate equipment may be used,

such as a DC transfer standard and characterized resistors, as long as the

equipment has specifications at least as good as those listed in the table. In

general, equipment uncertainty should be at least four times better (more

accurate) than the corresponding Series 3700 specifications.

NOTE The Keithley Instruments Model 3706-190 backplane connector board

is an accessory that can be used to make connections to the

calibrator. Additional boards, such as a 4-wire short or the discrete

resistors, would also be convenient to eliminate rewiring for different

setups used in verification.

Section 15: Calibration Series 3700 System Switch/Multimeter Reference Manual

15-4 3700S-901-01 Rev. C / July 2008

Manufacturer Model Description Used for: Uncertainty

Fluke 5700 Calibrator All DCV, ACV, DCI, ACI,

and Resistance

See NOTE.

N/A N/A 4-wire short DCV, resistance zeros N/A

Agilent 33220

A

Function

generator

For frequency factory cal

only

See NOTE.

NOTE Refer to the manufacturer's specifications to calculate the uncertainty,

which will vary for each test point.

Calibration

Calibration must be performed by remote control using Ethernet, GPIB, or USB

interfaces. No front panel calibration is available. Refer to System connections

(on page 2-10) for more information on communicating with the instrument.

"Factory calibration" refers to additional calibration steps that are only performed

once at the factory or when a unit has been repaired by replacing PC boards or

components of the boards. The remaining calibration steps can be performed as

needed.

The factory calibration steps are:

 DC Cal Step 0: A/D MUX Offset, which is performed at the beginning prior

to other DC calibration steps

 Frequency Cal step 17: 1V @ 10Hz and step 18: 1V @ 1kHz, which are

performed at the end of AC calibration

You can perform individual sections of calibration, but for the instrument to be

calibrated properly, all the steps of a section should be performed. For example,

DC Cal Step 1: 4-wire short should be done as well as Steps 2 through 5 to

properly calibrate DC volts. Other sections are resistance, DC current, AC volts,

and AC current. Calibration must be saved at the end in order for the adjustment

to be permanent.

Before performing a calibration, check the system date of the Series 3700. This

can be done by sending the following command:

print(os.date("%x"))

If the date is wrong, the date and time need to be reset using the following

command:

settime(os.time(year = yyyy, month = mm, day = dd, hour
=hh, min = mm, sec = ss))

Series 3700 System Switch/Multimeter Reference Manual Section 15: Calibration

3700S-901-01 Rev. C / July 2008 15-5

Make sure to enter the correct date and time using the 24-hour clock. If the date

is incorrect, it will not save the proper date when calibration is saved. For

additional information about this command, see localnode.settime() (on

page 13-215).

Remote calibration procedure

To perform calibration, use the following procedure:

1. Connect the Series 3700 to the IEEE-488 bus of the computer using a

shielded IEEE-488 cable, such as the Keithley Instruments Model 7007,

over the Ethernet, or directly to a computer through the Ethernet port using a

cross-over cable.

2. Turn on the Series 3700 and allow it to warm up for at least two hours

before performing calibration.

3. Make sure the primary address of the Series 3700 is the same as the

address specified in the program that you will be using to send commands

(the GPIB default address is 16; the Ethernet default port number is 23).

4. Turn the TSPTM prompt and errors off and unlock the calibration function by

sending the following commands:

SEND localnode.prompts=0
SEND localnode.showerrors=0

SEND dmm.reset()
SEND errorqueue.clear()
SEND dmm.calibration.unlock("KI003706")

NOTE When remotely changing the unlock code, send the

dmm.calibration.unlock() (on page 13-122) command

twice, first with the present code, then with the new code.

5. Check for errors after sending each calibration command by using the

following command:

SEND print(errorqueue.count)

6. Send each calibration command with print ("done") appended to allow

the program to know when operation is complete. Some calibration steps

may take up to five minutes to perform, so the communication time-out

setting should be adjusted, because otherwise time-out errors might occur.

Section 15: Calibration Series 3700 System Switch/Multimeter Reference Manual

15-6 3700S-901-01 Rev. C / July 2008

DC volts calibration

1. Install the 4-wire short on the analog backplane connector inputs of the

Series 3700.

2. Allow the unit to settle for five minutes.

3. Perform the following calibration steps (DC Cal Step 0 through Step 5):

Figure 15-1: 4-wire short diagram

DC Cal Step 0: A/D MUX Offset Cal (factory cal only)

Send the following commands:

SEND dmm.calibration.dc(0) print("done")
SEND print(errorqueue.count)

DC Cal Step 1: Input short circuit

1. Allow the unit to settle for 30 seconds.

2. Send the following commands:

SEND dmm.calibration.dc(1) print("done")
SEND print(errorqueue.count)

DC Cal Step 2: Open input

1. Remove the 4-wire short from the inputs.

NOTE DO NOT install cables to the inputs (cables will be installed in DC

Cal Step 3: +10 Volt (on page 15-7)).

2. Send the following commands:

SEND dmm.calibration.dc(2) print("done")
SEND print(errorqueue.count)

Series 3700 System Switch/Multimeter Reference Manual Section 15: Calibration

3700S-901-01 Rev. C / July 2008 15-7

DC Cal Step 3: +10 Volt

Figure 15-2: DC voltage calibration

1. Connect a cable between the calibrator and the Series 3700.

2. Allow the unit to settle for 30 seconds.

3. Send the following command:

SEND dmm.range = 10

4. Source +10V.

5. Send the following commands:

SEND dmm.calibration.dc(3,10) print("done")
SEND print(errorqueue.count)

DC Cal Step 4: -10 Volt

1. Source -10V.

2. Send the following commands:

SEND dmm.calibration.dc(4,-10) print("done")
SEND print(errorqueue.count)

DC Cal Step 5: 100 Volt

1. Send the following command:

SEND dmm.range = 100

2. Source 100V.

3. Send the following commands:

SEND dmm.calibration.dc(5,100) print("done")
SEND print(errorqueue.count)

Section 15: Calibration Series 3700 System Switch/Multimeter Reference Manual

15-8 3700S-901-01 Rev. C / July 2008

Resistance calibration

Perform the following calibration steps (DC Cal Step 6 through Step 9):

Figure 15-3: Resistance calibration

DC Cal Step 6: 100 Ohm

1. Send the following commands:

SEND dmm.func = dmm.four_wire_ohms
SEND dmm.range = 100

2. Source 100 Ohms, and then read the resistor value from the calibrator.

3. Send the following command:

SEND dmm.calibration.dc(6,(resistor value))
print("done")

DC Cal Step 7: 10k Ohm

1. Send the following command:

SEND dmm.range = 10e+3

2. Source 10k Ohm, and then read the resistor value from the calibrator.

3. Send the following command:

SEND dmm.calibration.dc(7, (resistor value))
print("done")

Series 3700 System Switch/Multimeter Reference Manual Section 15: Calibration

3700S-901-01 Rev. C / July 2008 15-9

DC Cal Step 8: 100k Ohm

1. Send the following command:

SEND dmm.range = 100e+3

2. Source 100k Ohm, and then read the resistor value from the calibrator.

3. Send the following command:

SEND dmm.calibration.dc(8, (resistor value))
print("done")

DC Cal Step 9: 1M Ohm

1. Send the following command:

SEND dmm.range = 1e+6

2. Source 1M Ohm then read the resistor value from the calibrator.

3. Send the following command:

SEND dmm.calibration.dc(9, (resistor value))
print("done")

DC current calibration

Make the connections as shown, then perform the following calibration steps

(DC Cal Step 10 through Step 14):

Figure 15-4: DC current calibration

Section 15: Calibration Series 3700 System Switch/Multimeter Reference Manual

15-10 3700S-901-01 Rev. C / July 2008

DC Cal Step 10: 100µA

1. Send the following commands:

SEND dmm.func = dmm.dc_current
SEND dmm.range = 100e-6

2. Source 100µA.

3. Send the following commands:

SEND dmm.calibration.dc(10,.0001) print("done")

DC Cal Step 11: 1mA

1. Send the following command:

SEND dmm.range = 1e-3

2. Source 1mA.

3. Send the following command:

SEND dmm.calibration.dc(11,.001) print("done")

DC Cal Step 12: 10mA

1. Send the following command:

SEND dmm.range = 10e-3

2. Source 10mA.

3. Send the following command:

SEND dmm.calibration.dc(12,.01) print("done")

DC Cal Step 13: 100mA

1. Send the following command:

SEND dmm.range = 100e-3

2. Source 100mA.

3. Send the following command:

SEND dmm.calibration.dc(13,.1) print("done")

DC Cal Step 14: 1A

1. Send the following command:

SEND dmm.range = 1

2. Source 1A.

3. Send the following command:

SEND dmm.calibration.dc(14,1) print("done")

Series 3700 System Switch/Multimeter Reference Manual Section 15: Calibration

3700S-901-01 Rev. C / July 2008 15-11

AC volts calibration

Make the connections as shown below, then perform the following calibration

steps (AC Cal Step 1 through Step 10):

Figure 15-5: AC voltage calibration

AC Cal Step 1: 10mV @ 1kHz

1. Send the following commands:

SEND dmm.func = dmm.ac_volts
SEND dmm.range = 10e-3

2. Source 10mV @ 1kHz.

3. Send the following command:

SEND dmm.calibration.ac(1) print("done")

AC Cal Step 2: 100mV @ 1kHz

1. Send the following command:

SEND dmm.range = 100e-3

2. Source 100mV @ 1kHz.

3. Send the following command:

SEND dmm.calibration.ac(2) print("done")

