www.keithley.com

Series 3700 System Switch/Multimeter
Reference Manual

3700S-901-01 Rev. C / July 2008

KEITHLEY

WARRANTY

Keithley Instruments, Inc. warrants this product to be free from defects in material and workmanship for a period of
one (1) year from date of shipment.

Keithley Instruments, Inc. warrants the following items for 90 days from the date of shipment: probes, cables,
software, rechargeable batteries, diskettes, and documentation.

During the warranty period, Keithley Instruments will, at its option, either repair or replace any product that proves to
be defective.

To exercise this warranty, write or call your local Keithley Instruments representative, or contact Keithley
Instruments headquarters in Cleveland, Ohio. You will be given prompt assistance and return instructions. Send the
product, transportation prepaid, to the indicated service facility. Repairs will be made and the product returned,
transportation prepaid. Repaired or replaced products are warranted for the balance of the original warranty period,
or at least 90 days.

LIMITATION OF WARRANTY

This warranty does not apply to defects resulting from product modification without Keithley Instruments’ express
written consent, or misuse of any product or part. This warranty also does not apply to fuses, software, non-
rechargeable batteries, damage from battery leakage, or problems arising from normal wear or failure to follow
instructions.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. THE REMEDIES
PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES.

NEITHER KEITHLEY INSTRUMENTS, INC. NOR ANY OF ITS EMPLOYEES SHALL BE LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
ITS INSTRUMENTS AND SOFTWARE, EVEN IF KEITHLEY INSTRUMENTS, INC. HAS BEEN ADVISED IN
ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES. SUCH EXCLUDED DAMAGES SHALL INCLUDE, BUT
ARE NOT LIMITED TO: COST OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF
INJURY TO ANY PERSON, OR DAMAGE TO PROPERTY.

KEITHLEY

A GREATER MEASURE OF CONFIDENCE

Keithley Instruments, Inc.

Corporate Headquarters « 28775 Aurora Road « Cleveland, Ohio 44139
440-248-0400 * Fax: 440-248-6168 « 1-888-KEITHLEY (1-888-534-8453) » www.keithley.com

Series 3700

System Switch/Multimeter

Reference Manual

©2008, Keithley Instruments, Inc.
Cleveland, Ohio, U.S.A.
All rights reserved.

Any unauthorized reproduction, photocopy, or use the information herein, in whole or in
part, without the prior written approval of Keithley Instruments, Inc. is strictly prohibited.

TSP™, TSP-Link™, and TSP-Net™ are trademarks of Keithley Instruments, Inc. All
Keithley Instruments product names are trademarks or registered trademarks of Keithley
Instruments, Inc. Other brand names are trademarks or registered trademarks of their
respective holders.

Document Number: 3700S-901-01 Rev. C / July 2008

KEITHLEY Safety Precautions

The following safety precautions should be observed before using this product and any associated instrumentation. Although
some instruments and accessories would normally be used with non-hazardous voltages, there are situations where hazardous
conditions may be present.

This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions
required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using
the product. Refer to the user documentation for complete product specifications.

If the product is used in a manner not specified, the protection provided by the product warranty may be impaired.
The types of product users are:

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the
equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the
instrument. They must be protected from electric shock and contact with hazardous live circuits.

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line
voltage or replacing consumable materials. Maintenance procedures are described in the user documentation. The procedures
explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, perform safe installations, and repair products. Only properly trained
service personnel may perform installation and service procedures.

Keithley Instruments products are designed for use with electrical signals that are rated Measurement Category | and
Measurement Category I, as described in the International Electrotechnical Commission (IEC) Standard IEC 60664. Most
measurement, control, and data I/O signals are Measurement Category | and must not be directly connected to mains voltage or
to voltage sources with high transient over-voltages. Measurement Category Il connections require protection for high transient
over-voltages often associated with local AC mains connections. Assume all measurement, control, and data I/O connections are
for connection to Category | sources unless otherwise marked or described in the user documentation.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test
fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than
30V RMS, 42.4V peak, or 60VDC are present. A good safety practice is to expect that hazardous voltage is present in any
unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators
are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential
human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If
the circuit is capable of operating at or above 1000V, no conductive part of the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance-limited
sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective
devices to limit fault current and voltage to the card.

Before operating an instrument, ensure that the line cord is connected to a properly-grounded power receptacle. Inspect the
connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input
power disconnect device must be provided in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under
test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting
cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth)
ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the

11/07

voltage being measured.

The instrument and accessories must be used in accordance with its specifications and operating instructions, or the safety of
the equipment may be impaired.

Do not exceed the maximum signal levels of the instruments and accessories, as defined in the specifications and operating
information, and as shown on the instrument or test fixture panels, or switching card.

When fuses are used in a product, replace with the same type and rating for continued protection against fire hazard.
Chassis connections must only be used as shield connections for measuring circuits, NOT as safety earth ground connections.
If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use

of a lid interlock.

If a @ screw is present, connect it to safety earth ground using the wire recommended in the user documentation.

The A symbol on an instrument indicates that the user should refer to the operating instructions located in the user
documentation.

The A symbol on an instrument shows that it can source or measure 1000V or more, including the combined effect of normal
and common mode voltages. Use standard safety precautions to avoid personal contact with these voltages.

The symbol on an instrument shows that the surface may be hot. Avoid personal contact to prevent burns.

The 'J-'

If this @ symbol is on a product, it indicates that mercury is present in the display lamp. Please note that the lamp must be
properly disposed of according to federal, state, and local laws.

symbol indicates a connection terminal to the equipment frame.

The WARNING heading in the user documentation explains dangers that might result in personal injury or death. Always read
the associated information very carefully before performing the indicated procedure.

The CAUTION heading in the user documentation explains hazards that could damage the instrument. Such damage may
invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.
Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits - including the power transformer,
test leads, and input jacks - must be purchased from Keithley Instruments. Standard fuses with applicable national safety
approvals may be used if the rating and type are the same. Other components that are not safety-related may be purchased
from other suppliers as long as they are equivalent to the original component (note that selected parts should be purchased only
through Keithley Instruments to maintain accuracy and functionality of the product). If you are unsure about the applicability of a
replacement component, call a Keithley Instruments office for information.

To clean an instrument, use a damp cloth or mild, water-based cleaner. Clean the exterior of the instrument only. Do not apply
cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that consist of a circuit board with
no case or chassis (e.g., a data acquisition board for installation into a computer) should never require cleaning if handled
according to instructions. If the board becomes contaminated and operation is affected, the board should be returned to the
factory for proper cleaning/servicing.

Table of Contents

T o o LU o o o 1-1
CONLACE INTOMMEALIONeieiiieiee et e et e e e bt e e et e e e e s e e s e s e e e ennes 1-1
OVBIVIBW ..ottt etttk e ekt e ok et e oo e h bt e o4kt e e 4R R et e o4k Rt e e ook et e e ek R et e e e b et e e e s e e e e e nre e e e ennes 1-1

Measure and SWItChing CapabIlitIeS...........ccciiiiiiiiiiie e e e e e et e e e e e e e eanees 1-2
Warranty iINFOMMALIONuiiiiii i e e e e s s e e e e e s e st e e e e e e e s e snnnranneeeeeeeasnns 1-2
Displaying the unit's SErial NUMDET..........ooiiiii et e st e e 1-3

TSP Programming FUNAamMENTAIScoovviiiiiiiiiiiiiiiieeeeeeeeeeeee ettt 2-1
1110l [V ox o] H OO P PR UPRPUSR PRI 2-1
Test SCriPt ProCeSSOr (TSPTIM) ..uuuiiiiiiie ettt e s c et e e e s e st e e e e e e s et r e e e e e e santabaeaeaeeeesnnenreees 2-2
RUN-TIME @NVIFONIMENT ...ttt ettt ss e b s e ss e e s e e e n e e e nnn e e nnneennnes 2-3
L@ U= =SSR 2-3
o3]] =SSR 2-4
N E= T =T ol] o £ U SEEER 2-5
Programming OVEIVIEW..........uueiiiieeei it it e e e e s sttt e e e e e e e e st e e eaeeesasssteeeeaaeeesasstntaseeaaeeeannssnnneeeaeesesnnns 2-6

(O aTU] 1o 1= 1 =T PR SPTUPRER 2-6
et 110180 (] 0= o O PP PO PR PUPPPOTPIN 2-7
RUN-TIME ©NVIFONIMENT ...ttt e e e ettt e e e e e e ettt e e e e e e e e e saeteeeeeeeaasnebeeeaaeeaaannseneeaaaeaaannnnes 2-8
NONVOIALIE MEIMOIY ...ceiiiiiiiee ettt e ettt e e e e e b ettt e e e e e e o bbbt e e e e e e e s e sabbeeeeeeeaaannsbeeeeaeeeaannnnes 2-8
TSPTM Programming I@VEIS......... ettt e e e ettt e e e e e e et e et e e e e e e s ntbe e e e e e e e e aannbeneeaeas 2-8
e deTe] = laalaalTaTo aaToTe [oT N (o] g o (] o) PSPPSRI 2-9
Installing the TSPTIM SOftWAIEuuiiiiiiie e e e e e e e e e e s st e e e eaeeeeeanes 2-10
YY) (=] g I 0] o 1= Tox 1o USRS 2-10
REAT PANEI SUIMMIBIY ...tttk e ettt e e bt e oo h bt e e e a et e e e st e e e e sb bt e e anbb et e s nbe e e e nnnreeean 2-10
GPIB INtErfaCe COMNECTIONuiiiiiiii e ettt et e e e e ettt e e e e e ettt e e e e e e e s atbaeteaaeeasntbsaeeaeeaesnnsbaneeaaeasans 2-11
Standard RJ-45 (Ethernet) interface CONNECHIONc.uviiiiiiie i 2-12
(U S] = R oo T 1T o (o] o NPT PPPPRTTTN 2-13
UsiNg TeSt SCHPt BUIIAET (TSB)uveiiiiiiiiee ittt ettt ettt ettt e et e e snbe e e e enees 2-13
e o] [=Tod N AV o (o PP PPUPPPPPTTIN 2-14
ST 11010 =L 1 (o) S PRSP 2-14
Programming INEEFACTIONeiiiiiii ettt ettt e e bt e b bt e e et e e e s e e e s nnnreeean 2-15
Sending commands and StAtEMENTSuuuiiiiii e a e e s e e e e s 2-15
IMEBASUIE VOITAGE ... evveeeee e e e e ettt e ettt e e e e et e e e e e e e e st eeeeeeesesaabeaeeeeeeesesnsbaaeeeeeeesaansnrnnreeeeens 2-15
Read and write t0 the digital I/O POIL........oiuiiiiiii e 2-16
Display USer-defined MESSAGEScocuueieiiiiie ittt et s et e e e e e e s e e ee s 2-16
U] Yol] o] £ T OO PP PTPPPPPON 2-16
Yol 1] o] QoY= T 1] o] [PO PP PR TPPPTRN 2-17
(1T (] gL = WU Y= T T g o PO PP PR OUOPPPPTRN 2-20
ST AV Lo To T WU LT o] o) SO PRSP 2-22
(o T=To 1o o[- WU R =T gRTod o] S T PSP PP OPPPR PRI 2-24

U gL a1 gL = WU EY=T Tt g o SRR PPPPRRN 2-25

Table of Contents Series 3700 System Switch/Multimeter Reference Manual

Loading a script from the Series 3700 front PANEL............eeiiiiiiiii e 2-28
Saving a script from the Series 3700 froNt PANEIcooiiiiiiiiiiie e 2-29
Lo To 1 YT aTo = WU =T T 1 o | TP PP PPPPPPPTTRIN 2-29
Yol o] g F= L =T [T 0 0 1= oL PP PPP OO PPRPN 2-30
Differences: Remote VErsuS I0Cal STALEcueiii it 2-32
R IO E S ..o 2-32

[0 Tor= 1S - (T SRR PPPPRRRN 2-32

IS S I YIS S =] o PR 2-32
Test Script Language (TSL) REfErENCE..........uiiiiiiiiiie e 2-33
a1 ge]o (8 ox 1T] o TP PP PPPPTTTIN 2-33
Variables AN TYPES ...ttt et e e e e e e ab b et e e e e e e nrar et e e e e aaannaee 2-34

(O] 01T =1 (0] £ P PPOPPPPPPPRPINS 2-34
LUV {o o SRR PPPPRRN 2-35
TADIESIAITAYS ...ttt ettt oot e ettt e e a bt e e Rt e e bt n et e et nnes 2-36

[=Tod=To =Y o TR UPPPRRTRN 2-37
[IoTo[[or=1 o] o 1=T = 1o 1= TSRO PPPPTRTN 2-38

(0] g o= 1 (=T g =11 To] o H PO PR UPPPRRTN 2-39

2T = g Lol 11 o OO PRSP PPPPPTRRRIN 2-40
[oTo] o Joo] 0] (o] IFU O T PSP P PP PP OPPPT PRI 2-41

S =T To F= 1o I 11 o] = 4 = PP PRSPPI 2-42
LS AN AV F= Vg ot =T B =T LU = 3-1
1110l [V ox o] H OO P PR UPRPUSR PRI 3-1
Using groups to manage nodes on TSP-LINKTM NEIWOIK..........coiiiiiiiiiiiiieiiiee e 3-4
MASEEE NOTE OVEIVIEW ...t ee ettt e e e e ettt e e e e e e ettt e e e e e e e st bt et e eaeeeaastbtaeeeeeeeeansstbeeeeaeeaaassssneeeaeesannnsees 3-5
GrOUP [EAUET OVEIVIEWeeiiiiiiiie ettt ettt e ettt e e e e e h et e e ettt e s s e e e e na b et e e et e e e s nnn e e e nnnreeeas 3-5
ASSIGNING GEOUDS -.ettteteeeiaiititeee e e e e e e ettt et e e e e e e o e bbee et e e e e e o a b b ee e et e e e e aaasnebe et e e e e e e e an b bee e e e e e e e s nbbbseeeeeeeaasnsbeeaaaeeaaannre 35
Tt To [T a o [e (01U o T PP OUPUUPPTRTIN 3-6
RUNNING PArallel TEST SCIIPLS ...veeiiiieiiiiiiti ettt et e e e e e e s b et e e e e e e e annbabeeeeaeeeeanne 3-6
Coordinating overlapped operations iN rFEMOLE GIrOUPSveeeeririieriiieeeaiiieeeaieeeesnsteeessnreesateeeessnseeessnneeeeas 3-7
Using the data queue for real-time COMMUNICALION...........ccuviiiiiee e 3-8
Copying test scripts across the TSP-LINKTM NEtWOTK..........coooiiieiiiiiieiieeeeee e 3-8
Removing stale values from the reading bUffer...........coooii e 3-9
Commands related to TSP advanced fEAtUIEScooiiiiiii i 3-10
USING the Front Pan@l ...ttt e e e e 4-1
Front panel iNrOAUCTIONueiiiii ittt e e e e ettt e e e e e s e bbb et e e e e e e e snnbbbeeeeaaeaeannes 4-1
D1 o] = 1Y PP PUU PO PPPPPPPPRN 4-4
Channel tyPE INGICATIONciiiiie ittt e e e e ettt e e aabb e e e e bbe e e e ambe e e e enbbeeeenbeeesanbeeeean 4-8
Using the front panel with NON-SWItCh ChaNNEISooiiiiiii e 4-9
Special Keys and POWET SWILCHo.ueiiiiiiiiee it e et e et e e s snbe e e e s snteeeee e 4-11
CONFIG KBY .ot te e tee s ettt ettt es ettt et et e s s e s e e et et et en s e et et e et s s e s e e e e et et et et esens e et aentesenen e seeneen 4-11
CONFIG CHAN KBY ..teetetee ettt ettt e oo e ettt et e e a4 e ekt bttt e e e e e e amn e be et e e e e e e e ntbe et eaaeeeansbseeeaaeasaansanneaaaeaann 4-11
DISPLAY KEY ...ttt ettt oottt oottt e e e e 4 ek et h et e e a4 e e aat e e et e e e e e aanntbeeeeeeeeaannnbeeeeeeeea e nnbneeeaeeaaannees 4-16

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Table of Contents

POWER SWILCH ...ttt bttt b ekt b ek et e be e e ket e bt e e kbt e abe e e e be e e nnn e e nbbeennne et 4-17
RESET SWILCI ...ttt b bbbt e bt bt e bt e bt e bt e bt e nbr e e bb e e ann e e e 4-17
OPEIALION KBYS ...ttt ettt a et e e ettt e e e h bt e e e aa b et e e e ea b b e e e e aab e e e e e aabb e e e e anbe e e e e anreeeenan 4-17
CHAN KBY .ttt ettt a et a et oH a4 skt e e H o4 a bt e eH e ea e e eh bt e eh bt e ekt e e ab e e e h bt e nhn e hb e nnn e e 4-17
DELETE KEY ...ttt etttk h ekt b ekt e bt ekt e bt ekt e bt e e ket e be e e s b et e b e e bt e nnn e e e 4-20
DIMIM KBY ..ttt ettt ekttt ekttt 4kttt ekt e bt e £t ekt e e ket e bt e R et e R et e R et e R e e e R b e e Rt e e Eb e e enteenEbeennree e 4-21
EINTER KEY ..ttt ittt ettt ettt ettt ettt ekt b ekt e bt ekt e ke e ket e bt e b et e b e e b bt e bt e e kb eeene e e nbbeeanbeenbbeennnee e 4-25
EXIT KEY ettt etttk h ekt h e ket h et R e e b et ket e b et e kbt e Re e e bb e e ahn e e nbbeennre e e 4-25
FILTER KEY ..ttt itttk ket h ekt b ekt b e bt e bt ekt e bt e bt e bt e st et e nan e e st b e e nnn e e e 4-25
FUNGCHION KY ...ttt ettt ettt ettt ettt e o4 ekttt et e e 44 e bttt e e e e 242 e nn bt e et e e e e e e nnbbeeeeaeeeaannbbaeeeaeeaaannnnes 4-26
INSERT KBY .ttt ittt ettt ettt h ekt b ekt e bt ekt e b et e ket e be e e e kbt e ebe e e s ket e nbn e e nbneennr e e e 4-26
LIMIT KY ittt ettt ettt ekttt ekttt ekttt ekt e bt e £t ek a4 bt e e bt e b et e b e e bb e e b b e e nbb e e be e e e bbeeenbeenbbeennree e 4-27
LOAD KEY ...ttt ettt et ettt ettt ettt ekt e bt 4kt h e e £t e oAb et e Rt e e b e e Rt e e R et e R et e R e e e R b e e Rt e e Eb e e anteenEbeennree e 4-27
IMEINU KBY ...ttt etttk ekt b e e ket e bt 4 b et e bt e b et e bt e e b b e e be e e nbb e e enb e e nbbeennre e e 4-28
N I) O O T TS OTTP POV PP PP OVPTPPPPOPRIO: 4-29
REL KBY .ttt ettt h bt b ek bR Rt Rt b et bt e Rt bt e nar e tb e nnr e e 4-30
RUN KBY ...ttt etttk b ekt b et ekt e b et ekt e b et ek st e be e e s kbt e ebe e e s ket e nbn e e nbbeennn e e e 4-30
107 AV = VU UR ST PTRPPRPR 4-31

S @ I)Y PP UP T PTRPPRPRIN: 4-32
TRIG KEY ..ttt ettt etttk h ekt e bt e ke e bt e ket e b et e ket b e b et bt be e b e bneenee s 4-32
Range keys, cursor keys, and navigation Wheel ... 4-32
AAUTO KBY .ttt ettt a oo a4t oo a o4 s bt oo h o4 et e e et e et e h e et et e e 4-32
CURSOR KEBYS ...ttt ettt ettt a e a bttt e st e4a e e e H e ea bt e e h bt e eh et e s bt e eab e e s e bt e nan e e nbbeennnee e 4-32

N E= Y To F= a0 IR 1= 1= PR PPPPPRPRIN 4-33
RANGE KBYS ... ittt ekttt h ekt b et e ket e b et e e b et e be e e bb e e b e e e e bbeeabeeenbbeeanbeenbbeennree e 4-33
1o)== SRR 4-33
(O 0 1] YU R T PTRPPRPRIN: 4-33
OPEN ALL KBY ...ttt ettt etttk h e ak e £ 2 bt 4o s ke e £ 2 bt oo a bt e e h b e e e ab e e eh bt e eh bt e eh bt e eab e e sh bt e nab e e nbbeeanne e e 4-33
OPEN KEY .ttt itttk a e a e o H oo e e e h e 4 a e e e R e a e Rt e a e e Rt e e a bt e h e nan e n bt e e e 4-34
RATE K Y ..tttk h bt b ekt e bt e E e e bt ekt e b ekt b et bt e nnn e b e nnr e e 4-34
RECAII KBY ...eeeieeiiitttee oottt e e e e ettt e e e e e et e e e e e e e e ab et e e e e e e e s e aaatbseeeeeesansaabeeeeaeesaaatbaeeeeeeeaaarres 4-34
STEP KBY .o.vvvvee ettt e et s ettt ettt n ettt et e s e e s st e e et et et e s e et et et s s e e et et et e et ettt nen e neen 4-34
STORE KBY ...ttt s ettt ettt n ettt et et en s st e s et et et e e s e et et et e s s n s s e e et et et et ennsne et nentetanen e sneneen 4-35
Range, Digits, Rate, Bandwidth, and Filter.........ccccooi i e 5-1
=T 0 TSP 5-1
Measurement ranges and MaximuUM FEATINGSouurreeiiiiieiiirie et e ettt e e e e st e e st e e snreeeantbeeenanee 5-1
MEANUAI FTENGE KEYS ... teeeiitit ettt e et e et e e e et e ekt e e sttt e s bt e e et e e e e anbn e e e snne e e e treeennee 5-2
Auto ranging over the froNt PANEL......... ..o et e e e e e e e e e e e e aneees 5-3

S Tor= o] o 11T T PR PPT T OPPTUPPTPTN 5-3
Range remote programiming (ICL)eieiiuieeiiieieeiiiee et ettt e st e et e e s aate e e e sbe e e e e bbeeeeanbeeeesnnseeeansbeeenanes 5-3
DigitS ICL PrOGraMMINGeeeieeeeieeesiret ettt e st e ettt ettt et ss et ss e b e e e ket e sabe e e ssneessb e e e be e e snne e e nnneennnees 5-4
S Tor= T 1] o HR OO PSP PP PP PUPPP TP 5-4
ST 1] o o 1o 1 £ PSP PP PO PUPPPTPI 5-4
L= TP PSPPI 5-5
Setting Rate from the froNt PANELooii i 5-7
Setting measurement speed from a remote INEIFACEueiiiiiiiiiii e 5-7
2T T 1T/ To | 1 o PO RRRRR 5-7

3700S-901-01 Rev. C / July 2008 iii

Table of Contents Series 3700 System Switch/Multimeter Reference Manual

11 =T PRSP RRPRR 5-8
(=T ol g Po T o od =T] Ao PP PPRRTPPRRI 5-8

(D] To 1 v= U {11 C=T Y1 o [0 PP UPPPPPPTTTN 5-10
Relative, Math, and dB ... 6-1
REIALIVE ...ttt ettt e oottt et e e e e e sttt e e ee e e e e e an bttt e e eeeeaanbnbeeeaeae e e e nreneeeaeeeaeannns 6-1
Basic front panel REL PrOCEAUIEeiiiiiiiiiiiii ettt e e e e e ettt e e e e s e bbb e e e e e e aaaantbneeaaeeeaannnees 6-2
= I =T 0o (o] o= = L1 [o] o [T PP TUUPTUPPTPIN 6-2
SYor= 10 011 aTo RSP PPPPPPPPN 6-3
MALN CAICUIBLIONS ...ttt b e s e ss e e s e e n e e nnn e s e e nnnes 6-3
000G o PP PPRROTO 6-4

ST (o= o | ST PP PPP P PPPPPPPPPPRTON 6-6
RECIPIOCAI (LX) 1ttt ettt e e e et e e e e e e ek et e e st et e e s bt e e et et e e bt e e s e e e et e e naee 6-7

(o] = o0 011> o <SRRI 6-10
(o] 0 oloT o1 ilo 01 = \io] o H U UPT PR 6-10

[o] S aSTor=1 o] 1] o T PP 6-11
Buffer: Data Storage and RetrieVal.........c.uuiiiiiiiiiiiiie e 7-1
BUITEI OVEIVIBW ...ttt oot e et e ekt e e et e e e e e e e e e ennbe e e e ennnes 7-1
Front PANEI OPEIALIONeiiiiiiit ettt st e e e e s e e et e e e e e b e e e e annbe e e e eenes 7-2
Creating and selecting a reading DUFTEEoo i ee e e e 7-2
Selecting a reading DUTEIuiiei e e e e e e e e e e et e e e e e s e nbbaareaaeeaaan 7-3

S (o] (] aTo N =T=To [T To L OO PP PO PP PUPPP PRI 7-3

S E AV o[T (== To [T o To LSOO PSP P O PP POPPP TP 7-3
(O[T g o To J == To [T To ST P PP TUP RPN 7-4
Deleting @ reading DUFTEI ettt e e e e et e e e e e e e anrbe e e e e e e e aannnees 7-5

R ETor= 1 T o I =7 Yo [T [PSP TOUPPUPRTPTIN 7-5
Buffer configuration (front PANEI)..........eeiiiiiiii et e e e e e 7-6
APPENTING FEAUINGS ...ttt b et e ket e e s bt e e ek bt e e sttt e e sh b et e e et bt e e aasb e e e e as b e e e e antbeeennnes 7-7
ReMOte BUfEr OPEIAtION.........ieiiiii e e e e e e s e e e e e e e e st rbeeeeeeeaeannes 7-7
Data store (DUFfer) COMMEANASoouiiiiiii ettt e e e e e bb e e nnee 7-8
REAAING DUTTEIS ...ttt e s e e e e et e e s e e s naneeeeas 7-12
TIME QNG AALE VAIUESeeiiiiiiii ettt et n e e s et e s nne e e s s e e e e e e nnnees 7-16
BUFTEE STATUS ... e ettt e et e e e e s et e e ettt e e e e e e e et e e e e s 7-16
Dynamically-allocated DUTEISo.iiiiiei e e e et e e e e e s e st e e e e e e e e aanees 7-17
Dynamic buffer programming @XAMPIEei i 7-18
U1 =T g (o] e (o 1N (o o] o T TSRO PSP OPPPR PRI 7-19
Exceeding reading bUFfer CAPACILYceciiiiiiiiiie e 7-21
STo1= 1o 0 1o o TR PP PP PP PUPPRPPON 8-1
ScanNiNg fUNAAMENTAISccoiiiiii ettt e et e e e e et e e e e nnbe e e e enees 8-1
ChanNEl ASSIGNIMENTS.......eeie ittt e ettt e et e e s h st e e e bt e s s e e e e sane e e e aabn et e nnnn e e e nnnneeean 8-2
=T o] £ OO O P PSP PUPTTTRRTON 8-2
Foreground and background SCAN EXECULIONciiiiiiiiiiiiiee ettt e e e e e e e e e snebeeeaaeeeaennnees 8-3