AC Cal Step 3: 100mV @ 50kHz

1. Source 100mV @ 50kHz.

2. Send the following command:

SEND dmm.calibration.ac(3) print("done")

Section 15: Calibration Series 3700 System Switch/Multimeter Reference Manual

15-12 3700S-901-01 Rev. C / July 2008

AC Cal Step 4: 1V @ 1kHz

1. Send the following command:

SEND dmm.range = 1

2. Source 1V @ 1kHz.

3. Send the following command:

SEND dmm.calibration.ac(4) print("done")

AC Cal Step 5: 1V @ 50kHz

1. Source 1V @ 50kHz.

2. Send the following command:

SEND dmm.calibration.ac(5) print("done")

AC Cal Step 6: 10V @ 1kHz

1. Send the following command:

SEND dmm.range = 10

2. Source 10V @ 1kHz.

3. Send the following command:

SEND dmm.calibration.ac(6) print("done")

AC Cal Step 7: 10V @ 50kHz

1. Source 10V @ 50kHz.

2. Send the following command:

SEND dmm.calibration.ac(7) print("done")

AC Cal Step 8: 100V @ 1kHz

1. Send the following command:

SEND dmm.range = 100

2. Source 100V @ 1kHz.

3. Send the following command:

SEND dmm.calibration.ac(8) print("done")

AC Cal Step 9: 100V @ 50kHz

1. Source 100V @ 50kHz.

2. Send the following command:

SEND dmm.calibration.ac(9) print("done")

Series 3700 System Switch/Multimeter Reference Manual Section 15: Calibration

3700S-901-01 Rev. C / July 2008 15-13

AC Cal Step 10: 300V @ 1kHz

1. Send the following command:

SEND dmm.range = 300

2. Source 300V @ 1kHz

3. Send the following command:

SEND dmm.calibration.ac(10) print("done")

AC current calibration

Make the connections as shown, then perform the following calibration steps

(AC Cal Step 11 through Step 16):

Figure 15-6: AC current calibration 1mA to 1A range

AC Cal Step 11: 100µA @ 1kHz

1. Send the following commands:

SEND dmm.func = dmm.ac_current
SEND dmm.range = 100e-6

2. Source 100µA @ 1kHz.

3. Send the following command:

SEND dmm.calibration.ac(11) print("done")

AC Cal Step 12: 1mA @ 1kHz

1. Send the following command:

SEND dmm.range = 1e-3

2. Source 1mA @ 1kHz.

3. Send the following command:

SEND dmm.calibration.ac(12) print("done")

Section 15: Calibration Series 3700 System Switch/Multimeter Reference Manual

15-14 3700S-901-01 Rev. C / July 2008

AC Cal Step 13: 10mA @ 1kHz

1. Send the following command:

SEND dmm.range = 10e-3

2. Source 10mA @ 1kHz.

3. Send the following command:

SEND dmm.calibration.ac(13) print("done")

AC Cal Step 14: 100mA @ 1kHz

1. Send the following command:

SEND dmm.range = 100e-3

2. Source 100mA @ 1kHz.

3. Send the following command:

SEND dmm.calibration.ac(14) print("done")

AC Cal Step 15: 1A @ 1kHz

1. Send the following command:

SEND dmm.range = 1

2. Source 1A @ 1kHz.

3. Send the following command:

SEND dmm.calibration.ac(15) print("done")

AC Cal Step 16: 2A @ 1kHz

1. Send the following command:

SEND dmm.range = 2

2. Source 2A @ 1kHz.

3. Send the following command:

SEND dmm.calibration.ac(16) print("done")

Series 3700 System Switch/Multimeter Reference Manual Section 15: Calibration

3700S-901-01 Rev. C / July 2008 15-15

Frequency calibration

Make the connections as shown below, then perform the following calibration

steps (AC Cal Step 17 and Step 18):

Figure 15-7: Low frequency calibration

AC Cal Step 17: 1V @ 10Hz (factory cal only)

1. Send the following commands:

SEND dmm.func = dmm.ac_volts
SEND dmm.range = 1

2. Source 1V @ 10Hz.

3. Send the following command:

SEND dmm.calibration.ac(17,1) print("done")

AC Cal Step 18: 1V @ 1kHz (factory cal only)

Figure 15-8: Frequency verification

Section 15: Calibration Series 3700 System Switch/Multimeter Reference Manual

15-16 3700S-901-01 Rev. C / July 2008

1. Source 1V @ 1kHz

2. Send the following command:

SEND dmm.calibration.ac(18,1000) print("done")

Save calibration

Program today's date, cal due date, and SN, and save the calibration constants

in EEPROM (electrically erasable programmable read-only memory) by sending

the following commands:

dmm.adjustment.date=os.time()
dmm.calibration.save()
dmm.calibration.verifydate=dmm.adjustment.date
dmm.calibration.lock()

dmm.reset()

NOTE Calibration is complete after is has been saved and locked.

In this section:

Introduction ... 16-1

Fuse replacement ... 16-1

Front panel tests ... 16-3

Introduction

The information in this section deals with routine maintenance of Keithley

Instruments Series 3700 System Switch Multimeter instruments that can be

performed by the operator.

Fuse replacement

The analog backplane AMPS fuse (see item 1 in Fuse location figure) is

accessible from the rear panel, just below the analog backplane connector. The

instrument fuse (see item 2 in Fuse location figure) is accessible from the rear

panel, below the GPIB Connector.

Section 16

Maintenance

Section 16: Maintenance Series 3700 System Switch/Multimeter Reference Manual

16-2 3700S-901-01 Rev. C / July 2008

WARNING Disconnect all external power from the equipment and the

line cord before performing any maintenance on the Series

3700.

 Failure to disconnect all power may expose you to

hazardous voltages, that if contacted, could cause personal

injury or death. Use appropriate safety precautions when

working with hazardous voltages.

Figure 16-1: Fuse location

Fuse

location

Rating Keithley Instruments part

number

(1) Analog

backplane

fuse

250V, 3A fast blow 5x20mm FU-99-1

(2) Instrument

fuse

250V / 1.25A slow blow

5x20mm

FU-106-1.25

To replace a fuse:

1. Using a flat-tip screwdriver, disengage the fuse holder by rotating it counter-

clockwise.

2. Pull out the fuse holder and replace the fuse with the correct type (see

table).

3. Reinstall the fuse holder.

If the fuse continues to blow, a circuit malfunction exists and must be corrected.

Return the unit to Keithley Instruments for repair.

Series 3700 System Switch/Multimeter Reference Manual Section 16: Maintenance

3700S-901-01 Rev. C / July 2008 16-3

Front panel tests

There are two front panel tests: One to test the functionality of the front panel

keys and one to test the display.

Test procedure

The front panel keys test lets you check the functionality of each front panel key.

To run the front panel keys test:

1. Display the MAIN MENU by pressing the MENU key.

2. Turn the navigation wheel to scroll to the DISPLAY menu item and press the

ENTER key to select.

3. Press the ENTER key to select TEST.

4. Select KEYS or DISPLAY-PATTERNS and press the ENTER key to run the

test.

 KEYS: When a key is pressed, the label name for that key will be

displayed to indicate that it is functioning properly. When the key is

released, the message "No keys pressed" is displayed. Press the EXIT

key twice to end the test.

 DISPLAY-PATTERNS: There are three parts to the display patterns

test. Each time ENTER or the navigation wheel is pressed, the next part

of the test sequence is selected. The three parts of the test sequence

are as follows:

a. Checkerboard pattern and the annunciators that are on during

normal operation.

b. Checkerboard pattern (alternate pixels on) and all annunciators.

c. Each digit (and adjacent annunciator) is sequenced. All of the pixels

of the selected digit are on.

5. Press the EXIT key to end the test.

6. Continue pressing the EXIT key to back out of the menu structure.

In this section:

Introduction ... 17-1

Error summary .. 17-1

Error effects on scripts .. 17-1

Reading errors .. 17-2

Error and status message list .. 17-2

Introduction

This section includes information on error levels, how to read errors, and a

complete listing of error messages.

Error summary

Error and status messages are defined in Error and status message list (on

page 17-2). Each message is assigned a level of severity, as listed below:

 NO_SEVERITY Informational status message only

 INFORMATIONAL Informational status message only

 RECOVERABLE Error not serious, can be recovered

 SERIOUS Error serious, but unit still operational by correcting error

 FATAL Unit non-operational

Error effects on scripts

Most errors will not abort a running script. The only time a script is aborted is

when a Lua run-time error (error number -286) is detected. Run-time errors are

caused by actions such as trying to index into a variable that is not a table.

Syntax errors (error number -285) in a script/command will not technically abort

the script, but will prevent the script/command from being executed.

Section 17

Error and status messages

Section 17: Error and status messages Series 3700 System Switch/Multimeter Reference Manual

17-2 3700S-901-01 Rev. C / July 2008

Reading errors

When errors occur, the error messages will be placed in the error queue. Use

error queue commands to request error message information. For example, the

following commands request the next complete error information from the error

queue and returns the message portion of the error:

errorcode, message, severity, node = errorqueue.next()
print(message)

The following table lists the commands associated with the error queue.