R g(e o =T 1oL [PO PO PPPUP TP 8-4

iv 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Table of Contents

Trigger MOAEl COMPONENES ...ttt e e e ettt e e e e e e ettt e e e e e e e e aaat b e et eeaeaaansbeeeeaaeaesansbneeeaaeaeaannnnneeeeas 8-5

S Yox: 1o 1= 1 o IS (=T o I oo 18] 1 KT TSRO 8-7
BASIC SCAN PIrOCEUUIEeiiiiieite ettt ettt e et e e ettt e e s et e e ek e e e e et e e e e et e e e e annbe e e e enenes 8-7
210111 SRRSO UPUPPPRRIN 8-9
Changing channel and DMM attributes of an exiStiNg SCANcoiiuiiiiiieeiiiie e 8-9

[fo] a1l oF= Ta = I=Tor= 1o o 11 o o [T PR PP 8-10
S Yor= L olo] a1l 0] =i {o] o KU RO PP PRP P OPSPPPPPPN 8-11
20T o T=Tg= 1n o] g IETo= 1ol o 1T o T RSP 8-12
@3 I oo 1031 4= 15 (o SRR OUPPPPRRRN 8-12
SCANNING EXAMPIES ...ttt ettt e ettt e e a bt e e e s b et e e ek bt e e an bt e e s bt e e e et b e e e e anbn e e e nnnneas 8-14
HArdware trgOEr MOAESuviiie ittt ettt e e et bt e e et b e e e e abb e e e e nabeeeeenres 8-18
Falling €dge trigger MOUEcoiiiiiiiitiee ettt e e et e et e st e e e e e e s e e e e nanreeeas 8-20
Rising edge master trigger mode (version 1.4.0 or higher) ... 8-21
Rising edge acceptor trigger mode (version 1.4.0 or NIgher)eeeiiiiii e 8-22
Either €dge trigger MOOE.ueiiiii et e e e e e e e e e s e et e e e e e e e s e s st b e e e eeeesasatbaeeeaeeeeananees 8-23
Understanding Synchronous triggering MOUEScouueieiiiiieiiiiieeiiieee sttt e s nneee s 8-24
1= 9-1
(1L (o] 4= L PSSP 9-1
Default file EXIENSIONSeiiiiiiiii ettt s e st e e st e e s e bt e e e anbbe e e s ennbeeesannbeeeeennees 9-1
File SYStEM NAVIGALIONeiiiiiiiii ittt e et e e s ettt e e e et e e s enbbeeeeansbeeeeennees 9-2
L1 L= R PSPPSR 9-3
Yol €] 0 1A= L 1]][USSP 9-4
CommMANG tADIE ENIIESeiiiiiiiie et et e e et e e e ettt e e e e rbe e e e e nbe e e e e nnbeeeeanees 9-9
ST)= 10-1
OVBIVIBW ...ttt ettt ettt oo oo 4okttt a2 o444 e bt bttt e a2 o244 Rt e be et e a2 e e e o nnbebeeee e e e e e s nnbebeeeeeeeeesnnrebnees 10-1
TSP-NEtTM CapabilitIESccceei ittt e e e e e e e e e e e aeeeaeees 10-1
Using TSP-NetTM with any Ethernet-enabled deviCe...............oeiiiiiiiiiiii e 10-2
e L0 o] (IRl] o) TS PPPR PR 10-3
Using TSP-NetTM vs. TSP-LinkTM for communication with TSP-enabled devices......................... 10-4
Instrument Control Library (ICL) - General device CONrolccccvviiiiee i 10-5
Instrument Control Library - TSP-specific device CONtrol............ccccvivieiiee i 10-12
LXI Class B Triggering (IEEE-1588)........c.cuuiiiiiiiiiiiiiieece e 11-1
Introduction to IEEE-1588 based trigQeringccueuaaiiiuuiieiiaaaeeieiiiieeee e e e e et eee e e e s s aibeeeeeaaaeaeeanes 11-1
IEEE-1588 implementation in the Series 3700.........cooiiiiiiiiiiaa e e e 11-1
Correlating PTP to Coordinated Universal TIMe (UTC)cooiiiiiiiiiiieaeiiiiieee e 11-2

3700S-901-01 Rev. C / July 2008 v

Table of Contents Series 3700 System Switch/Multimeter Reference Manual

Configuring and enabling IEEE-1588ccoouiiiiiiiiiie et 11-3
Yol o= o (0] gl = 1 = g1 PO PUP SRR 11-5
Monitoring alarms with LAN triggers and LXI @VeNt 10gcoeeiiiiiiiiiiiiiiiiie e 11-6
[=YY= 1 (oo PP PP PPPTTN 11-7
Example applications of IEEE-1588 in Series 3700-based SYStemSccuuveiiiieiiiiiiiiiiiee e 11-7
Synchronizing multiple Series 3700 INSITUMENTS.......c.iciiiiiiiiiir e e e e e e e s rrbrareaae e 11-9
SEATUS MOAB ... 12-1
Y= LU R (T R (=T ST <) £ PO PPPTPTPTPP 12-1
Negative and poSitive tranSItioN FEJISIEIS.ciiuiiiiiieiit ettt nn e 12-2
Status byte and SRQeeiiiiiiiiiciiei e e e e e e e e e e s —raae e e i a i —rraaeeeannraraees 12-2
QUEBUES ..ttt 12-2
System summary and StAtUS DYLEcoi i e e e s e e e 12-3
SYSIEM SUMMATY FEQISTEIS ... iitiiieie e e e e s ittt e e e e e e st e e e e e e s se e te e e e e eeessantateeeeeaeessastnreneeeeeessnnrnrnees 12-4
Standard event status register and eNabIE..... ..o 12-5
OPEration EVENES FEQISTEIS ...oiiuiiiiiiiiiie e ettt ettt e e sttt e e sttt e e s st e e e e e snbe e e e s snbaeeeesnbaeeessnbeeeessnbeeeenns 12-6
(@ = To g F= o LI A oY o B =T L] (] SRR 12-7
Measurement event register (MEASUIEMENT)uuiiiiieeeiiiiiieie e e e e e s s srerr e e e e e s e s e e e ee e s s s snnraareeeees 12-8
Status fUNCHION SUMIMEATIYcci it e e e e e e e e st e e e e e e sa b et e eeeeeessastabaeeeeeeessnnnrnenees 12-8
Clearing regiSters and QUEUESicceeiiiiiiiee it e e e ettt e e e e s e e e e e e e s s et e e e e e e e s sastabaeeeeeeessnnrnneees 12-9
Programming enable and transition rEQISEIS.........uuuiiii i i i e e e 12-10
REAAING FEQISLEIS ...eeiieiiiiiiie ettt ettt e e st e e e sttt e e e sttt e e e sabeeeeeasbeeeeesnteeeessnteeeeeanbeeeeeanneeaeen 12-11
Status byte and service request (SRQ)uuiiiiiiie it 12-12
STALUS DY FEGISTEN ...ttt e e e ettt e et e e e e e e e et e e s s 12-13
Serial PolliNg @NA SRQoiiiiiiie et 12-14
Service requESt €NADIE FEOISIEToo i et e e e e et e e e e e e s nnaeneeeeas 12-14
SPE, SPD (Serial POIING) .. eeiiiiiiieiieee ettt ettt et e e e e e et b et e e e e e e e et b e e e e e e e e e e naereeeeas 12-14
Status byte and service request COMMANTSoiiiiiiiiiiiiie e e e 12-15
Enable and transition FEGISTEIS.oiuiiie ittt 12-15
Controlling node and SRQ €NabIe FEQISTEISuiiiiiiiiii it 12-16
Status register SEt SPECITICS.......uuiiiiiie e e e e e e e e 12-16
SYSLEM SUMMATY EVENT FEGISTEISeveiiriie ittt ettt e et e e et e e s e e e e e s st e e e s nneas 12-16

S =T a (o b= o Y= L =T 0 L] (=] O PRT TP 12-19
OPEratioN EVENE FEGISTEIS ...ttt ee e e ettt e e ettt e e e e et b et e e e e s e s e bbb et e e e e e e anabb e et e e e e e e aanbbbaeeaeeeeaansneneeaeas 12-21
QUESTIONADIE EBVENT FTEQISTEIS .. .uiiiiiiee it e e e e et e e e e e e et e e e e e e e e s et b b a e e e e e e e sasaereeeeas 12-23
MEASUIEMENT EVENT FEOISTEIS ...ttt ettt ettt ettt e et e et e e et bt e e s bt e e sab b e e e e bt e e s ante e e e nnees 12-24
QUEBUES ... e ———————— 12-25
OULPUL QUEBUE ...ttt e oottt oo 4ottt e e e e ekttt e e et e s et e et e e e e e e st n e e e e e e e e nasnnnneeeas 12-25
EFTON QUEUE ...ttt e oot e e e e e e et e e e e e e e ekt e e e e e e e e s s e e e e e e e e e antnnneeeeeneas 12-26

vi

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Table of Contents

Instrument Control Library (ICL) ..ot 13-1
Command Programming NOESuuieeeeiiiciuieeieeee e s seittrerreaeeesast st e eraeesssarareereeaeessanstererreeeesssnnnrnreees 13-1

RVAV 1o ot g T V= et (= USRS UPPPPRRRN 13-1
FUNCHIONS aNd attrDULESttt e e e e e ettt e e e e e e e e baeeeaeeeeannnees 13-2

TSP-LinkTM nodes
Logical instruments .
QUETY COMIMANTSuutieiitee et ittt et e e e e et et e e e e e et et e e e e e s et aeb e et eeeeaaasatbaeeeaaesassasbseseeeeeasnsasneeeeeassnnsbanaeaeeasian
DMM configuration

[CL COMIMANT IIST...eeeeiieeitet ettt e b e s e e sn e s e e s r e e nnne e e ne e e e
beeper fuNCIONS AN AIHDULEScciiiiii et
o1 {01 Vo 10 o RO PRSP
channel fuNCtioNS aNd AHDULESooiiiiiiii et e e e e e e e e e e e e naeb e e e e e e e e anneaee
dataqueue functions and attributes
delay functions
digio FUNCLIONS AN ALIDULESiiiiiiie it e e e e st e e e e e s nbbeeennee
display fuNCtONS @nd AtITDULESeiiiiiiii ettt e e st e e e
dmm functions and attributes......................
errorqueue functions and attributes
eventlog functions and attributes

EXIE FUNCHIONS ...ttt ettt e bt et e e e bt e nbeeenee s
L1200 T Tox 1T T LSOO PPPPN
format attributes.....................
fs functions..........cccceeeieiniis
gpib attributes
([0 0] Lo 1 o] o = PO PRP RSP
LAN functions and attributes
localnode functions and attributes
MAKEGETEET FUNCHIOMNSttt e e et bt e e et e e st e e e s nbbeeeenes
MEIMOTY FUNCHIONS ...ttt ettt ettt e st e ekt e e e sttt e e ne e e e et e e e e ante e e e snneeeannneeennn
o] o [o3h V1 3 Tox 1 o] o PP PPPPPPRPRIN
L1010 TU T g1t o] o T PO T OO UPRP TR
ptp functions and attributes...
(=TS (0 g Voo o = PO PRRSP
SCan fUNCLIONS AN ALIDULESoiiiiii ettt e e e e ee s
schedule functions and attributes
setup functions and attributes

Slot[X] attributesooocvveeieiiiiiiiiieeeeee

status FuNCtions and attriDULESccuiiiiiiiiii e
LT a T {0 Tod 1T T 1SR OPPPPPPS
trigger functions and attributes....................

trigger.timer functions and attributes
tsplink functions and attributes....................
tsplink.trigger functions and attributes
tspnet fUNCIONS aNd AttFDULEScoiuiiiii ettt eneeas
upgrade functions
USETSEIING FUNCLIONS ...ttt et ettt et e e et e e e ekttt e e s et e e sbb e e e e nbbeeennes
WAILCOMPIETE FUNCHIONS ...ttt e e e

3700S-901-01 Rev. C / July 2008 vii

Table of Contents Series 3700 System Switch/Multimeter Reference Manual

V=T o= 1 o o 14-1
Ta1 (oo []ox i o] s DURERETO PSP PPPPPPPRPPPPINt 14-1
Verification teSt FEQUITEIMENTS ... e e e e e s e e e e e e s s s te e e e eaaesesnsanrnreeeeesaanns 14-2

[VAo] aTaal=T a1 = LI oTo) oo L1110 o TSRO 14-2
Warmup period
LiN€ POWET ...oevieiiiiiiiiiie et

Recommended test equipment

VENIfICALION TIMITS ...ttt ettt et s bt e e e e e e ane e 14-4

ReStOrNG fACtOry AEFAUILSooiiiiiiiieee e et e e ee s 14-5
Performing the verification teSt ProCEAUIES............uuiiiiie e e e 14-5

TESE SUMIMAIY ...eeeeeiieiiit ettt ettt e e oottt e e e e ettt e e e e e s et e et e e e e e e s b e e et e e e e e e et e et e e e e e e n s en et e e e e e nansnnnneeeas 14-5

TS A eto] g TS T [T o oo PR 14-6
Series 3700 VErifiCAtiON TESISuuiiiiiiiiee i e et e e e e e s st e e e e e e e e anrnaeees

VErTYING DC VOITAGE ..ottt ettt e e e e ettt e e e e e e bbbt e e e e e e e e nbbb e e e e e e e eannbbneeeaeeaaannnnes

Verifying AC voltage
Verifying DC current 10pA to 100pA ranges
Verifying DC current 1mA to 3A ranges
Verifying AC current 1mA to 3A ranges
AV =T 413 aTo I =T o [T=] oo Y SRR PPPRPURRIN
Verifying 4-wire resistance....
Verifying 2-wire resistance....
Verifying dry circuit resistance
Verifying 1-OHM and 10-OHM resistance ranges

Verifying Zeros USING @ 4-WIre SNOIouiiiiiiiii ettt e e snree s
CaliDrALION e 15-1
(@Y= AV = R TURRPRPRR 15-1
ENVIironmental CONAILIONSoiiiiiiiieiiiie ettt et ettt e e e enbe e e e e snbe e e e e nnbee e e ennees 15-2
V=g 10T o3 o 1] e To T TP P PP PP PP OPPRO 15-2
[T o= o To 1= PP OPPRT PRI 15-2
Calibration CONSIAEIALIONS ... ittt e e et e e e e e e e e e e e e e e e e aa s tereeeeaeeeesanneeeeees 15-3
(0= 11To] £= i To] o [o3/ o [PO PP PR UPPPTRTN 15-3
[RyCTolo]pqTgalT o o [=To I =To [UTT o]0 LT o | APPSO PPPPPTTTN 15-3
(021 {1 0] 71 1 o] o LU PURTPTPTP 15-4
Remote calibration PrOCEAUIEoo it e s e e e e e e e bbb e eeaae s 15-5
(DO o] | eJ o= 11 o] = L1 o] ISP OPPPTTRI

Resistance calibration
DC current calibration
P O o] i3 or=1 1] = i o] o IP TN
AC current calibration
Frequency calibration
SAVE CAlDIALION .oooeiiiiiieeeee s

viii

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Table of Contents

T =T 0 = o = 16-1
1] (o To [N L1 o] o I RSP PRP 16-1

[LTSI =T o] F= o =T 10 = o PR 16-1

[L0 a1 0Tz T 1= I (=] £ S PPE 16-3

RISl ol (oTot=To (U = OO TP TOTPPPI 16-3

Error and StAtUS MESSATES .uuuuiiiieiiieiiiiiiiie e e e e e ee ettt s e e e e e e e e ee it r e e eeeeeeestaa s e e eeeeeeaarnnaaaeeaeees 17-1
1] (o To [N L1 o] o I RSP PRP 17-1
ETTOT SUMIMIGTY ... e e 17-1

S (o Y (=T o k3o I Ted 1] o) £ TSR 17-1
[y Vo [T a T =T 1 o] =PRI 17-2
Error and Status MESSAQGE lIST.....coiuiiiiiiiie ettt e et e e e e e e 17-2
Appendix A: EEE-1588 GloSSary Of TEIMS.......uiiiiiiiiiiiiiiiiieeee et A-1
2 T0T 0T g F= 1Yo (o o] QU SSERR A-1

e o0 o P SEERR A-1

LCTr= T o [ap T 1] (=] o (o o] G URTPTPSR A-1
= 1S3 1= o o T USSP A-2

L I8 PR PR A-2

I 0 T A-2

[I YU oTo (0] . = V1 o USROS A-2
a0 PSRN I-1

3700S-901-01 Rev. C / July 2008 iX

List of Figures

Figure 1-1:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 3-1:
Figure 3-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 8-1:
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 8-6:

Figure 8-7:

3700S-901-01 Rev

DMM measurement CapabilitieScuvieeiiiiiiiiiiiiec e 1-2
TSP tESt SCHPL EXAMPIE ...t e e s e e e e s e st e e e e e e e s e ansnraaeeeaeeeaanrneeees 2-7
Programming mMOdel fOr SCHPLSuuuiiiiiii e e s e e e e e e e e e e e s snnra e e eaee s 2-9
ReAr PANEl FEALIUINESuiiiiiiie e e e e e e e e s s st e e e e e e s e snnrnareeeees 2-10
GPIB CADIE ... 2-11
Using Test SCript BUIIAEE (TSB)uuiiiiiiieeiiiiiieiie e e s s siieeee e e e e st e e e e e e s staar e e e e e e s e annrnaeeeeeeas 2-14
MUItipIE TSP-LINK NEIWOIKScci ittt e e s e e e e s e e e e e e e s e snnnbaaeeeaeeas 3-2
Single TSP-Link network With groUPSeeeeei i e e e e e e e e 3-3
Model 3706 System SWItCh/MURIMELETvviiiiiee e 4-2
Model 3706-S System SWiItCh (N0 DIMM)uviiiiiiiiei e e e e 4-2
Model 3706-NFP System SWItCh/MUIIMELET..........cccoiiiiiiiiiiee e 4-3
Model 3706-SNFP System SWitCh (N0 DMM)ccviiiiiiiiiiiiiie et e e 4-3
Active channel display EXamPIEoociiiiieee e e 4-5
MAIN MENU GISPIAY ...ttt e eeeee ettt ee e esee e e et et et es e e et e ee s e e eeer s 4-7
Speed versus N0ISE CharaCteriStCS.......uuuiiiii i 5-5
Lo AT o Jr=YZ=T = Vo [1L =] PRSPPI 5-9
Repeating average filter e 5-9
FIIEEI WINGOW. ...ttt et e sa et e e bt e s e e e nnbeennneean 5-11
YT ol (=1 =T ol (o ST P TR PR PPRPTN 8-2
QLI 10 1o 1= 2.0 T [SRR 8-4
L= Tl o Jr=To [o T INT o] o101 A ([o =] SRR PR 8-20
L= Tl o Jr=To [o LT o U 101U 1k v o o =T SRR 8-20
LT[ae |\ o040 1U L a1 (T o = USRS 8-21
LT[e VAN Ta] o]0 1 e o = SRR 8-22
LT[aTe VAN 10 11 010 T [[T OSSR 8-22

. C/July 2008 Xi

List of Figures

Series 3700 System Switch/Multimeter Reference Manual

Figure 8-8: Either @dge iNPUL trIgOETuiiiieei e e e e s e e e e s e st r e e e e e s s ansreneeeeeeesnnrnneees 8-23

Figure 8-9: Either @dge OULPUL trIgOETuuuiiiie et e et e e e e s s e e e e e e e e e e e e e e s s e ne e e e e e s s nrnnnees 8-24

Figure 8-10:
Figure 8-11:
Figure 8-12:
Figure 8-13:
Figure 8-14:
Figure 8-15:
Figure 12-1:
Figure 12-2:
Figure 12-3:
Figure 12-4:
Figure 12-5:
Figure 12-6:
Figure 12-7:
Figure 12-8:

Figure 12-9:

SYNCIrONOUSM INPUL tHIGOET w.veeiie ettt e e e e e e e e s e e e e e e s e st e e e e e e e s s nnnneees 8-25
)Y Tl gl o] g oTU] 1Y I o101 o1 B o o = SRR 8-26
)Y Tl gl o] o0 K=y AN [0 01U v o o =T SRR 8-27
SYNCHIONOUSA OULPUL THIGQET ..eeii e et e et e et e e e e e e st e e e e s e s e e e e e e e e s s nnnneees 8-27
)Y (e aTgeT Lo TU £ aT 01U 1 T T =1 SRR 8-28
)Y (el gl e o TU ESR o TU i o101 A (o o =] SRR 8-29
Status DYLE @NA QUEBUES.......uuieiiie ettt e e e et e e e e e e s e e e e e s e st e e e ee e e s e ssnbeaeeaeeeeannnnnnees 12-2
Status byte and System SUMMATY FEQISTENuviiiieeee e e s e e e e e 12-3
SYSTEM SUMMATY FEQISTEIS ..uuviiiieeeii ittt et e e s s e st e e e e e s ss e e e e e e s s ssnbeaeeeaeeesassstaeeeaeeesannnnnrnees 12-4
Standard event registers and event status enable.............ccceveee i 12-5
OPEration EVENE FEOISTEISuuuiiiie e ettt e e s r e e e e e s e e e e s e st e e e ee e e s e snnteaeeaaeessnnnnneees 12-6
QUESHIONADIE BVENT FEUISTEN ..vviiiiei it e e e s e e e e s e e e e e e e e e e nnnreees 12-7
MEASUIEMENT EVENT FEYISTENci it e e et e e e e e e e e e e e e e e e e s e b be e e e e e e e e snnrnreees 12-8
G o 1S = L (0[S =0 153 =] SRR 12-10

Status byte and service request (SRQ) . .uui i 12-12

Figure 12-10: Standard EVENT FEQISTENuuuiiei ettt e e e e s e e e e e s s st e e e e e e s e senrrareeeeeeseannns 12-20

Figure 13-1:
Figure 13-2:
Figure 13-3:
Figure 13-4:
Figure 14-1:
Figure 14-2:
Figure 14-3:

Figure 14-4:

Lo 0T 15 1Yo 1= o o P PRRR 13-24
L8] 0] o= o= T o o] o] - PR 13-26
MatriX Card AISPIAY ..ot e e e e e e e s e e e e r e e e e e 13-27
Status DYLE @NA QUEBUES........uviiiie ettt s e e e e e e s s et e e e e e e s senbnreeeeeeeeeannns 13-264
(DT ORY o] 1T [TV L= g1 To%= 1o [SRR 14-7
Y @R Y o] 1= To IRV g {To%= 1o o PSR PR 14-10
DC current verification 10PA t0 LOORA FANGES. ...ciiiiiiiiiiiiiieeeeeesesiireee e e e e e s ssaaraeee e e e e s snnnnreees 14-12

DC current verification ITMA 10 3A FANGESuuuuiiiieeiiiiiiiie e ee e e sesirree e e e s s st e e e e e e s s naanreees 14-13

i

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual List of Figures

Figure 14-5: DC current verification 3A range diagramccuuueiiieeeiiiiiiiiieee e e e s st re e e e s s ssnrreeeeeeeeseannes 14-14
Figure 14-6: AC current verification IMA 10 LA FANQEccoiicvrieiieee e e s iiiieeee e e e e e st e e e e e e e s snnaraeeeeeeeaeannes 14-16
Figure 14-7: AC current VErifiCation SA FANJEccuuvviiiiee e et e e s sr et e e e e s s s staar e e e e e e e s snntaaneeeaeeaeannns 14-16
Figure 14-8: FreqUeNCY VENTICALIONcc.uiiiiiiii et s e e e s s st e e e e e e e e s nraareeeeeeneannns 14-18
Figure 14-9: ReSIStanCe VEIIfICAIONuuiiiiiee i s e e e s s st e e e e e e s e s b areeeeeeaeannes 14-19
Figure 14-10: 2-wire resistance VErfiCAtiONcccuuviiiiie e e e e e r e e e e e e ennes 14-21
Figure 14-11: ReSIiStanCe VErfiCAtIONceiiiiiiiiiiiiiiie et s e e e e e st e e e e e e s st raeeeeeeeaeannns 14-23
Figure 14-12: Verifying diSCrete reSISLANCEcccuviiiiiee e e e e st e e e s s st e e e e e e e s ssnreaeeeeeeeseannes 14-24
Figure 14-13: 4-Wire ShOrt QiagramM...........uuiiiiiie e icciieiie e e s e e e e e s e e e e e e s st re e e e e e e s e snnrraneeeeeeseannns 14-26
Figure 15-1: 4-Wire ShOrt diagramM...........cuiiiiiiee i e e e s e e e e s e s e e e e e e s e sanbaaeeeeeeesnnrnneees 15-6
Figure 15-2: DC voltage CaliDrationooiiiiiiiiiiiiiee e e e e e e e s e e e e e e e s s nrannees 15-7
Figure 15-3: ResSistance CaliDrationooiiiiiiiiiiiiieie e e e e e e e e e e e e e s s nraaeees 15-8
Figure 15-4: DC current CaliDration.............eeeieeiiiiiiiiiiee e s ssciee e e e e s s e e e e e s e s e e e e e e s e snnbraeeeaeessenrannees 15-9
Figure 15-5: AC voltage Calibrationeeiiiiiiiiiiiiiiis e e et e e e e e e s ae e e e e e e e e annns 15-11
Figure 15-6: AC current calibration 1MA t0 LA FANQE......ccciiiiiiiiiiee ettt e st e e e e s s e e e e e e e e anns 15-13
Figure 15-7: Low frequenCy CaliDration.............coiiiiuiiiiiiie et e e e e st e e e e e e s e e e e e e e e s e annes 15-15
Figure 15-8: FreqUeNCY VENTICALIONc..uiiiiiii e e e e e et e e e e e e s s ae e e e e e e s e annes 15-15
FIQUrE 16-1: FUSE [OCALIONuuiiiiiie ettt e e e e e e et e e e e e e e e st e e e ee e e s e aaabaaeeeeeeesanrnrnees 16-2

3700S-901-01 Rev. C / July 2008 xiii

Section 1

Introduction

In this section:

Contact iNformMationevvvvveveiiiiieiiieieeeieeeeeeeeeeeeeeeeeeeees 1-1
OVEIVIBW ..ot e e e e e e ee s 1-1
Warranty information..........cccceovveeeeiiiiecinieee e 1-2

Contact information

If you have any questions after reviewing this information, please contact your
local Keithley Instruments representative or call one of our Applications
Engineers at 1-888-KEITHLEY (1-888-534-8453). You can also contact us
through our website (http://www.keithley.com).