Error queue command Description

errorqueue.clear() Clear error queue of all errors

errorqueue.count Number of messages in the error queue

errorqueue.next() Request next error message from queue

Error and status message list

Error number Error level Error message

-430 RECOVERABLE Query deadlocked

-420 RECOVERABLE Query unterminated

-410 RECOVERABLE Query interrupted

-363 RECOVERABLE Input buffer over-run

-360 RECOVERABLE Communication error

-350 RECOVERABLE Queue overflow

-315 RECOVERABLE Configuration memory lost

-314 RECOVERABLE Save/recall memory lost

-292 RECOVERABLE Referenced name does not exist

-286 RECOVERABLE TSP runtime error

-285 RECOVERABLE Program syntax

-281 RECOVERABLE Cannot create program

-225 RECOVERABLE Out of memory or TSP memory allocation error

-224 RECOVERABLE Illegal parameter value

-223 RECOVERABLE Too much data

-222 RECOVERABLE Parameter data out of range

-221 RECOVERABLE Settings conflict

-220 RECOVERABLE Parameter

Series 3700 System Switch/Multimeter Reference Manual Section 17: Error and status messages

3700S-901-01 Rev. C / July 2008 17-3

Error number Error level Error message

-203 RECOVERABLE Command protected

-200 RECOVERABLE Execution error

-154 RECOVERABLE String too long

-151 RECOVERABLE Invalid string data

-144 RECOVERABLE Character data too long

-141 RECOVERABLE Invalid character data

-140 RECOVERABLE Character data error

-121 RECOVERABLE Invalid character in number

-120 RECOVERABLE Numeric data

-109 RECOVERABLE Missing parameter

-108 RECOVERABLE Parameter not allowed

-105 RECOVERABLE Trigger not allowed

-104 RECOVERABLE Data type

-101 RECOVERABLE Invalid character

-100 RECOVERABLE Command error

0 NO_SEVERITY Queue is empty

603 RECOVERABLE Power on state lost

605 RECOVERABLE Calibration dates lost

820 RECOVERABLE Parsing value

900 FATAL Internal system

1100 RECOVERABLE Command unavailable

1101 RECOVERABLE Parameter too big

1102 RECOVERABLE Parameter too small

1103 RECOVERABLE Min greater than max

1104 RECOVERABLE Too many digits for param type

1107 RECOVERABLE Cannot modify factory menu

1108 RECOVERABLE Menu name does not exist

1109 RECOVERABLE Menu name already exists

1112 RECOVERABLE Password entered does not match current password

1114 RECOVERABLE Settings conflict with %s, where %s represents specifics

on what the conflict is

1115 RECOVERABLE Parameter error %s, where %s explains why parameter

error

Section 17: Error and status messages Series 3700 System Switch/Multimeter Reference Manual

17-4 3700S-901-01 Rev. C / July 2008

Error number Error level Error message

1116 RECOVERABLE Configuration error %s, where %s explains why

configuration error

1200 RECOVERABLE TSP-Link initialization failed

1201 RECOVERABLE TSP-Link initialization failed

1202 RECOVERABLE TSP-Link initialization failed

1203 RECOVERABLE TSP-Link initialization failed (possible loop in node

chain)

1204 RECOVERABLE TSP-Link initialization failed

1205 RECOVERABLE TSP-Link initialization failed (no remote nodes found)

1206 RECOVERABLE TSP-Link initialization failed

1207 RECOVERABLE TSP-Link initialization failed

1208 RECOVERABLE TSP-Link initialization failed

1209 RECOVERABLE TSP-Link initialization failed

1210 RECOVERABLE TSP-Link initialization failed (node ID conflict)

1211 RECOVERABLE Node %u is inaccessible, where %u represents a

number

1212 RECOVERABLE Invalid node ID

1213 RECOVERABLE TSP-Link session expired

1214 RECOVERABLE TSP-Link unknown remote command encoding

1215 RECOVERABLE Code execution requested within the local group

1216 RECOVERABLE Remote execution requested on node in group with

pending overlapped operations

1217 RECOVERABLE Remote execution requested on node outside the local

group

1400 RECOVERABLE Expected at least %d parameters, where %d represents

a number

1401 RECOVERABLE Parameter %d is invalid, where %d represents a number

1402 RECOVERABLE User scripts lost

1403 RECOVERABLE Factory scripts lost

1404 RECOVERABLE Invalid byte order

1405 RECOVERABLE Invalid ASCII precision

1406 RECOVERABLE Invalid data format

1600 RECOVERABLE Maximum GPIB message length exceeded

1601 RECOVERABLE GPIB input queue overrun

1800 RECOVERABLE Invalid digital trigger mode

Series 3700 System Switch/Multimeter Reference Manual Section 17: Error and status messages

3700S-901-01 Rev. C / July 2008 17-5

Error number Error level Error message

1801 RECOVERABLE Invalid digital I/O line

1802 RECOVERABLE Digital bit in parameter write protected

2100 FATAL Could not open socket

2101 FATAL Could not close socket

2102 RECOVERABLE LAN configuration already in progress

2103 RECOVERABLE LAN disabled

2104 RECOVERABLE Socket error

2105 RECOVERABLE Unreachable gateway

2106 RECOVERABLE Could not acquire ip address

2107 RECOVERABLE Duplicate IP address detected

2108 RECOVERABLE DHCP lease lost

2109 RECOVERABLE LAN cable disconnected

2110 RECOVERABLE Could not resolve hostname

2111 RECOVERABLE DNS name (FQDN) too long

2112 RECOVERABLE Connection not established

2200 RECOVERABLE File write error

2201 RECOVERABLE File read error

2202 RECOVERABLE Cannot close file

2203 RECOVERABLE Cannot open file

2204 RECOVERABLE Directory not found

2205 RECOVERABLE File not found

2206 RECOVERABLE Cannot read current working directory

2207 RECOVERABLE Cannot change directory

2208 RECOVERABLE Cannot create directory

2209 RECOVERABLE Cannot remove directory

2210 RECOVERABLE File is not a valid script format

2211 RECOVERABLE File system error

2212 RECOVERABLE File system command not supported

2213 RECOVERABLE Too many open files

2214 RECOVERABLE File access denied

2215 RECOVERABLE Invalid file handle

2216 RECOVERABLE Invalid drive

2217 RECOVERABLE File system busy

Section 17: Error and status messages Series 3700 System Switch/Multimeter Reference Manual

17-6 3700S-901-01 Rev. C / July 2008

Error number Error level Error message

2218 RECOVERABLE Disk full

2219 RECOVERABLE File corrupt

2220 RECOVERABLE File already exists

2221 RECOVERABLE File seek error

2222 RECOVERABLE End-of-file error

2223 RECOVERABLE Directory not empty

2300 RECOVERABLE Upgrade found not upgradable

2301 RECOVERABLE Upgrade uncompress failed

2302 RECOVERABLE Upgrade device not ready

2303 RECOVERABLE Upgrade device type not acceptable

2304 RECOVERABLE Upgrade write to device checksum failure

2305 RECOVERABLE Upgrade write to device failed

2306 RECOVERABLE Upgrade timeout connect with device

2307 RECOVERABLE Upgrade failure

2400 RECOVERABLE Invalid specified connection

2401 RECOVERABLE Invalid timeout seconds (.001 to 30)

2402 RECOVERABLE TSPnet remote error: %s, where %s explains the remote

error

2403 RECOVERABLE TSPnet failure

2404 RECOVERABLE TSPnet read failure

2405 RECOVERABLE TSPnet read failure, aborted

2406 RECOVERABLE TSPnet read failure, timeout

2407 RECOVERABLE TSPnet write failure

2408 RECOVERABLE TSPnet write failure, aborted

2409 RECOVERABLE TSPnet write failure, timeout

2410 RECOVERABLE TSPnet max connections reached

2411 RECOVERABLE TSPnet connection failed

2412 RECOVERABLE TSPnet invalid termination

2413 RECOVERABLE TSPnet invalid reading buffer table

2414 RECOVERABLE TSPnet invalid reading buffer index range

2415 RECOVERABLE TSPnet feature only supported on TSP connections

2416 RECOVERABLE TSPnet musty specify both port and init

2417 RECOVERABLE TSPnet disconnected by other side

Series 3700 System Switch/Multimeter Reference Manual Section 17: Error and status messages

3700S-901-01 Rev. C / July 2008 17-7

Error number Error level Error message

4900 RECOVERABLE Reading buffer index %d is invalid, where %d represents

a number

4901 RECOVERABLE The maximum index for this buffer is %d, where %d

represents a number

4902 RECOVERABLE Reading buffers must be able to contain at least one

element

4903 RECOVERABLE Reading buffer expired

4904 RECOVERABLE ICX parameter count mismatch, %s (Line #%d), where

%s and %d provide more information on error

4905 RECOVERABLE ICX parameter invalid value, %s (Line #%d), where %s

and %d provide more information on error

4906 RECOVERABLE ICX invalid function id, %s (Line #%d), where %s and

%d provide more information on error

4907 RECOVERABLE Cannot modify built-in reading buffers

4908 RECOVERABLE Cannot change this setting unless buffer is cleared

4909 RECOVERABLE Reading buffer not found within device

4910 RECOVERABLE No readings exist within buffer

4911 RECOVERABLE Table not found within buffer

4912 RECOVERABLE Attribute not found within buffer

4914 RECOVERABLE Index exceeds maximum readings stored in buffer

4915 RECOVERABLE Attempting to store past capacity of reading buffer

5500 RECOVERABLE Card unknown error

5501 RECOVERABLE Failed card NVMEM write

5502 RECOVERABLE Failed card NVMEM read

5503 RECOVERABLE Closure count lost

5504 RECOVERABLE Temperature sensor failure

5505 RECOVERABLE Error completing a card action in requested operation

5506 RECOVERABLE Communication error with a card in requested operation

5507 RECOVERABLE Card operation completed under low total power

5508 RECOVERABLE Card operation completed under low bank power

5509 RECOVERABLE Card operation completed under low slot power

5510 RECOVERABLE Not enough total power to hold requested card operation

5511 RECOVERABLE Not enough bank power to hold requested card

operation

5512 RECOVERABLE Not enough slot power to hold requested card operation

Section 17: Error and status messages Series 3700 System Switch/Multimeter Reference Manual