Overview

The Keithley Instruments Series 3700 System Switch/Multimeter features
scalable, instrument grade switching and multi-channel measurement solutions
that are optimized for automated testing of electronic products and components.
The Series 3700 includes four versions of the Model 3706 system switch
mainframe, along with a growing family of plug-in switch and control cards.
When the Model 3706 mainframe is ordered with the high performance
multimeter, you receive a tightly-integrated switch and measurement system that
can meet the demanding application requirements in a functional test system or
provide the flexibility needed in stand-alone data acquisition and measurement
applications.

http://www.keithley.com/

Section 1: Introduction

Series 3700 System Switch/Multimeter Reference Manual

Measure and switching capabilities

The basic measurement capabilities of Series 3700 systems are summarized in

the following figure.

Figure 1-1: DMM measurement capabilities

DC Voltage

AC Voltage

DC Current

AC Current

Frequency

Period

Resistance (2-Wire)
Resistance (4-Wire)
Dry Circuit Resistance

Logarithmic scale

Temperature-RTD
Temperature-TC

Linear scale

Measurement capability
p In i m 1 1k ™ 16
10nV I 300V
1000V I 300V
1pA I 5

TnA I 5A
3Hz I 500kHz

2ps I 330ms

1O I 1 20MQ
100N< I 1 20M <2

1pQ I 2 k<2

-500 0 500 1000 1500 2000

-200°C I 630°C
-200°C I 1820°C

Temperature-Thermistor -80°C mmmm 150°C

Warranty information

Detailed warranty information is located at the front of this manual. Should your
Series 3700 require warranty service, contact the Keithley Instruments
representative or authorized repair facility in your area for further information.
When returning the instrument for repair, be sure to complete the service form at
the back of this manual and give it to the repair facility with all relevant

information.

NOTE The service form requires the serial number of the Series 3700. The
serial number label is located inside the unit on the bottom panel. The
serial number can be viewed by removing the slot covers and/or

switching modules from the mainframe.

1-2

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 1: Introduction

WARNING Before removing (or installing) switching modules, make
sure you turn off the Series 3700 and disconnect the line
cord. Also, remove any other external power connected to
the instrument or switching module(s).

Failure to disconnect power before removing (or installing)
switching modules may result in personal injury or death
due to electric shock.

Displaying the unit's serial number

To display the serial number on the front panel:

NOTE If the Series 3700 is in remote mode, press the EXIT key once to
place the unit in local mode.

1. When in local mode, press the MENU key.
2. Scroll to the SYSTEM-INFO menu and press the ENTER key.

3. Onthe SYSTEM INFORMATION menu, scroll to the SERIAL# and press
the ENTER key. The Series 3700 serial number will be displayed.

3700S-901-01 Rev. C / July 2008

1-3

Section 2

Introduction

TSP Programming Fundamentals

In this section:

INEFOAUCTION ...t 2-1
Test Script Processor (TSPTM) ...oooivvviiieieiiiiee e 2-2
RuNn-time environmMent...........cccvvvieee i 2-3
(@ 1N 1= = PPt 2-3
Yol] o] TP PUUT PO 2-4
NamMed SCIPLS ...ccooiiiiiiiiiee e 2-5
Programming OVEIVIEWccvevveeeeiiiiiiiiieee e 2-6
Installing the TSPTM softwarecccccevviveiiiinieniiiennn 2-10
SYStEM CONNECHIONSeeiiiiieeiiiiee et 2-10
Using Test Script Builder (TSB)coviiiiiiiiieieeiiiiiiieen. 2-13
Sending commands and statements............cccccoeeeuveeeen. 2-15
Measure VOIageeeeiiiaiiiiiiieieeee e 2-15
USEI SCHPLS wvvveieie e ettt e et e s e s 2-16
Differences: Remote versus local state..............cccveevneee. 2-32
Test Script Language (TSL) Reference..........cccceevvvneeen. 2-33

Conventional electronic test and measurement equipment responds to

command messages sent to the instrument. Each command message contains
one or more commands that the instrument executes in order. To conduct a test,
a computer controller is programmed to send a sequence of commands to an
instrument. The controller orchestrates the actions of the instrumentation.
Typically, the controller is programmed to request measurement results from the

instrumentation and make test sequence decisions based on those
measurements.

In addition to operating as conventional instruments, Keithley Instruments’ Test
Script Processor (TSP)-based instruments are capable of executing scripts that
process commands in the instrument rather than needing to be sent from a
computer. Basically, a script allows you to have a program running inside the
instrument to execute a sequence of commands without the need to send them
individually from a computer. Once a script is loaded into the instrument, it only
needs to be called (similar to a function) to execute the desired command
sequence. In the sections that follow, you will learn what a script is, and how to

create, save, and load a script.

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Test Script Processor (TSPTM)

The Test Script Processor (TSP) is a scripting engine that runs inside the
instrument. It is capable of running code written in a scripting language called
Lua (http://www.lua.org). This makes the instrument fully capable of interpreting
and executing code in a way that is similar to Visual Basic (VB) or Java, rather
than only responding to single-line commands. Program statements control
script execution and provide capabilities such as variables, functions, branching,
and loop control.

Because scripts are programs, they are written using a programming language,
called the test script language or TSL. TSL is derived from the Lua scripting
language. For details about TSL, see the Test Script Language (TSL) reference
(on page 2-33).

In this manual, we refer to Lua as the "test script language" or "TSL." The TSP
runs portions of TSL code called "chunks." Most messages sent to the
instrument are directly executed by the TSP as TSL chunks. The simplest
messages sent to the instrument are individual instrument control commands.
Even though these messages are executed as TSL chunks, using them is no
different than using a conventional instrument. You send a command message
and the instrument executes that command. When sending individual command
messages, it is irrelevant that the TSP is executing the message as a chunk.

The command set for each TSP-enabled instrument is referred to as the
“"instrument control library" or ICL. Each TSP-enabled instrument will have its
own set of ICL commands. Although each TSP-enabled instrument inherits the
same TSL, different instruments extend the language in their own way.

ICL commands are similar to the commands sent to a conventional instrument,
but ICL commands appear like function calls or assignment statements. For
example, the command to set ASCII precision to 10 for ASCII readings is:

format.asciiprecision = 10

Similarly, the command to format readings as ASCII is:

format.data = format.ASCII

These commands do not need to be sent as separate messages. They can be
combined into one message by joining the two commands together with a space
separating them. The resulting chunk would be as follows:

format.asciiprecision = 10 format.data = format.ASCII

2-2 3700S-901-01 Rev. C/ July 2008

http://www.lua.org/

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Run-time environment

A feature of all scripting environments is the run-time environment. In the TSP™,
the run-time environment is simply a temporary collection of global variables. A
global variable can be used to remember a value as long as the unit is powered
on and the variable is not assigned a new value. To instruct the instrument to
read the ASCII precision setting and store the result in a global variable named
"x", send:

x = format.asciiprecision
A global variable can be removed from the environment by assigning it the nil
value. For example, the command x = nil will remove the global variable x

from the run-time environment. When the unit is turned off, the entire run-time
environment will be lost.

Queries

TSP™-enabled instruments do not have inherent query commands. Like any
other scripting environment, the print command and other related print
commands are used to generate output. The print command creates one
response message.

The following chunk is an example that generates an output response message:

x = 10 print(x) — 1.000000000e+001

NOTE The output (indicated by the —) may vary, depending on the ASCII
precision setting.

3700S-901-01 Rev. C / July 2008 2-3

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Scripts

When taking advantage of the TSP™ to perform more complicated sequences of
commands, especially sequences utilizing advanced scripting features such as
looping and branching, sending the entire sequence in one message is very
cumbersome. Use the 1oadscript and endscript messages to collect a
sequence of commands into one chunk.

The loadscript message marks the beginning of a script. The instrument will
collect all following messages until the endscript message is received (the
endscript message marks the end of the script). The TSP-enabled instrument
compiles the test sequence and makes it available to run in a subsequent
message. This chunk is called the "anonymous script.”

NOTE Everytime the script.run () command is given, the anonymous
script will be executed.

The anonymous script can be run at any time by sending the command
script.run () Or script.anonymous (). The anonymous script can be run
many times (it remains in active memory until a new anonymous script is
created). Sending a new script using the loadscript and endscript
messages will instruct the TSP-enabled instrument to replace the anonymous
script with the new script. To see the current contents of the anonymous script,
send the command script.anonymous.list ().

Creating and using scripts this way is a very powerful feature of TSP-enabled
instruments, but it is limited to accessing only one script at a time. The solution
to this limitation is to create user-defined named scripts. See Named scripts (on
page 2-5) for information on how to use named scripts, and also how to store
many scripts in the instrument at one time.

2-4 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Named scripts

The loadscript message can also be used to create named scripts. Loading
a named script does not replace the anonymous script. Instead, a global
variable in the run-time environment is temporarily created to store the script.
Because the script is stored in a global variable, the name of the script must be
a legal TSL variable name. Specify the name of the script in the 1oadscript
message by separating it from the loadscript keyword with a space
character.

For example, the message loadscript MyScript will instruct the TSP™-
enabled instrument to begin gathering command messages that will be used to
create a script named MyScript. After sending the command messages, the
endscript message is still used to indicate the end of the script. Upon receipt
of the endscript message, the instrument will compile the script. If there are
no errors, the script will be made available as the global variable MyScript,
because that is the name we used in the 1oadscript MyScript message.
After a named script has been successfully sent to the instrument, you can run it
at any time by sending either the MyScript () or
script.user.scripts.MyScript () command.

Named script key points:

e Create different script names using loadscript.

e Sending a new script with the same name will overwrite (replace) the
previous version.

e Sending new scripts with different names will not remove previously sent
scripts.

e Using named scripts, any number of scripts can be made available
simultaneously within the limits of the memory available to the run-time
environment.

e Named scripts are stored as global variables in the run-time environment.
Therefore, like all other global variables, they are lost when the unit is
powered off.

e Nonvolatile storage can be used to store downloaded scripts across power
cycles. See Saving a user script (on page 2-22) for more information.

3700S-901-01 Rev. C / July 2008 2-5

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Programming overview

Chunk defined

A chunk is a single programming statement or a sequence of statements that
are executed sequentially (that is, sent to Lua as a single line). There are non-
scripted and scripted chunks.

Single statement chunk

The following programming statement is a chunk:

print ("This is a chunk")

When the above chunk is executed, it returns the following string:

This is a chunk

Multiple-statement chunk

A chunk can contain multiple statements. Each statement in the line of code
must be separated by white space. The following chunk contains two
statements:

print ("This is a chunk") print ("that has two statements")

When the above chunk is executed, the two statements are executed
sequentially, and the following strings are returned:

This is a chunk
that has two statements

Multiple chunks

Each of the following lines of code is a separate chunk. The first chunk sets the
ASCII precision to 10 for readings. The second chunk turns on ASCII readings.

format.asciiprecision = 10
format.data = format.ASCII

Scripted chunk

In a script environment, the chunk is the entire listing of test programming code.
If the two statements in Multiple chunks (on page 2-6) were created as a script,
then those two lines of code would be assembled as one chunk. The instrument
internally constructs a chunk out of a series of messages sent between
loadscript and endscript. Also see Script defined (on page 2-7) for more
details.

2-6 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Script defined

The Series 3700 utilizes a Test Script Processor (TSP) to process and run
individual chunks or scripts. A script is a collection of instrument control
commands and programming statements. The TSP test script example (on page
2-7) shows an example of how to create and load a script. When this script
(named "test") is run, the message "This is a test" will be displayed on the Series
3700 and sent to the computer.

As shown, a script consists of a chunk of programming code framed by shell
commands. The first shell command in the TSP script example loads the script
named "test." The last shell command marks the end of the script. The chunk in
the TSP script example consists of three lines of code. When the chunk is
executed, the test messages are sent and displayed. The following command
executes the chunk test ().

NOTE Itis common practice to say that a script is run. In actuality, it is the
chunk in the script that is being run (executed).

Figure 2-1: TSP test script example

Shell command
¢ + Mame of script

loadscript test

r —————————— -—

display.clear(] |

I display.settext("This iz a test™) | %— Chunk
| print("This iz a test™) J
endscript

T Shell command

A script is loaded into the Series 3700, where it can be run. Running a script
using this method is faster than running a test program from the control
computer because it eliminates the piecemeal transmission process from the
control computer.

A user script is created using your own program or the Test Script Builder
Integrated Development Environment (IDE), which is a supplied software tool
(see Using Test Script Builder (TSB) (on page 2-13)). The user script is loaded
into the Series 3700 and can be saved in nonvolatile memory. These are the
scripts referenced as a "user script" throughout the manual.

3700S-901-01 Rev. C / July 2008 2-7

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Run-time environment

The run-time environment is a collection of global variables (scripts) that you
have created. After scripts are placed into the run-time environment, they are
then ready to be run and/or managed. Scripts are placed in the run-time
environment as follows:

e Scripts saved in nonvolatile memory of the Series 3700 are automatically
recalled into the run-time environment when the instrument is turned on.

e Named scripts that you have created and loaded are also placed in the run-
time environment. A named script resides in volatile memory and must be
saved to nonvolatile memory to retain it after power-off.

e Anunnamed script that you have created and loaded is also placed in the
run-time environment. Remember that only one unnamed script, referred to
as the "anonymous script,” can be in the run-time environment. If another
unnamed script is created and loaded, it will replace the old unnamed script
in the run-time environment. An unnamed script resides in volatile memory
and must be saved to nonvolatile memory to retain it after power-off.

Nonvolatile memory

New or modified user scripts loaded into the Series 3700 reside in the run-time
environment and are lost when the unit is turned off. To save a script after
power-down, you must save it in nonvolatile memory. When the Series 3700 is
turned back on, all saved scripts will load into the run-time environment.

NOTE Do not confuse the run-time environment with the nonvolatile memory
of the Series 3700. Making changes to a script in the run-time
environment does not affect the stored version of that script. After
making changes, saving the script will overwrite the old version of the
script in nonvolatile memory.

TSPTM programming levels

Instrument control library (ICL) commands and Test Script Language (TSL)
programming statements are used to program and control the Series 3700.
There are two levels of programming:

e Sending commands and statements (on page 2-15): Non-scripted chunks
are executed one line at a time by the PC.

e User scripts (on page 2-16): A program script is run after you have created
and loaded it into the Series 3700. An interactive script is a type of script
that interacts with the operator. It provides user-defined messages on the
Series 3700 display to prompt the operator to enter parameters from the
front panel.

2-8 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Programming model for scripts

User-created scripts can be stored in nonvolatile memory. When the Series
3700 is turned on, all user script functions are recalled into the run-time
environment from nonvolatile memory. If any user scripts have been
programmed to run automatically, they will run after all the scripts are loaded.
Any script in the run-time environment can be run from the Test Script Builder or
the user’s own program. Test data (for example, a reading) is returned from the
Series 3700 to the computer. A user script can be created using the Test Script
Builder or the user’'s own program. Once the user script is loaded into the run-
time environment, it is ready to be run. Scripts that are not saved are lost when
the Series 3700 is turned off.

Script management includes commands for the following operations:

e Retrieve scripts from nonvolatile memory so they can be modified.
e Delete user scripts from nonvolatile memory.
e Restore scripts in the run-time environment from nonvolatile memory.

The fundamental programming model for scripts is shown in the following figure.

Figure 2-2: Programming model for scripts

Host computer '

- Programming |——]Create/modify and load script}
options

_ User's IRun any scrlpt|—
program i
—|Returned data
- Test Script
Builder {Save any user script
A A ;
B i — Series 3700
i Yy v
[Run-time | Non-volatile
environment |~ Loads memory
r Y J scripts/functions L‘
- 1 on power-up
—|Scr|pt management;

3700S-901-01 Rev. C / July 2008 2-9

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Installing the TSPTM software

To install the TSP software:

1. Close all programs.

2. Place the CD (Keithley Instruments part number KTS-850B01 or greater)
into your CD-ROM drive.

3. Follow the on-screen instructions.

If your web browser does not start automatically and display a screen with
software installation links, open the installation file (index.html) found on the CD
to initiate automatic installation.

System connections

Up to 64 TSP™ instruments can be used in a test system. The host interface for
the test system can be the GPIB, Ethernet, or USB. For the GPIB, an IEEE-488
cable is used to connect the computer to one of the Series 3700 instruments.
USB and Ethernet also require the appropriate cables. Note that only one cable
is needed to connect to one of the Series 3700 instruments because
communication to the other Series 3700 instruments or TSP-enabled products
can be accomplished using the TSP-Link™.

Rear panel summary

Figure 2-3: Rear panel features

Item Description

1 Analog backplane fuse

2 Slots (6 places)

3 TSP-Link™ connectors (2 places)

2-10 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Item Description

4 Instrument fuse

5 Power connector

6 Digital 1/0 port

7 GPIB connector

8 Ethernet connector

9 USB connector

10 Analog backplane connector

GPIB interface connection

Use a shielded IEEE-488 cable to connect the Series 3700 IEEE-488 connector
to the GPIB connector on the control computer. Connect one end of the cable to
the host computer and the other end to Series 3700. Both cable connections
(see item 1 in GPIB cable (on page 2-11)) are identical. The GPIB cable
connectors are stackable. For additional non-Series 3700 GPIB instruments in
the test system, daisy-chain a GPIB cable from one instrument to another.

NOTE To minimize interference caused by electromagnetic radiation, use
only shielded GPIB cables. Available shielded cables from Keithley
Instruments are the Model 7006 and Model 7007.

Figure 2-4: GPIB cable

3¢

| J S

Refer to Rear panel summary (on page 2-10) for connector location.

3700S-901-01 Rev. C / July 2008 2-11

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

GPIB address

At the factory, the GPIB is set to address value 16. The address value can be
set to any address value between 0 and 30. However, the address cannot
conflict with the address assigned to other instruments in the system.

Change the GPIB address from the GPIB menu. To access the menu, press the
MENU key and select GPIB. The GPIB address is saved in honvolatile memory.
The address value will not change when power is cycled or a reset command
(reset) is sent. For units without a front panel, use the gpib.address (on page
13-187) ICL command to change the GPIB address setting remotely.

Standard RJ-45 (Ethernet) interface connection

The Series 3700 uses a standard Ethernet connection configuration. It is
designed for a 10/100BaseTX network using standard RJ-45 connectors. This is
an eight-wire connector, but only two sets of wire pairs are used: one pair to
transmit and one pair to receive data.

A 10BaseT network can accommodate transmission speeds up to 10Mbit per
second, where a 100BaseTX network operates at speeds of up to 100Mbit per
second. Both types of networks usually require Ethernet hubs to make
connections.

The exception is a one-to-one connection using a crossover cable, which may
be a 10BaseT or 100BaseTX, depending on the computer’'s Ethernet interface
card and which category of cable is used (the Series 3700 can be directly
connected to a computer's NIC card using an Ethernet crossover cable). Refer
to Rear panel summary (on page 2-10) for connector location.

LAN address

Change or view the LAN address from the LAN menu. To access the menu,
press the MENU key and select LAN. The LAN address is saved in nonvolatile
memory. The address value will not change when power is cycled or a reset
command is sent. For units without a front panel, use the 1an.config and
lan.status ICL commands to change or view the LAN settings remotely. See
LAN functions and attributes (on page 13-190) for more information.

2-12 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

USB connection

Connect a computer controller to the Series 3700 rear panel USB (from host)
connector (connect USB flash drive devices to the Series 3700 front panel
USB). Refer to Rear panel summary (on page 2-10) for connector location.

NOTE For your Series 3700 to be recognized by your computer over the
USB interface, the proper driver must be installed. Installing the Test
Script Builder application also installs the applicable USB driver (it
becomes available after installing this software). To complete the USB
driver installation, after installing the Test Script Builder application,
connect the Series 3700 USB connector (rear panel) to the computer.

Using Test Script Builder (TSB)

Test Script Builder is a supplied software tool that can be used to perform the
following operations:

e Send ICL commands and TSL statements

e Receive responses (data) to commands and scripts

e Create and run user scripts

The following figure shows an example of the Test Script Builder. As shown, the
Workspace is divided into three window panes:

e Project Navigator (on page 2-14)

e Script Editor (on page 2-14)

e Programming interaction (on page 2-15)

3700S-901-01 Rev. C / July 2008 2-13

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Figure 2-5: Using Test Script Builder (TSB)

| 5 - Walcorne — | pet Scnpt Builder
Filc Edii Mevigate =raicel Ran Window Hale

[Cis DRl B Ere A |
m = 0 B wistvonie 5 T KE 3756 DM_fubvar ve_Soarubiy =
7 || Test Script Builder

-
4

b [T|KES7H3_DMM_Advarce_Scan tsp =+ Quicks1art Tutorial —
To gota cuickundsrsicndivc af the Tost S2ipt Builds s dovclaprasittools, plocsc road the
artele Qulick Start

Opened script files are displayed in this window
~* Instrument Con panc as tabs:
. . ThEview diecty . . X X)
Script file™ Esohat epese |0 Open and display a script file, double-click the file
e nee i g ame 0 the Project Navigator,

plcase readibe
L— i To display anothor script file that i alrcady open, —
Project foldr click the desired tab.

—* Mavigatoer

0 b= Il i O R P el P e IR TG RS T s s
— For each DI'OJ act folder: Torzac mo's chthe Mavicatar e, £l30ec read tho Vicw na croicots and projoct files articlo.

Click "—" to hide

script files. 5 Editor

RPN i Rthienl Fiiz el oews page s b e TAP silitin, nee ieeeeUng e oo lifing, TRP files:
+ [IB1] . u L
Click to dlSpIay Fo-rmo-e infarratior snike TEP cditer. clzasc -ead tag Waorkiaa with o odilcr ;I
hetrumen: Zohso ¢ E'Ex"-\Taelte|_3PH I 'vﬁc\v| BN @ o m W - =13
ZPIP.10.92.11. 12 5023.80PKET

Project Nevigator L This tab provides Help

L This tab lists task markers placed in the script code or

Programming added directly into this tab.

Interaction

| This tab is used to send commands to the instrument. Responses
to commands (from the console or a script) are also displayed in this tab .

Script Editor
Il =l

| | KB4 _E=amp e_Sorpts |

Project Navigator

The Project Navigator resides in the window pane on the left side of the
workspace. The navigator consists of project folders and the script files (.tsp)
created for each project. Each project folder can have one or more script files.
The navigator shown in the graphic in Using Test Script Builder (TSB) (on page
2-13) contains a project named KE37XX_Example_Scripts, which has one script
file, called KE37XX_DMM_Advance_Scan.tsp.

Script Editor

The script chunk is written and/or modified in the Script Editor. Notice that there
is a tab available for each opened script file. A script project is then downloaded
to the Series 3700, where it can be run.

2-14 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 2: TSP _Programming Fundamentals

Programming interaction

Up to seven tabs can be displayed in the lower pane of the workspace (the
script editor) to provide programming interaction between the Test Script Builder
and the Series 3700. The instrument console shown in Using Test Script Builder
(TSB) (on page 2-13) is used to send commands to the connected Series 3700.
Retrieved data (for example, readings) from commands and scripts appear in
the instrument console.

Sending commands and statements

Using your own program or the Test Script Builder, non-scripted chunks can be
executed one line at a time. Responses (for example, readings) are then
transmitted back to the computer.

Measure voltage

The digital multimeter (DMM) of the Series 3700 is capable of measuring various
functions. The following code fragment programs the DMM to measure DC
voltage at a specified NPLC and range.

Return the Series 3700 to default settings.

reset ()

Set the DMM function to DC volts
dmm. func = 'dcvolts'

Set the NPLC for DC volts
dmm.nplc = 0.1

Set the range for DC volts

dmm .

range = 10

Take the DC volts measurement
reading = dmm.measure ()

Displays measure voltage reading
print (reading)

3700S-901-01 Rev. C / July 2008

2-15

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Read and write to the digital I/O port

The digital I1/0O port of the Series 3700 is used to control external circuitry (such
as a component handler for binning operations). The 1/O port has 14 input/output
bits (lines) that can be at TTL logic state 1 (high) or O (low). See the pinout in the
graphic in Rear panel summary (on page 2-10) for the Digital 1/O port for
additional information.

There are ICL commands to read and/or write to each individual bit, and
commands to read and write to the entire port. Use the following code fragment
to write to one bit of the Digital I/O port. The 1/O bit is then read and the state is
returned to the PC, where it is displayed.

Command Description
digio.writebit (4,0) Writes a 0 to hit 4
data=digio.readbit (4) Reads value at bit 4
print (data) Displays data on PC

Display user-defined messages

The operator can define and display messages on the front panel display of the
Series 3700. The following code fragment displays the "Test in Process"
message on the Series 3700 display:

Command Description
display.clear () Clears the display
display.settext ('Test in Displays user message
Process')

Displayed messages and input prompts are used in scripts to prompt the
operator to enter parameter values from the front panel. See Interactive script
(on page 2-19) for more information.

User scripts

User scripts can be written using your own program or the Test Script Builder.
User scripts are loaded into the Series 3700 and can be saved in nonvolatile
memory. Scripts not saved in nonvolatile memory will be lost when the Series
3700 is turned off.

2-16 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Script examples

Script using commands and statements only

The following script closes Channels 1-10 on Slot 3 and measures voltage on
each channel. The ten voltage readings are returned to the host computer, as
well as being stored in a voltage table on the instrument, using the channel
numbers as keys to index the table.

Example exclusive close and measure scripts follow:

User script created in Test Script Builder

voltage = { }
reset ()
for j = 3001,3010 do

channel.exclusiveclose('3911,"' .. J)
voltage[]j] = dmm.measure ()
print (voltage[j])

end

User script created in user's own program

loadscript
voltage = { }
reset ()
for 3 = 3001,3010 do
channel.exclusiveclose('3911,"' .. 7J)
voltage[j] = dmm.measure ()
print (voltagel[7j])
end
endscript

NOTE When creating a script using the Test Script Builder, only the chunk is
typed in as shown in the Test script builder example. See Using Test
Script Builder (TSB) (on page 2-13) for details on creating, loading,
and running the script. When creating a script using a programming
language (the User's program script example), shell commands must
be included to manage interactions between the host computer and
TSP™. The loadscript command starts loading the script into the
Series 3700 and endscript signifies the end of the script.