17-8 3700S-901-01 Rev. C / July 2008

Error number Error level Error message

5513 RECOVERABLE Not enough total power to complete requested card

operation

5514 RECOVERABLE Not enough bank power to complete requested card

operation

5515 RECOVERABLE Not enough slot power to complete requested card

operation

5516 RECOVERABLE Slot empty, no configuration data exist

5517 RECOVERABLE Slot error, configuration data not found

5518 RECOVERABLE Slot error, communication error accessing configuration

data

5519 RECOVERABLE Slot error, timeout error accessing configuration data

5520 RECOVERABLE Channel error, channel list contains a channel not in

system

5521 RECOVERABLE Parameters adjusted, must recreate scan

5522 RECOVERABLE Scan running, must abort scan

5600 RECOVERABLE 10 vdc zero error

5601 RECOVERABLE 100 vdc zero error

5602 RECOVERABLE 10 vdc full scale error

5603 RECOVERABLE -10 vdc full scale error

5604 RECOVERABLE 100 vdc full scale error

5605 RECOVERABLE 100m vdc zero error

5606 RECOVERABLE 100 2-w zero error

5607 RECOVERABLE 10k 2-w zero error

5608 RECOVERABLE 100k 2-w zero error

5609 RECOVERABLE 10M 2-w zero error

5610 RECOVERABLE 10M 2-w full scale error

5611 RECOVERABLE 10M 2-w open error

5612 RECOVERABLE 100 4-w zero error

5613 RECOVERABLE 10k 4-w zero error

5614 RECOVERABLE 100k 4-w zero error

5615 RECOVERABLE 10M 4-w sense lo zero error

5616 RECOVERABLE 1k 4-w full scale error

5617 RECOVERABLE 10k 4-w full scale error

5618 RECOVERABLE 100k 4-w full scale error

5619 RECOVERABLE 1M 4-w full scale error

Series 3700 System Switch/Multimeter Reference Manual Section 17: Error and status messages

3700S-901-01 Rev. C / July 2008 17-9

Error number Error level Error message

5620 RECOVERABLE 10M 4-w full scale error

5621 RECOVERABLE 10m adc zero error

5622 RECOVERABLE 100m adc zero error

5623 RECOVERABLE 10m adc full scale error

5624 RECOVERABLE 100m adc full scale error

5625 RECOVERABLE 1 adc full scale error

5626 RECOVERABLE 2k 4-w dckt Ioff zero error

5627 RECOVERABLE 2k 4-w dckt Ion zero error

5628 RECOVERABLE 1k 4-w dckt Ioff zero error

5629 RECOVERABLE 1k 4-w dckt Ion zero error

5630 RECOVERABLE 100 4-w dckt Ioff zero error

5631 RECOVERABLE 100 4-w dckt Ion zero error

5632 RECOVERABLE 10 4-w dckt Ioff zero error

5633 RECOVERABLE 10 4-w dckt Ion zero error

5634 RECOVERABLE 1 4-w dckt Ion zero error

5635 RECOVERABLE 10 2-w zero error

5636 RECOVERABLE 10 4-w full scale error

5637 RECOVERABLE 100 4-w full scale error

5638 RECOVERABLE 10u adc zero error

5639 RECOVERABLE 100u adc zero error

5640 RECOVERABLE 1m adc zero error

5641 RECOVERABLE 1 adc zero error

5642 RECOVERABLE 10u adc full scale error

5643 RECOVERABLE 100u adc full scale error

5644 RECOVERABLE 1m adc full scale error

5645 RECOVERABLE 1 vac fast noise error

5646 RECOVERABLE 1 vac fast full scale error

5647 RECOVERABLE 100m vac dac error

5648 RECOVERABLE 1 vac dac error

5649 RECOVERABLE 10 vac dac error

5650 RECOVERABLE 100 vac dac error

5651 RECOVERABLE 100m vac zero error

5652 RECOVERABLE 100m vac full scale error

Section 17: Error and status messages Series 3700 System Switch/Multimeter Reference Manual

17-10 3700S-901-01 Rev. C / July 2008

Error number Error level Error message

5653 RECOVERABLE 1 vac zero error

5654 RECOVERABLE 1 vac full scale error

5655 RECOVERABLE 1 vac noise error

5656 RECOVERABLE 10 vac zero error

5657 RECOVERABLE 10 vac full scale error

5658 RECOVERABLE 10 vac noise error

5659 RECOVERABLE 100 vac zero error

5660 RECOVERABLE 100 vac full scale error

5661 RECOVERABLE 300 vac zero error

5662 RECOVERABLE 300 vac full scale error

5663 RECOVERABLE 300 vac noise error

5664 RECOVERABLE Post filter offset error

5665 RECOVERABLE 1 aac zero error

5666 RECOVERABLE 1 aac full scale error

5667 RECOVERABLE 3 aac zero error

5668 RECOVERABLE 3 aac full scale error

5669 RECOVERABLE 1V 10 Hz amplitude error

5670 RECOVERABLE Frequency gain error

5671 RECOVERABLE 100 Ohm Ioff Ocomp FS error

5672 RECOVERABLE 10k Ohm Ioff Ocomp FS error

5673 RECOVERABLE Temperature cold cal error

5674 RECOVERABLE Analog output zero error

5675 RECOVERABLE Analog output pos. gain error

5676 RECOVERABLE Analog output neg. gain error

5677 RECOVERABLE 100 4-w dckt Ioff full scale error

5678 RECOVERABLE 100 4-w dckt Ion full scale error

5679 RECOVERABLE 10 4-w dckt full scale error

5680 RECOVERABLE 1 4-w dckt Ion full scale error

5681 RECOVERABLE 10k 4-w ocomp Ioff full scale error

5682 RECOVERABLE 10k 4-w ocomp Ion full scale error

5683 RECOVERABLE 2k 4-w dckt Ioff full scale error

5684 RECOVERABLE 2k 4-w dckt Ion full scale error

5685 RECOVERABLE 1k 4-w dckt Ioff full scale error

Series 3700 System Switch/Multimeter Reference Manual Section 17: Error and status messages

3700S-901-01 Rev. C / July 2008 17-11

Error number Error level Error message

5686 RECOVERABLE 1k 4-w dckt Ion full scale error

5687 RECOVERABLE 10 4-w zero error

5688 RECOVERABLE 10 4-w Ioff zero error

5689 RECOVERABLE 1m aac full scale error

5690 RECOVERABLE 1m aac zero error

5691 RECOVERABLE 10m aac full scale error

5692 RECOVERABLE 10m aac zero error

5693 RECOVERABLE 100m aac full scale error

5694 RECOVERABLE 100m aac zero error

5695 RECOVERABLE Offset calibration error

5696 RECOVERABLE 1V 10 Hz frequency error

5697 RECOVERABLE Calibration data invalid

5698 RECOVERABLE AC calibration data lost

5699 RECOVERABLE DC calibration data lost

5700 RECOVERABLE PreCal calibration data lost

5701 RECOVERABLE A/D timeout

5702 RECOVERABLE 1 4-w dckt Ioff zero error

5703 RECOVERABLE 100 4-w Ioff zero error

5704 RECOVERABLE 10k 4-w Ioff zero error

5705 RECOVERABLE 10 4-w dckt Ioff full scale error

5706 RECOVERABLE 1 4-w dckt Ioff full scale error

5707 RECOVERABLE 1k TRTD HI Ion zero error

5708 RECOVERABLE 1k TRTD HI Ioff zero error

5709 RECOVERABLE 1k TRTD SLO Ion zero error

5710 RECOVERABLE 1k TRTD SLO Ioff zero error

5711 RECOVERABLE 10k TRTD HI Ion zero error

5712 RECOVERABLE 10k TRTD HI Ioff zero error

5713 RECOVERABLE 10k TRTD SLO Ion zero error

5714 RECOVERABLE 10k TRTD SLO Ioff zero error

5715 RECOVERABLE 100k TRTD HI Ion zero error

5716 RECOVERABLE 100k TRTD SLO Ion zero error

5717 RECOVERABLE 1k TRTD HI Ion full scale error

5718 RECOVERABLE 1k TRTD HI Ioff full scale error

Section 17: Error and status messages Series 3700 System Switch/Multimeter Reference Manual