3700S-901-01 Rev. C / July 2008 2-17

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Script using a function

TSL facilitates grouping commands and statements using the function
keyword. Therefore, a script can also consist of one or more functions. Once a
script has been run, the host computer can then call a function in the script
directly.

The following script contains an ICL command to reset the DMM and a function
(named MyDcv), which takes one parameter to represent the speed of the
measurement. When this script is run, the DMM will be reset and the function
MyDcv will be available for calling.

Example scripts using a function:

Test script builder example

dmm.reset ('all')
function MyDcv (speed)

dmm. func = 'dcvolts'
dmm.nplc = speed
dmm.range = 10

reading = dmm.measure ()
print (reading)

end

User’s program script example
loadscript

dmm.reset ('all')
function MyDcv (speed)

dmm. func = 'dcvolts'
dmm.nplc = speed
dmm.range = 10
reading = dmm.measure ()
print (reading)
end
endscript

When calling the function, you must specify the measurement speed in the
argument for the function. For example, to set the measurement speed to 0.5,
call the function as follows:

MyDcv (0.5)

This will set the DMM function to DCV, NPLC to 0.5, and range to 10V. The
voltage reading is sent to the host computer and displayed.

2-18

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Interactive script

An interactive script prompts the operator (on the Series 3700 display) to input
test parameters (using the Series 3700 front panel). The chunk fragment in the
following table uses display messages to prompt the operator to select a
measure function (DCV or 2-wire) and a range based on function, and to input
the measurement speed. When an input prompt is displayed, the script will wait
until the operator inputs the parameter and/or presses the ENTER key.

The display.prompt command in the following script prompts the user to
input a measurement speed. If a value is not entered, the default level (1) will be
set when ENTER is pressed. The operator will not be able to input values that
are not within the limits (minimum of 0.01 and maximum of 3).

Example of an interactive script chunk fragment (Test Script Builder or user’s
program):

-- Prompt operator to select function:

myfunc = display.menu ('Select function', 'dcvolts
twowireohms"')

-- Now prompt for range based on function selected

if (myfunc == 'dcvolts') then
myrange = display.menu('Select range', '10 100")
if (myrange == '10') then
range value = 10
else
range value = 100
end
else
myrange = display.menu('Select range', '1000 10000")
if (myrange == '1000') then
range value = 1000
else

range value = 10000
end
end

-—- Prompt operator to set (input) measurement speed
speed = display.prompt('0.00', 'NPLC', 'Enter measure
speed', 1, 0.01, 3)

-—- Wait for operator to set the measurement speed
dmm.reset ('all')

dmm. func = myfunc

dmm.range = range value

dmm.nplc = speed

print (dmm.measure())

3700S-901-01 Rev. C / July 2008 2-19

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Creating a user script
To create a script and load it, the test program (chunk) must be framed by the

following shell commands: loadscript or loadandrunscript, and
endscript.

Load only

The following scripts will load only into the run-time environment of the Series
3700. The script on the left is unnamed (anonymous script), while the one on the
right is named (where name is the user-defined name):

loadscript loadscript name
(chunk) (chunk)
endscript endscript

Load and run

The following scripts will load into the run-time environment and then run.
Remember that when a script is run, only the chunk is executed. The script on
the left is unnamed (anonymous script), while the one on the right is named
(where name is the user-defined name):

loadandrunscript loadandrunscript name
(chunk) (chunk)
endscript endscript

Details about 1oadscript and loadandrunscript are provided as follows:

loadscript
loadscript name

Where: name is the user-assigned name for the script.

The loadscript shell command loads the script into the run-time environment.
The script can be assigned a name or it can be left nameless. If you are
assigning a name that already exists for another loaded script, the old script will
be overwritten with the new script.

If a script is not named when it is loaded into the run-time environment, it will be
lost when another nameless script (anonymous script) is loaded or when the
Series 3700 is turned off. After loading the unnamed script (anonymous), use
the run (), script.run(), script.anonymous (), Or
script.anonymous.run () commands to run it.

2-20 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

A script saved in nhonvolatile memory named autoexec has special properties
that cause it to run automatically after the Series 3700 is powered on and all
autorun scripts have been executed. For details, see Autoexec script (on page
2-26) and Autorun scripts (on page 2-26).

loadandrunscript
loadsandrunscript name

Where: name is the user-assigned name for the script.

These commands are similar to the loadscript commands, except that the
script will execute (run) after it is loaded into the run-time environment. Also, the
autorun attribute for a named script will be set to "yes" (see Autorun scripts (on
page 2-26)).

Creating a user script (alternative)

An alternate way to create a script is to use script.new, which creates a script
from a chunk of Lua code, using the following command:

myscript = script.new(code, name)
Where:

e myscript isthe created script or nil, if an error occurred. If the name
parameter is an empty string, this is the only handle to the created script.

e code is the string representing a chunk of Lua code, which will be used as
the script body.

e name (optional) is the name of the script to be created. The script's name
attribute is initialized to this value, which (if not the empty string) also serves
as the key used to access the script through the script.user.scripts
table. The default is the empty string.

If the name of the script.new script conflicts with the name of an existing
script in the script.user.scripts table, the existing script will be unnamed
(that is, its name attribute will be set to the empty string) before it is replaced in
the script.user.scripts table by the newly-created script.

Example:

To create a new global script called MyTest8 and assign the name attribute to
MyTest8 that displays "Hello from MyTest8" on the display, use the following
command:

MyTest8 = script.new("display.clear ()
display.settext ('Hello from MyTest8')", 'MyTest8')

To run this script:

MyTest8 ()

3700S-901-01 Rev. C / July 2008 2-21

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Get or change the name attribute of a script

The following commands are used to get or change the name attribute of a

script:

val = myscript.name -- read the name of myscript
myscript.name = val -- change the name of myscript
Where:

e myscript is the script
e val is the name of the script

This attribute may optionally be initialized when the script is created. See
Loading a user script (on page 2-24) (script.load) and Creating a user script
(alternative) (on page 2-21) (script.new) for details.

This attribute must be either a valid Lua identifier or the empty string. Changes
to its value are reflected in the script.user.scripts table. Setting the
attribute to the empty string will remove the script from the table completely.
For example, a new script can be created without naming it, such as:

MyTest7 = script.new("display.clear ()
display.settext ('Hello from my test')")

To run this script, type:

MyTest7 ()

If print (MyTest7.name) is executed, it will print a blank line because the
name is an empty string.
To name the script "MyTest7" and read the name, send:

MyTest7.name = 'MyTest7'
print (MyTest7.name) --> MyTest7 is displayed

Saving a user script

A created and loaded script does not have to be saved in the nonvolatile
memory of the Series 3700 before it can be run. However, an unsaved script will
be lost when the Series 3700 is turned off.

2-22 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Saving a named script

Only a named script can be saved in nonvolatile memory of the Series 3700.
After creating and loading a named script, use one of the following commands to

save it.

myscript.save () -- To save script in internal
memory

myscript.save ('filename') -- To save script on flash drive

Where:

e myscript isthe user-defined name of the script.

e filename is a filename for the script to save it on a user-supplied USB
flash drive.

The save command will save the script to internal nonvolatile memory if no
filename is specified. If a script is not saved in nonvolatile memory, the script will
be lost when the Series 3700 is turned off.

The myscript.save () command saves the script under the original name that
was created and loaded. The myscript.save ('filename') shell command
is used to save the script to a user-supplied USB flash drive. If you save the
script to a filename that already exists, it will be overwritten. The filename may
have an absolute or relative path to the current working directory. If using an
absolute path, include "/usbl/" at the beginning to denote the flash drive. Also, if
the filename includes an extension, it must be ".tsp"; otherwise, an error occurs.
If no extension is specified, the ".tsp" extension will be added.

Examples:

e Assume a script named "testl" has been created and loaded. The following
command saves the script in nonvolatile memory:

testl.save ()

e To save the script named "testl" under a filename ("test2") on a user-
supplied USB flash drive, send the following command:
testl.save ('/usbl/test2.tsp')

e To save the anonymous script, provide a valid name for the name attribute

of the anonymous script. Once the anonymous script is hamed, it can be
saved. For example, to save the anonymous script as "MyTest":

script.anonymous.name = 'MyTest'
script.anonymous.save ()

e To execute anonymous script that was just saved as 'MyTest":
script.user.scripts.MyTest ()

3700S-901-01 Rev. C / July 2008 2-23

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

e The anonymous script may be saved to the flash drive without setting the
name attribute. For example, to save the anonymous script on the flash
drive as "MyAnonTest.tsp":

script.anonymous.save ('/usbl/MyAnonTest.tsp"')

Loading this file (MyAnonTest.tsp") back into the unit from the flash drive will
cause an existing anonymous script to be overwritten.

Loading a user script

The following command is used to create a script from a specified file:

myscript = script.load(file, name)
Where:

e myscript is the created script, or nil if an error occurred. If the name
parameter is an empty string, or if the name is absent or ni1, and the script
name cannot be extracted from the file, this will be the only handle to the
created script.

e fileis the absolute or relative path and filename of the script file to import.

e name (optional) is the name of the script to be created. The script's name
attribute is initialized to this value, which (if not an empty string) also serves
as the key used to access the script through the script.user.scripts
table.

If the name parameter is present (not ni1l), any script name embedded in the file
is ignored. Also, if name conflicts with the name of an existing script in the
script.users.scripts table, the existing script will be unnamed (that is, its
name attribute will be set to the empty string) before it is replaced in the
script.user.scripts table by the newly-created script.

If the name parameter is absent or nil, the command attempts to extract the
script's name from the file. Any conflict between the extracted name and that of
an existing script in the script.user.scripts table generates an error. If the
script name cannot be extracted, the created script's name attribute is initialized
to the empty string, and must be set to a valid non-empty string before saving
the script to internal memory.

The file to be uploaded must contain the 1ocadscript or loadandrunscript
keywords, the script's body, and the endscript keyword.

Examples:

To load a file called "MyUserList.tsp" from the USB flash drive and name the
script "myuserlist," send the following command:

mylist = script.load('MyUserList.tsp', 'myuserlist')

2-24 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

To execute the myuserlist script:

script.user.scripts.myuserlist ()
mylist ()

Running a user script

Running an unnamed script

There can only be one unnamed (anonymous) script in the run-time
environment. If another anonymous script is created and loaded, the previous
anonymous script will be removed from the run-time environment. On the front
panel, an unnamed script appears as <anonymous>. Use one of the following
commands to execute the chunk of the last loaded anonymous script. The
following four commands perform the same operation.

run ()

script.run()
script.anonymous ()
script.anonymous.run ()

Running a named script

Any named script that is in the run-time environment can be run using one of the
following commands. The following four commands perform the same operation.
myscript ()

myscript.run ()

script.user.scripts.myscript ()
script.user.scripts.myscript.run ()

Where: myscript is the user-defined name of the script.

Example:

Assume a script named "test3" has been loaded into the run-time environment.
The following commands execute the chunk of the script.

test3 ()
script.user.scripts.test3()

Running scripts automatically

Scripts can be set to run automatically when the Series 3700 is turned on. You
can assign one or more Autorun scripts (on page 2-26) and one Autoexec script
(on page 2-26).

3700S-901-01 Rev. C / July 2008 2-25

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Autorun scripts

When a saved script is set to autorun, it will automatically load and run when the
Series 3700 is turned on. Any number of scripts can be set to autorun. The run
order for these scripts is arbitrary, so make sure the run order is not important.

To set a script for autorun, set one of the following autorun attributes to "yes."
Setting it to "no" disables autorun.

myscript.autorun
script.user.scripts.myscript.autorun

Where: myscript is the user-defined name of the script.

Make sure to save the script in nonvolatile memory after setting the autorun
attribute.

Example:

Assume a script named "test5" is in the run-time environment. Set the script to
autorun as follows:

test5.autorun = "yes" or script.user.scripts.testb5.autorun

— "yeS"
test5.save ()

The next time the Series 3700 is turned on, the "test5" script will automatically
load and run.

NOTE The loadandrunscript name command sets the autorun attribute
for that script to "yes." To cancel it, set the autorun attribute to "no"
and save the script.

Autoexec script

One script can be designated as the autoexec script. When the Series 3700 is
turned on, the autoexec script will start after all the autorun scripts have run.

loadscript autoexec
loadandrunscript autoexec

Form an autoexec script by creating a new script and naming it autoexec (as
shown above using loadscript or loadandrunscript). After loading the
new script, send the autoexec.save () command to save it in nonvolatile
memory. See Creating a user script (on page 2-20) for details on creating a
script.

2-26 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Running a user script from the Series 3700 front panel

Use the following commands to enter or delete a name in the User menu option
from the LOAD key:

display.loadmenu.add (displayname, chunk)
display.loadmenu.delete (displayname)

Where:

e displayname is the name to be added to (or deleted from) the User menu.
e chunk is the name of the chunk (Lua executable code).

It does not matter what order the items are added to the User menu, as they will
be displayed in alphabetical order when the menu is selected.

Example:

Assume a user script named "Test9" has been loaded into the run-time
environment. Add the script name to the User menu for the chunk as follows:

display.loadmenu.add ("Test9", "Test9()")
To run the chunk from the front panel:
1. Pressthe LOAD key.

2. Select USER and press the ENTER key.

3. Select the user chunk from list and press the ENTER key. The chunk is
loaded for front panel execution.

NOTE If you're used to using print in Test Script Builder, note that the
output of the prints using this procedure will not function the same
as when you're in Test Script Builder. You may find that it makes
more sense to use Test Script Builder to get the output you need.