17-12 3700S-901-01 Rev. C / July 2008

Error number Error level Error message

5719 RECOVERABLE 1k TRTD SLO Ion full scale error

5720 RECOVERABLE 1k TRTD SLO Ioff full scale error

5721 RECOVERABLE 10k TRTD HI Ion full scale error

5722 RECOVERABLE 10k TRTD HI Ioff full scale error

5723 RECOVERABLE 10k TRTD SLO Ion full scale error

5724 RECOVERABLE 10k TRTD SLO Ioff full scale error

5725 RECOVERABLE 100k TRTD HI Ion full scale error

5726 RECOVERABLE 100k TRTD SLO Ion full scale error

5727 RECOVERABLE 10 vdc full scale 6p4 error

5728 RECOVERABLE 10 vdc full scale p64 error

5729 RECOVERABLE 10 vdc zero 6p4 error

5730 RECOVERABLE 10 vdc zero p64 error

5731 RECOVERABLE 1k 4-w ocomp Ioff full scale error

5732 RECOVERABLE Questionable calibration

5733 RECOVERABLE Questionable temperature

5734 RECOVERABLE Internal DMM system error

5735 RECOVERABLE General unknown DMM error

5736 RECOVERABLE Untranslated DMM error

5737 RECOVERABLE Error completing DMM action in requested operation

5738 RECOVERABLE Communication error with DMM in requested operation

5739 RECOVERABLE DMM calibration error occurred during processing

command

5740 RECOVERABLE DMM calibration error occurred setting adjustment date

5741 RECOVERABLE DMM calibration error occurred getting adjustment date

5742 RECOVERABLE DMM calibration error occurred setting verify date

5743 RECOVERABLE DMM calibration error occurred getting verify date

5744 RECOVERABLE DMM calibration error occurred setting password

5745 RECOVERABLE DMM calibration error occurred getting password

5746 RECOVERABLE DMM calibration error occurred setting count

5747 RECOVERABLE DMM calibration error occurred getting count

In this appendix:

Boundary clock ... A-1

Epoch ... A-1

Grandmaster clock ... A-1

Master clock ... A-2

PTP .. A-2

PTP port ... A-2

PTP subdomain .. A-2

Boundary clock

A clock with more than a single PTP port, with each PTP port providing access

to a separate PTP communication path. Boundary clocks are used to eliminate

timing fluctuations caused by routers and other network elements.

Definition derived from NIST website (http://ieee1588.nist.gov).

Epoch

The reference time defining the origin of a time scale. For PTP, the epoch is

January 1, 1970.

Definition derived from NIST website (http://ieee1588.nist.gov).

Grandmaster clock

Serves as the primary reference time to which all other clocks are ultimately

synchronized. If there is synchronization across multiple subnetworks, the

grandmaster clock is the reference of time for all subnetworks.

Definition derived from NIST website (http://ieee1588.nist.gov).

Appendix A

 IEEE-1588 Glossary of Terms

http://ieee1588.nist.gov/
http://ieee1588.nist.gov/
http://ieee1588.nist.gov/

Appendix A: IEEE-1588 Glossary of Terms Series 3700 System Switch/Multimeter Reference Manual

A-2 3700S-901-01 Rev. C / July 2008

Master clock

Within a region (on the same subnetwork), the master clock is the clock that

serves as a primary source of time.

Definition derived from NIST website (http://ieee1588.nist.gov).

PTP

Precision Time Protocol, synonymous with IEEE-1588.

Definition derived from NIST website (http://ieee1588.nist.gov).

PTP port

A PTP port is the logical access point for IEEE-1588 communications to the

clock containing the port.

Definition derived from NIST website (http://ieee1588.nist.gov).

PTP subdomain

A logical grouping of 1588 clocks that synchronize to each other using PTP

protocol but are not necessarily synchronized to PTP clocks in another

subdomain. Allows a single common network with independent groups of

synchronized devices.

Definition derived from NIST website (http://ieee1588.nist.gov).

http://ieee1588.nist.gov/
http://ieee1588.nist.gov/
http://ieee1588.nist.gov/
http://ieee1588.nist.gov/

1

1-OHM and 10-OHM resistance

ranges, verifying • 14-24

2

2-wire

resistance verification data • 14-

21

verifying • 14-21

4

4-wire

resistance verification data • 14-

20

short applied verification data •

14-26

short, verifying zeros • 14-25

verifying • 14-19

A

AC current

1mA to 1A ranges, verification

data • 14-16

1mA to 3A ranges, verifying •

14-15

3A range, verification data • 14-

17

calibration • 15-13

AC voltage

verifying • 14-9

AC volts calibration • 15-11

acceptor trigger mode • 8-22, 8-27

access recall attributes example • 7-

16

action keys

action keys • 4-34

CLOSE • 4-33

OPEN • 4-34

OPEN ALL • 4-33

RATE • 4-34

RECall • 4-34

STORE • 4-35

ACV

verification data • 14-10

alarms

scheduling • 11-5, 11-8

anonymous script • 2-25

APERTURE • 4-21

appending readings • 7-7

Arm Action trigger • 8-6

arrays, TSL • 2-36

Index

Index Series 3700 System Switch/Multimeter Reference Manual

Index-2 3700S-901-01 Rev. C / July 2008

assigning a value to an attribute •

13-3

assigning groups • 3-5

attributes • 13-2, 13-3

reading • 13-4

AUTO key • 4-32

auto ranging • 5-4

AUTODELAY • 4-22

over front panel • 5-3

Autoexec script • 2-26

AUTORANGE • 4-22

autorun scripts • 2-26

AUTOZERO • 4-22

B

background scan execution • 8-3

bandwidth • 5-7

base library functions • 2-43

basic front panel REL procedure •

6-2

basic reciprocal operation • 6-8

basic scan procedure • 8-7

beeper functions and attributes •

13-11, 13-16

bit functions • 13-11, 13-17

bit operations • 13-17

boundary clock • A-1

branching • 2-40

buffer • 8-9

configuration (front panel) • 7-6

data store commands • 7-8

for...do loops • 7-19

overview • 7-1

programming examples • 7-13

reading attributes • 7-14

reading buffer • 7-12

read-only attributes • 7-13

recall attributes • 7-14

remote operation • 7-7

status • 7-16

storage control attributes • 7-12

bus operation

scanning • 8-12

C

calculating

reading limits • 14-4

calculations

math • 6-3

calibration • 15-1, 15-4

considerations • 15-3

cycle • 15-3

DC current • 15-9

saving • 15-16

CHAN key • 4-17

Series 3700 System Switch/Multimeter Reference Manual Index

3700S-901-01 Rev. C / July 2008 Index-3

configuration • 4-11

channel

assignments • 8-2

display • 4-4, 7-6

existing scan • 8-9

functions and attributes • 13-11,

13-24

range • 5-3

scanning limitations • 4-1

type indications • 4-8

Channel Action Trigger • 8-6

characters, wild • 13-1

chunk • 2-6

chunks

multiple • 2-6

multiple-statement • 2-6

non-scripted, executing • 2-15

single statement • 2-6

clearing

readings • 7-4

registers and queues • 12-9

clock

grandmaster • A-1

master • A-2

CLOSE key • 4-33

command

programming notes • 13-1

queries • 2-3

table entries • 9-9

TSP advanced features • 3-10

concatenation • 2-39

CONFIG key • 4-11

configuration

configuration • 4-11, 6-10, 13-8

configuration (front panel) • 7-6

connection

line power • 14-3

considerations

calibration • 15-3

test • 14-6

contact information • 1-1

counts • 8-7

current verification data

10µA to 100µA ranges • 14-12

1mA to 3A ranges • 14-14

CURSOR keys • 4-32

cycle, calibration • 15-3

D

data storage and retrieval, buffer •

7-1

data store (buffer) commands • 7-8

dataqueue functions and attributes •

13-11, 13-85

Index Series 3700 System Switch/Multimeter Reference Manual

Index-4 3700S-901-01 Rev. C / July 2008

date values • 7-16

dB

channel type indication • 4-8

configuration • 6-10

DBREF • 4-22

non-switch channels • 4-9

scanning • 6-11

DBREF • 4-22

DC

voltage verification data • 14-7

volts calibration • 15-6

DC current

10µA to 100µA ranges,

verification data • 14-12

10µA to 100µA ranges, verifying

• 14-11

1mA to 3A ranges, verification

data • 14-14

1mA to 3A ranges, verifying •

14-13

DC voltage • 14-6, 14-7, 15-6

default file extensions • 9-1

delay functions • 13-11, 13-86

DELETE key • 4-20

DETECTBW • 4-22

digio functions and attributes • 13-

11, 13-87

digital

filter types • 5-8

filter window • 5-10

I/O channel indication • 4-8

DIGITS • 4-22

digits ICL programming • 5-4

digits, setting • 5-4

discrete resistance verification data

• 14-24

display • 4-4, 7-6

unit serial number • 1-3

user-defined messages • 2-16

display functions and attributes •

13-11, 13-93

DISPLAY key • 4-16

DMM

attributes, existing scan • 8-9

configuration • 13-8

key • 4-21

key configuration • 4-21

new configuration • 13-8

dmm functions and attributes • 13-

11, 13-109

dry circuit resistance • 14-6

verification data • 14-23

verifying • 14-22

DRYCIRCUIT • 4-22

dynamic buffer programming

example • 7-18

Series 3700 System Switch/Multimeter Reference Manual Index

3700S-901-01 Rev. C / July 2008 Index-5

dynamically-allocated buffers • 7-17

E

either edge trigger mode • 8-23

ENTER key • 4-25

environmental conditions • 14-2

epoch • A-1

equipment

recommended • 15-3

recommended test • 14-3

error effects, scripts • 17-1

errorqueue functions and attribute •

13-12, 13-176

errors

and status message list • 17-1,

17-2

effects on scripts • 17-1

queue • 12-26

summary • 17-1

event blenders • 8-3

event register • 12-19

event registers, system summary •

12-16

event status register • 12-5

eventlog functions and attributes •

13-12, 13-177

events • 8-2

example applications

in Series 3700-based systems •

11-7

examples

access recall attributes example

• 7-16

dynamic buffer programming

example • 7-18

exceeding reading buffer

capacity • 7-21

new configuration • 13-8

passing parameter • 13-4

reading limit calculation • 14-4

scanning • 8-14

script • 10-3

variable assignment • 13-4

exceeding reading buffer capacity

example • 7-21

exit functions • 13-12, 13-180

EXIT key • 4-25

F

factory defaults, restoring • 14-5

falling edge trigger mode • 8-20

file • 9-1

formats • 9-1

functions • 13-12, 13-181

I/O • 9-3

system navigation • 9-2

FILTER

key • 4-25

Index Series 3700 System Switch/Multimeter Reference Manual

Index-6 3700S-901-01 Rev. C / July 2008

key configuration • 4-22, 4-25

filter, digital • 5-8

characteristics • 5-8

overview • 5-8

repeating average • 5-9

foreground scan execution • 8-3

format attributes • 13-12, 13-183

frequency

calibration • 15-15

verification data • 14-18

verifying • 14-18

front panel

introduction • 4-1, 4-4

operation • 7-2

scanning • 8-10

tests • 16-3

fs functions • 13-12, 13-186

FUNC

key • 4-26

key configuration • 4-26

menu • 4-22

FUNC key • 4-26

functions • 2-35, 13-2

fuse replacement • 16-1

G

general bus command sequence •

12-14

GPIB

address • 2-12

attributes • 13-12, 13-187

interface connection • 2-11

grandmaster clock • A-1

groups

assigning • 3-5

coordinating remote • 3-7

different test scripts • 3-4

leader • 3-5

reassigning • 3-6

I

ICL

general device control • 10-5

ICL commands • 8-12, 13-11

TSP-specific device control • 10-

12

idle state • 8-5

IEEE-1588

configuring • 11-3

enabling • 11-3

implementation in Series 3700 •

11-1

in Series 3700-based systems •

11-7

Series 3700 System Switch/Multimeter Reference Manual Index

3700S-901-01 Rev. C / July 2008 Index-7

introduction • 11-1

INPUTDIV • 4-23

INSERT key • 4-26

instruments, synchronizing multiple

• 11-9

interactive script • 2-19

interface connection • 2-12

K

key configuration • 4-21

keys

action keys • 4-34

AUTO • 4-32

CHAN • See CHAN key

CLOSE • 4-33

CONFIG • 4-11

CURSOR • 4-32

DELETE • 4-20

DISPLAY • 4-16

ENTER • 4-25

EXIT • 4-25

FILTER • 4-25

FUNC • 4-26

INSERT • 4-26

key • 4-21

LIMIT • 4-27

LOAD • 4-27

MENU • 4-28

OPEN • 4-34

OPEN ALL • 4-33

PATT • 4-29

RANGE • 4-33

RATE • 4-34

RECall • 4-34

REL • 4-30

RUN • 4-30

SCAN • 4-31

SLOT • 4-32

STORE • 4-35

TRIG • 4-32

L

LAN • 2-12

libraries, standard • 2-42

LIMIT

key • 4-27

key configuration • 4-27

menu • 4-23

limit number (Y) • 13-1

line power • 14-3

LINESYNC • 4-23

LOAD key • 4-27

local state • 2-32

differences • 2-32

Index Series 3700 System Switch/Multimeter Reference Manual

Index-8 3700S-901-01 Rev. C / July 2008

localnode functions and attributes •

13-13, 13-210

logical

instruments • 13-5

operators • 2-38

logical operations • 2-38

loop control • 2-41

LXI

event log • 11-7

LXI Class B triggering (IEEE-

1588) • 11-1

M

maintenance • 16-1

makegetter functions • 13-13

manual range keys • 5-2

master clock • A-2

master node overview • 3-5

master trigger mode, rising edge •

8-21, 8-25

math

calculations • 6-3

library functions • 2-45

MATH • 4-23

matrix card notation • 13-24

measure

and switching capabilities • 1-2

capabilities • 1-2

voltage • 2-15

Measure Action Trigger • 8-6

measurement

event registers • 12-24

maximum readings • 5-1

ranges • 5-1

Measurement event register

(measurement) • 12-8

memory

functions • 13-13, 13-219

nonvolatile • 2-8

MENU key • 4-28

modules

channel assignments • 8-2

monitoring alarms • 11-6

moving average filter • 5-9

multiple

chunks • 2-6

statement chunk • 2-6

mX+b • 6-4

mX+b REL • 6-4

N

named scripts

overview • 2-5

RUN • 2-25

saving • 2-23

Series 3700 System Switch/Multimeter Reference Manual Index

3700S-901-01 Rev. C / July 2008 Index-9

navigation wheel • 4-33

negative transition registers • 12-2

new configuration example, DMM •

13-8

node

master overview • 3-5

TSP-Link • 13-5

node enable registers, controlling •

12-16

non-scripted chunks, sending • 2-15

nonvolatile memory • 2-8

NPLC • 4-23

O

OFFSETCOMP • 4-23

opc functions • 13-13, 13-220

OPEN ALL key • 4-33

OPEN key • 4-34

OPENDETECT • 4-24

operation event registers • 12-6, 12-

21

operation keys

CHAN • See CHAN key

DELETE • 4-20

ENTER • 4-25

EXIT • 4-25

FILTER • 4-25

FUNC • 4-26

INSERT • 4-26

key • 4-21

LIMIT • 4-27

LOAD • 4-27

MENU • 4-28

PATT • 4-29

RECall • 4-34

REL • 4-30

RUN • 4-30

SCAN • 4-31

SLOT • 4-32

TRIG • 4-32

operations

bit • 13-17

logic • 13-17

mX+b • 6-4

mX+b REL • 6-4

reciprocal (1/X) • 6-7

operators • 2-34

output queue • 12-2, 12-25

overlapped operations in remote

groups, coordinating • 3-7

P

parallel test scripts • 3-6

PATT

configuration • 4-30

Index Series 3700 System Switch/Multimeter Reference Manual

Index-10 3700S-901-01 Rev. C / July 2008

key • 4-29

percent • 6-6

positive transition registers • 12-2

POWER switch • 4-17

Precedence • 2-37

primary node • 2-33

print functions • 13-13, 13-221

programming

enable registers • 12-10

interaction • 2-15

script model • 2-9

transition registers • 12-10

Project Navigator • 2-14

PTP • A-2

definition • A-2

port • A-2

subdomain • A-2

PTP to UTC, correlating • 11-2

Q

queries • 2-3

queues • 12-2

R

range

manual keys • 5-2

remote programming • 5-3

selecting auto • 5-4

selecting manual • 5-3

RANGE • 4-24

RANGE keys • 4-32, 4-33

RATE key • 4-34, 5-5

reading buffer • 7-12

capacity, exceeding • 7-21

creating • 7-2

deleting • 7-5

described • 7-12

designations • 7-12

removing stale values • 3-9

selecting • 7-3

reading limit calculation example •

14-4

readings

errors • 17-2

RECall • 7-5

registers • 12-11

saving • 7-3

storing • 7-3

rear panel

summary • 2-10

RECall key • 4-34

reciprocal (1/X) • 6-7

registers

enable and transition • 12-15

Series 3700 System Switch/Multimeter Reference Manual Index

3700S-901-01 Rev. C / July 2008 Index-11

negative transition • 12-2

operation events • 12-6, 12-21

positive transition • 12-2

questionable events • 12-7, 12-

23

registers, system summary • 12-4

REL

buffer operation • 7-7

function • 6-1

key • 4-30

key configuration • 4-30

menu • 4-24

remote operation • 6-2

remote

calibration procedure • 15-5

remote buffer operation • 7-7

remote state differences • 2-32

repeating average filter • 5-9

requirements, verification tests • 14-

2

reset functions • 13-13, 13-230

RESET switch • 4-17

resistance

calibration • 15-8

reading limits • 14-4

verifying • 14-19, 14-21, 14-22

resistance ranges (1-OHM and 10-

OHM), verifying • 14-24

rising edge

acceptor trigger mode • 8-22

master trigger mode • 8-21

trigger mode • 8-21, 8-22

RJ-45

Ethernet interface connection •

2-12

RUN key • 4-30

run-time environment

overview • 2-3, 2-8

script, restoring • 2-31

S

SCAN

configuration • 4-31

key • 4-31

scanning

configuration • 8-11

counts • 8-7

digits setting • 5-4

DMM configuration • 5-3

examples • 8-14

execution, foreground and

background • 8-3

functions and attributes • 13-13,

13-230

fundamentals • 8-1

Index Series 3700 System Switch/Multimeter Reference Manual

Index-12 3700S-901-01 Rev. C / July 2008

math setup • 6-9

REL value • 6-3

schedule functions and attributes •

13-14, 13-250

Script Editor • 2-14

scripts

autoexec • 2-26

automatically run • 2-25

autorun scripts • 2-26

commands, using • 2-17

definition • 2-7

deleting • 2-31

error effects • 17-1

examples • 2-17, 9-4, 10-3

function, using • 2-18

interactive • 2-9, 2-19

load only • 2-20

loading from front panel • 2-28

loading user • 2-24

management • 2-30

name attribute • 2-22

named • 2-5, 2-23, 2-25

parallel test, running • 3-6

restoring in run-time

environment • 2-31

retrieving • 2-30

running • 2-25, 2-27, 3-6

saving • 2-22, 2-23, 2-29

Script Editor • 2-14

statements, using • 2-17

test scripts across the TSP-Link

network • 3-8

unnamed • 2-25

user • 2-16, 2-20, 2-21, 2-22, 2-

24, 2-25, 2-27, 2-29, 2-30

Sequence Action Trigger • 8-6

serial number • 1-3

serial polling • 12-14

service request

checking • 12-14

register • 12-14

Service Request Enable Register •

12-14

setup functions and attribute • 13-

14, 13-252

single statement chunk • 2-6

slot indicator (X) • 13-1

SLOT key • 4-32

slot[X] attributes • 13-14, 13-255

SPD general bus command

sequence • 12-14

SPE general bus command

sequence • 12-14

SRQ enable registers, controlling •

12-16

standard

Series 3700 System Switch/Multimeter Reference Manual Index

3700S-901-01 Rev. C / July 2008 Index-13

Ethernet interface connection •

2-12

event register • 12-19

event status register • 12-5

libraries • 2-42

standard libraries • 2-42

state • 3-9

local • 2-32

remote • 2-32

status byte

and system summary • 12-3

register • 12-13

service request (SRQ) • 12-2,

12-12

service request commands • 12-

15

status function and attributes • 13-

14, 13-264

status function summary • 12-8

status model • 12-1

step counts • 8-7

STEP key • 4-34

STORE

key • 4-35

key configuration • 4-35

string library functions • 2-44

summary, test • 14-5

switching capabilities • 1-2

synchronization

multiple instruments • 11-9

synchronous

acceptor trigger mode • 8-27

master trigger mode • 8-25

trigger mode • 8-28

triggering modes, understanding

• 8-24

system

connections • 2-10

system summary

and status byte • 12-3

event registers • 12-16

registers • 12-4

T

tables • 2-36

temperature

range • 5-2

test

considerations • 14-6

procedure • 16-3

summary • 14-5

verification requirements • 14-2

Test Script Builder • 2-13

Test Script Language Reference •

2-33

Test Script Processor • 2-2

Index Series 3700 System Switch/Multimeter Reference Manual

Index-14 3700S-901-01 Rev. C / July 2008

test scripts across the TSP-Link

network • 3-8

THERMO • 4-24

THRESHOLD • 4-24

time

stamp • 7-5

values • 7-16

timer functions • 13-14, 13-286

totalizer

channel type indication • 4-8

TRIG key • 4-32

trigger functions and attributes • 13-

14, 13-287

trigger mode

either edge • 8-23

falling edge • 8-20

rising edge acceptor • 8-22

rising edge master • 8-21

synchronous • 8-28

synchronous acceptor • 8-27

synchronous master • 8-25

syntax rules • 13-4

trigger model

components • 8-5

described • 8-4

triggers • 8-6

TSL reference • See Test Script

Language Reference

TSP

advanced features • 3-1

installing software • 2-10

programming levels • 2-8

TSP-Link

communicating between TSP-

enabled instruments • 10-4

nodes • 13-5

system • 2-32

tsplink function and attributes • 13-

14, 13-294

tsplink.trigger functions and

attributes • 13-295

tspnet functions and attributes • 13-

15, 13-300

U

UNITS • 4-25

unnamed scripts • 2-25

upgrade

functions • 13-15, 13-309

USB

connection • 2-13

user scripts

creating • 2-20

creating alternative • 2-21

loading • 2-24

Series 3700 System Switch/Multimeter Reference Manual Index

3700S-901-01 Rev. C / July 2008 Index-15

modifying • 2-29

nonvolatile memory • 2-16

retrieving • 2-30

running • 2-25

running from front panel • 2-27

writing and loading • 2-16

userstring functions • 3-4, 13-15,

13-310

V

variables • 2-34

verification

instrument address • 14-2

limits • 14-4

test procedures • 14-5, 14-6

test requirements • 14-2

W

waitcomplete functions • 13-15, 13-

312

warm-up • 14-2

wheel, navigation • 4-33

wild characters • 13-1

12/06

Service Form
Model No. Serial No. Date

Name and Telephone No.
Company

List all control settings, describe problem and check boxes that apply to problem.

❏ Intermittent ❏ Analog output follows display ❏ Particular range or function bad; specify

❏ IEEE failure ❏ Obvious problem on power-up ❏ Batteries and fuses are OK
❏ Front panel operational ❏ All ranges or functions are bad ❏ Checked all cables

Display or output (check one)

❏ Drifts ❏ Unable to zero
❏ Unstable ❏ Will not read applied input
❏ Overload

❏ Calibration only ❏ Certificate of calibration required
❏ Data required
(attach any additional sheets as necessary)

Show a block diagram of your measurement system including all instruments connected (whether power is turned on
or not). Also, describe signal source.

Where is the measurement being performed? (factory, controlled laboratory, out-of-doors, etc.)

What power line voltage is used? Ambient temperature?°F

Relative humidity? Other?

Any additional information. (If special modifications have been made by the user, please describe.)

Be sure to include your name and phone number on this service form.

12/06

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Keithley Instruments, Inc.

Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY • www.keithley.com

	Series 3700 System Switch/Multimeter Reference Manual
	Warranty
	Safety Precautions
	Table of Contents
	List of Figures
	Section 1 Introduction
	Contact information
	Overview
	Measure and switching capabilities

	Warranty information
	Displaying the unit's serial number

	Section 2 TSP Programming Fundamentals
	Introduction
	Test Script Processor (TSPTM)
	Run-time environment
	Queries
	Scripts
	Named scripts
	Programming overview
	Chunk defined
	Single statement chunk
	Multiple-statement chunk
	Multiple chunks
	Scripted chunk

	Script defined
	Run-time environment
	Nonvolatile memory
	TSPTM programming levels
	Programming model for scripts

	Installing the TSPTM software
	System connections
	Rear panel summary
	GPIB interface connection
	GPIB address

	Standard RJ-45 (Ethernet) interface connection
	LAN address

	USB connection

	Using Test Script Builder (TSB)
	Project Navigator
	Script Editor
	Programming interaction

	Sending commands and statements
	Measure voltage
	Read and write to the digital I/O port
	Display user-defined messages

	User scripts
	Script examples
	Script using commands and statements only
	Script using a function
	Interactive script

	Creating a user script
	Load only
	Load and run
	Creating a user script (alternative)
	Get or change the name attribute of a script

	Saving a user script
	Saving a named script

	Loading a user script
	Running a user script
	Running an unnamed script
	Running a named script
	Running scripts automatically
	Autorun scripts
	Autoexec script

	Running a user script from the Series 3700 front panel

	Loading a script from the Series 3700 front panel
	Saving a script from the Series 3700 front panel
	Modifying a user script
	Script management
	Retrieving a user script
	Deleting a script from the system
	Restoring a script in the run-time environment

	Differences: Remote versus local state
	Remote state
	Local state
	TSP-LinkTM system
	Stand-alone system
	PC-based system

	Test Script Language (TSL) Reference
	Introduction
	Variables and types
	Operators
	Functions
	Tables/arrays
	Precedence
	Logical operators
	Concatenation
	Branching
	Loop control
	Standard libraries
	Base library functions
	String library functions
	Math library functions

	Section 3 TSP Advanced Features
	Introduction
	Using groups to manage nodes on TSP-LinkTM network
	Master node overview
	Group leader overview
	Assigning groups
	Reassigning groups

	Running parallel test scripts
	Coordinating overlapped operations in remote groups

	Using the data queue for real-time communication
	Copying test scripts across the TSP-LinkTM network
	Removing stale values from the reading buffer
	Commands related to TSP advanced features

	Section 4 Using the Front Panel
	Front panel introduction
	Display
	Channel type indication
	Using the front panel with non-switch channels

	Special keys and power switch
	CONFIG key
	CONFIG CHAN key
	CONFIG CHAN key - SWITCH channel type
	CONFIG CHAN key - DIGIO channel type
	LABEL
	DELAY
	MODE
	MATCH
	MATCH_TYPE
	STATE

	CONFIG CHAN key - TOTALIZER channel type
	LABEL
	MODE
	MATCH
	MATCH_TYPE
	STATE
	POWER

	CONFIG CHAN key - DAC channel type
	LABEL
	DELAY
	MODE
	OUTPUT
	STATE
	POWER

	DISPLAY key
	POWER switch
	RESET switch

	Operation keys
	CHAN key
	CHAN key - switch channel type
	CHAN key - DIGIO channel type
	READ
	WRITE
	RESET_STATE
	RESET

	CHAN key - TOTALIZER channel type
	READ
	WRITE
	RESET_STATE
	RESET

	CHAN key - DAC channel type
	READ
	WRITE
	RESET_STATE
	RESET

	DELETE key
	DMM key
	DMM key configuration
	APERTURE
	AUTODELAY
	AUTORANGE
	AUTOZERO
	DBREF
	DETECTBW
	DIGITS
	DRYCIRCUIT
	FILTER
	FUNC
	INPUTDIV
	LIMIT
	LINESYNC
	MATH
	NPLC
	OFFSETCOMP
	OPENDETECT
	RANGE
	REL
	THERMO
	THRESHOLD
	UNITS

	ENTER key
	EXIT key
	FILTER key
	FILTER key configuration

	FUNCtion key
	FUNC key configuration

	INSERT key
	LIMIT key
	LIMIT key configuration

	LOAD key
	MENU key
	PATT key
	PATT key configuration

	REL key
	REL key configuration

	RUN key
	SCAN key
	SCAN key configuration

	SLOT key
	TRIG key

	Range keys, cursor keys, and navigation wheel
	AUTO key
	CURSOR keys
	Navigation wheel
	RANGE keys

	Action keys
	CLOSE key
	OPEN ALL key
	OPEN key
	RATE key
	RECall key
	STEP key
	STORE key
	STORE key configuration

	Section 5 Range, Digits, Rate, Bandwidth, and Filter
	Range
	Measurement ranges and maximum readings
	Temperature

	Manual range keys
	Auto ranging over the front panel
	Scanning
	Range remote programming (ICL)
	Selecting a manual range
	Selecting an auto range

	Digits ICL programming
	Scanning
	Setting digits

	Rate
	Setting Rate from the front panel
	Setting measurement speed from a remote interface

	Bandwidth
	Filter
	Filter characteristics
	Digital filter types
	Moving average filter
	Repeating average filter

	Digital filter window

	Section 6 Relative, Math, and dB
	Relative
	Basic front panel REL procedure
	REL remote operation
	Scanning

	Math calculations
	mX+b
	mX+b REL
	Setting mX+b units

	Percent
	Reciprocal (1/X)
	Basic reciprocal operation
	Scanning

	dB commands
	dB configuration
	dB scanning

	Section 7 Buffer: Data Storage and Retrieval
	Buffer overview
	Front panel operation
	Creating and selecting a reading buffer
	Selecting a reading buffer
	Storing readings
	Saving readings
	Clearing readings
	Deleting a reading buffer
	Recalling readings
	Time stamp
	Channel display

	Buffer configuration (front panel)
	Appending readings

	Remote buffer operation
	Data store (buffer) commands
	Reading buffers
	Reading buffer designations
	Buffer storage control attributes
	Buffer read-only attributes
	Buffer programming examples
	Buffer reading attributes
	Buffer recall attributes
	Example to access recall attributes

	Time and date values
	Buffer status
	Dynamically-allocated buffers
	Dynamic buffer programming example
	Buffer for...do loops
	Exceeding reading buffer capacity

	Section 8 Scanning
	Scanning fundamentals
	Channel assignments
	Events
	Event blenders

	Foreground and background scan execution
	Trigger model
	Trigger model components
	Idle
	Triggers

	Scan and step counts
	Basic scan procedure
	Buffer
	Changing channel and DMM attributes of an existing scan

	Front panel scanning
	Scan configuration

	Bus operation scanning
	ICL commands
	Scanning examples

	Hardware trigger modes
	Falling edge trigger mode
	Rising edge master trigger mode (version 1.4.0 or higher)
	Rising edge acceptor trigger mode (version 1.4.0 or higher)
	Either edge trigger mode
	Understanding synchronous triggering modes
	Synchronous master trigger mode
	Synchronous acceptor trigger mode
	Synchronous trigger mode

	Section 9 Files
	File formats
	Default file extensions
	File system navigation
	File I/O
	Script examples
	Command table entries

	Section 10 TSP-Net
	Overview
	TSP-NetTM Capabilities
	Using TSP-NetTM with any Ethernet-enabled device
	Example script

	Using TSP-NetTM vs. TSP-LinkTM for communication with TSP-enabled devices
	Instrument Control Library (ICL) - General device control
	Instrument Control Library - TSP-specific device control

	Section 11 LXI Class B Triggering (IEEE-1588)
	Introduction to IEEE-1588 based triggering
	IEEE-1588 implementation in the Series 3700
	Correlating PTP to Coordinated Universal Time (UTC)
	Configuring and enabling IEEE-1588
	Scheduling alarms

	Monitoring alarms with LAN triggers and LXI event log
	LXI event log
	Example applications of IEEE-1588 in Series 3700-based systems
	Scheduling alarms on a stand-alone Series 3700

	Synchronizing multiple Series 3700 instruments
	Coordinating the Series 3700 with a device that is not IEEE-1588 enabled using scheduled alarms and digital I/O

	Section 12 Status Model
	Status register sets
	Negative and positive transition registers

	Status byte and SRQ
	Queues

	System summary and status byte
	System summary registers
	Standard event status register and enable
	Operation events registers
	Questionable event register
	Measurement event register (measurement)
	Status function summary
	Clearing registers and queues
	Programming enable and transition registers
	Reading registers
	Status byte and service request (SRQ)
	Status byte register
	Serial polling and SRQ
	Service request enable register
	SPE, SPD (serial polling)
	Status byte and service request commands
	Enable and transition registers
	Controlling node and SRQ enable registers

	Status register set specifics
	System summary event registers
	Standard event register
	Operation event registers
	Questionable event registers
	Measurement event registers

	Queues
	Output queue
	Error queue

	Section 13 Instrument Control Library (ICL)
	Command programming notes
	Wild characters
	X and Y
	[N]

	Functions and attributes
	Functions
	Attributes
	Assigning a value to an attribute
	Reading an attribute

	Syntax rules

	TSP-LinkTM nodes
	Logical instruments
	Query commands
	DMM configuration
	DMM new configuration example

	ICL command list
	beeper functions and attributes
	bit functions
	Logic and bit operations

	channel functions and attributes
	Using channel.*() ICL commands
	Return value

	dataqueue functions and attributes
	delay functions
	digio functions and attributes
	display functions and attributes
	dmm functions and attributes
	errorqueue functions and attributes
	eventlog functions and attributes
	LXI event log

	exit functions
	file functions
	format attributes
	fs functions
	gpib attributes
	io functions
	LAN functions and attributes
	localnode functions and attributes
	makegetter functions
	memory functions
	opc functions
	print functions
	ptp functions and attributes
	reset functions
	scan functions and attributes
	schedule functions and attributes
	setup functions and attributes
	slot[X] attributes
	status functions and attributes
	Status byte and SRQ

	timer functions
	trigger functions and attributes
	trigger.timer functions and attributes
	tsplink functions and attributes
	tsplink.trigger functions and attributes
	tspnet functions and attributes
	upgrade functions
	userstring functions
	waitcomplete functions

	Section 14 Verification
	Introduction
	Verification test requirements
	Environmental conditions
	Warmup period
	Line power
	Recommended test equipment
	Verification limits
	Example reading limit calculation
	Calculating resistance reading limits

	Restoring factory defaults

	Performing the verification test procedures
	Test summary
	Test considerations

	Series 3700 verification tests
	Verifying DC voltage
	DC voltage verification data

	Verifying AC voltage
	ACV verification data

	Verifying DC current 10µA to 100µA ranges
	DC current verification data 10µA to 100µA ranges

	Verifying DC current 1mA to 3A ranges
	DC current verification data 1mA to 3A ranges

	Verifying AC current 1mA to 3A ranges
	AC current verification data 1mA to 1A ranges
	AC current verification data 3A range

	Verifying frequency
	Frequency verification data

	Verifying 4-wire resistance
	4-wire resistance verification data

	Verifying 2-wire resistance
	2-wire resistance verification data

	Verifying dry circuit resistance
	Dry circuit resistance verification data

	Verifying 1-OHM and 10-OHM resistance ranges
	Discrete resistance verification data

	Verifying zeros using a 4-wire short
	4-wire short applied verification data

	Section 15 Calibration
	Overview
	Environmental conditions
	Warmup period
	Line power

	Calibration considerations
	Calibration cycle
	Recommended equipment

	Calibration
	Remote calibration procedure
	DC volts calibration
	DC Cal Step 0: A/D MUX Offset Cal (factory cal only)
	DC Cal Step 1: Input short circuit
	DC Cal Step 2: Open input
	DC Cal Step 3: +10 Volt
	DC Cal Step 4: -10 Volt
	DC Cal Step 5: 100 Volt

	Resistance calibration
	DC Cal Step 6: 100 Ohm
	DC Cal Step 7: 10k Ohm
	DC Cal Step 8: 100k Ohm
	DC Cal Step 9: 1M Ohm

	DC current calibration
	DC Cal Step 10: 100µA
	DC Cal Step 11: 1mA
	DC Cal Step 12: 10mA
	DC Cal Step 13: 100mA
	DC Cal Step 14: 1A

	AC volts calibration
	AC Cal Step 1: 10mV @ 1kHz
	AC Cal Step 2: 100mV @ 1kHz
	AC Cal Step 3: 100mV @ 50kHz
	AC Cal Step 4: 1V @ 1kHz
	AC Cal Step 5: 1V @ 50kHz
	AC Cal Step 6: 10V @ 1kHz
	AC Cal Step 7: 10V @ 50kHz
	AC Cal Step 8: 100V @ 1kHz
	AC Cal Step 9: 100V @ 50kHz
	AC Cal Step 10: 300V @ 1kHz

	AC current calibration
	AC Cal Step 11: 100µA @ 1kHz
	AC Cal Step 12: 1mA @ 1kHz
	AC Cal Step 13: 10mA @ 1kHz
	AC Cal Step 14: 100mA @ 1kHz
	AC Cal Step 15: 1A @ 1kHz
	AC Cal Step 16: 2A @ 1kHz

	Frequency calibration
	AC Cal Step 17: 1V @ 10Hz (factory cal only)
	AC Cal Step 18: 1V @ 1kHz (factory cal only)

	Save calibration

	Section 16 Maintenance
	Introduction
	Fuse replacement
	Front panel tests
	Test procedure

	Section 17 Error and status messages
	Introduction
	Error summary
	Error effects on scripts
	Reading errors
	Error and status message list
	IEEE-1588 Glossary of Terms
	Boundary clock
	Epoch
	Grandmaster clock
	Master clock
	PTP
	PTP port
	PTP subdomain

	Index