4. Press the RUN key to execute.
To run a script directly without adding it to the USER menu:

1. Pressthe LOAD key.

2. Select SCRIPTS and press the ENTER key. There may be a short pause
before a menu is displayed that represents the scripts in the instrument.

3. Select the script from the list and press the ENTER key. Now the script is
loaded for front panel execution.

NOTE If you're used to using print in Test Script Builder, note that the
output of the prints using this procedure will not function the same
as when you're in Test Script Builder. You may find that it makes
more sense to use Test Script Builder to get the output you need.

4. Press the RUN key to execute.

3700S-901-01 Rev. C / July 2008 2-27

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Loading a script from the Series 3700 front panel

To load a script from a USB flash drive:

1. Pressthe MENU key to open the main menu.

2. Select the SCRIPT option.

3. Select the LOAD option. A menu is displayed that includes the USB option.
4,

Select the USB option. A menu is displayed that lists the .tsp files and
directories on the flash drive. If you select a directory, a new menu is
displayed that lists the .tsp files and directories in that directory.

5. Selecting a .tsp file will cause the system to attempt to load the file.

e If the file is not a valid script file, an error message is posted and no
further action is taken.

e Loading an anonymous script will overwrite the existing anonymous
script.

e Afile that does not contain 1oadscript and endscript shell
keywords will be loaded as an anonymous script.

e The display will indicate if a named script already exists in memory. If it
does, you will be prompted to overwrite the script. The display returns to
step 4 if an error occurs or if you select "No" when prompted to
overwrite the script. Otherwise, the display proceeds to step 6 after
indicating that the script loaded successfully.

e The script is loaded using the name that follows the 1oadscript shell
keyword instead of filename. Also, the script is loaded into the
script.user.scripts table.

6. The SCRIPT ACTION menu lists the options of ACTIVE_FOR_RUN or
SAVE_INTERNAL. Proceed to step 7 if ACTIVE_FOR_RUN is selected or
step 8 if SAVE_INTERNAL is selected.

7. ACTIVE_FOR_RUN associates the script with the RUN button if you
selected YES. The script replaces the active executable chunk selected
under the LOAD button. If NO is selected, the display returns to step 6.

8. Ifyou select SAVE_INTERNAL, you will be prompted to save the script into
internal memory. The ICL equivalent is myscript.save () with no
parameters. If you select YES, proceed to step 5 of Saving a script from the
Series 3700 front panel (on page 2-29). If NO is selected, the display returns
to step 6. Note that anonymous scripts cannot be saved internally.

2-28

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 2: TSP _Programming Fundamentals

Saving a script from the Series 3700 front panel

To save a script to internal memory or a USB flash drive:

1
2.
3.

Press the MENU key to bring up the Main Menu.
Select the SCRIPT option.

Select the SAVE option to bring up a menu listing the scripts available to
save from the script.user.scripts table. This may take several

seconds before displaying.

Select the script that you want to save. It may be the anonymous script or

one of the user-named scripts.

Select where you want to save the script, either in internal memory or on the
USB flash drive. You cannot save the anonymous script to internal memory.

Only named scripts can be saved internally.

e Select INTERNAL to save the script to internal memory using the

script's name attribute.

e Select USB, and a prompt will display for a filename using the first 13
characters of the name attribute as a default name followed by a
modifiable 3-digit number. If the filename exists, the word (overwrite)
appears on the display. The file is automatically saved with a .tsp

extension.

Modifying a user script

You can modify a user script stored in nonvolatile memory by retrieving the
script listing, which can then be modified, loaded, and saved in nonvolatile
memory. See Retrieving a user script (on page 2-30) for details.

NOTE

Navigator.

If you are using the Test Script Builder to modify a user script stored in
nonvolatile memory, retrieve the script listing from the Project

3700S-901-01 Rev. C / July 2008

2-29

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Script management

Retrieving a user script

You can retrieve the source code contained in a user script from nonvolatile
memory, which can then be modified and saved as a user script under the same
name or a new name.

NOTE You can load a modified user script into the Series 3700 using the
same name or a new name.

The following command returns a catalog listing of the user scripts stored in the
Series 3700:

script.user.catalog()

Example:

To retrieve the catalog listing for user scripts:

for name in script.user.catalog() do
print (name)
end

The following function retrieves the source code of a saved script. The script
chunk is returned, along with the shell keywords (Loadscript or
loadandrunscript, and endscript):

myscript.list ()

Where: myscript is the user-defined name of the script.

Example:

To retrieve the source of a saved script named "test7":

userscriptlist = test7.list()
print (userscriptlist)

NOTE To see the contents of the anonymous script, use the
script.list.anonymous.list () command.

2-30 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Deleting a script from the system

To completely remove a script from the system, all references to the script will
need to be deleted from the run-time environment. A script may be removed
from the run-time environment by assigning it to nil. For example, to remove
the script named "test8" from the run-time environment, send the following code
to set test8 to a nil value:

test8 = nil

To delete a script from the script.user.scripts table, set the name
attribute to an empty string("™"), which makes the script nameless. This does not
make the script become the anonymous script. For example, to remove the

script named "test8" from the script.user.scripts table, send the following
code to set the name attribute for test8 as an empty string:

script.user.scripts.test8.name = ""

Replacing, changing, or deleting a script from the run-time environment does not
remove the script from nonvolatile memory. A script can be permanently
removed from nonvolatile memory sending either of the following commands:

script.delete ("name")
script.user.delete ("name")

Where: name is the user-defined name of the script.
Example:

To delete a user script named "test8" from nonvolatile memory:

script.delete ("test8")

Restoring a script in the run-time environment

A script is inherently a global variable that can be replaced by assigning a new
value or by loading a new script with the same name. It can also be removed
from the run-time environment by assigning it the ni1 value. A script can be
restored from nonvolatile memory back into the run-time environment using
either of the following commands:

script.restore ("name")
script.user.restore ("name")

Where: name is the user-defined name of the script to be restored.
Example:

To restore a user script named "test9" from nonvolatile memory:

script.restore("test9")

3700S-901-01 Rev. C / July 2008 2-31

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Differences: Remote versus local state

The Series 3700 can be in either the local state or the remote state.

e When itis in the local state (REM annunciator off), the instrument is
operated using the front panel controls.

e When itis in the remote state (REM annunciator on), instrument operation is
controlled by the computer.

When the instrument is powered-on, it is in the local state.

Remote state

The following actions will place the instrument in the remote state:

e Sending a command from the computer to the instrument

e Running a script (a USER test) from the front panel; after the test is
completed, the instrument will return to the local mode

e Opening communications between the instrument and Test Script Builder
e Web-control (logging in to the Series 3700 web interface)

While the instrument is in the remote state, front panel controls are disabled.
However, the LOCAL key will be active unless it has not been explicitly locked

out by the user program. When an interactive script is running, use the activated
front panel controls to input parameter values.

Local state

The following actions will cancel the remote state and return the instrument to

the local state:

e Cycling power for the instrument

e Pressing front panel LOCAL key (if it is not locked out)

e Sending the abort command from the PC

e Clicking the Abort Execution icon on the toolbar of the Instrument Console
for Test Script Builder

After a front panel script (a USER test) is completed, the instrument will return to
the local state.

TSP-LinkTM system

A test system can be expanded to include up to 64 instruments that are enabled
using TSP-Link. The system can be stand-alone or PC-based.

2-32 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Stand-alone system

A script can be run from the front panel of any node (instrument) in the system.
When a script is run, all nodes in the system go into remote operation (REM
annunciators turn on). The node running the script becomes the primary node
and can control all of the other nodes, which become its subordinates. When the
script is finished running, all the nodes in the system return to local operation
(REM annunciators turn off), and the primary/subordinate relationship between
nodes is dissolved.

PC-based system

When using a computer, the GPIB, LAN, or USB interface to any single node
becomes the interface to the entire system. When a command is sent through
one of these interfaces, all nodes go into remote operation (REM annunciators
turn on).

The node that receives the command becomes the primary node and can
control all of the other nodes, which become its subordinates. In a PC-based
system, the primary/subordinate relationship between nodes can only be
dissolved by sending an abort command.

Test Script Language (TSL) Reference

Introduction

A script is a program written using the Test Script Language (TSL) that the Test
Script Processor (TSP) executes. TSL is an efficient language, with simple
syntax and extensible semantics. TSL is derived from the Lua programming
language. See the website for the Lua Programming Language
(http://www.lua.org) for more information. Another source of useful information is
lua-users (http://lua-users.org), created for and by users of Lua programming
language.

Lua programming language reserved words:

and function return
elseif nil until
for repeat else
local true false
then do in
break if or
end not while

3700S-901-01 Rev. C / July 2008 2-33

http://www.lua.org/
http://lua-users.org/

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Variables and types

TSL has six basic types: nil, boolean, number, string, function, and
table. TSL is a dynamically typed language, which means variables do not
need to be declared as a specific type. Instead, variables assume a type when a
value is assigned to them. Therefore, each value carries its own type.

If a variable has not been assigned a value, the variable defaults to the type
nil. All numbers are real numbers. There is no distinction between integers and
floating-point numbers in TSL.

var = nil var is nil.

var = 1.0 var is now a number.

var = 0.3E-12 var is still a number.

var = 7 var is still a number.

var = "Hello world!" var is now a string.

var = "I said, Hello world!" var is still a string.

var = function(a, b) return(a+b) var is now a function that adds two
end numbers.

var = {1, 2., 3.00e0} var is now a table (in other words, an

array) with three initialized members.

nil is a type with a single value, ni1l, whose main property is to be different
from any other value. Global variables have a nil value by default before a first
assignment, and you can assign nil to a global variable to delete it. TSL uses
nil as a non-value that represents the absence of a useful value.

Operators

Arithmetic operators:

+ (addition)

- (subtraction)

* (multiplication)
/ (division)

- (negation)

2-34 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Relational operators:

< (less than)

> (greater than)

<= (less than or equal)
>= (greater than or equal)
~= (not equal)

== (equal)

Logical operators:
and
or

not

Functions

TSL allows you to define functions which can take a pre-defined number of
parameters and return multiple parameters. Functions are first-class values in
TSL, which means that they can be stored in variables, passed as arguments,
and returned as results if desired.

This is a function called "add_two":

function add two (parameterl, parameter2)
return (parameterl + parameter?)

end

print (add _two (3, 4))

This is an alternate syntax for defining a function, called "add_three":

add_three = function(parameterl, parameter2, parameter3)
return (parameterl + parameter?2 + parameter3)

end
print (add three (3, 4, 5))

3700S-901-01 Rev. C / July 2008 2-35

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

This function returns multiple parameters (sum, difference, and ratio of the two
numbers passed to it):

function sum diff ratio(parameterl, parameter2)

psum = parameterl + parameter?2
pdif = parameterl - parameter?
prat = parameterl / parameter?2
return psum, pdif, prat
end
sum, diff, ratio = sum diff ratio (2, 3)
print (sum)
print (diff)
print (ratio)

The function's output is:

5
12

5

-1
0.66666

Tables/arrays

TSL makes extensive use of the data type "table,” which is a very flexible array-
like data type.

To define a table:

-— A table with four elements, which are numbers.
atable = {1, 2, 3, 4}

Send the following commands to print it:

-—- Tables are indexed on one, NOT zero. atable[index] is
true if there is an element at that index. nil is
returned otherwise. 0 does NOT evaluate to false, only
nil does.

i=1

Index into table using a number.
while atable[i] do

print (atable[i])
i=1i+1
end

The command's output is:

1
2
3
4

2-36 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 2: TSP _Programming Fundamentals

Tables can be indexed using element names instead of humeric indices.
Because functions are first-class variables, tables can be used to create

"pseudoclasses."” Classes are often used in object-oriented programming.

Below is a table used to create a circle pseudoclass. It has 3 elements:

clr A string containing the color of the circle

diam A number containing the diameter of the circle

setdiam A function, or method, used to change the diameter
circle = {clr = 'red', diam = 1, setdiam = function (d)

circle['diam']=d end}

-- Index using a string; print the clr property.
print (circle['clr'])

-- Index using a string; print the diam property.
print (circle['diam'])

-- Change the diam element by calling setdiam.
circle['setdiam'] (2)

-— Print the diameter of the circle; circle['diam'] is a

simpler syntax of circle.diam
print (circle.diam)

-- Change the diameter of the circle again.
circle.setdiam(3)

-- Print diam property again using simple syntax.
print (circle.diam)

Output of code above:

red
1
2
3

Precedence

Operator precedence in TSL follows the table below, from higher to lower
priority:

A

not - (unary)

(concatenation)

< <= >= ~=

3700S-901-01 Rev. C / July 2008

2-37

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

or |

All operators are left associative, except for "A" (exponentiation) and "..", which
are right associative. Therefore, the following expressions on the left are
equivalent to those on the right:

ati < b/2+1 (a+ti)< ((b/2)+1)
5+x7°2*8 5+ ((x72) *8)

a <y and y <= z (a < y) and (y <= z)
-x"2 -(x"2)

XNyt z XM (y*hz)

Logical operators

The logical operators are and, or, and not. Like control structures, all logical
operators consider false and nil as false and anything else as true.

The operator and returns its first argument if it is false, otherwise it returns its
second argument.

The operator or returns its first argument if it is not false; otherwise it returns its
second argument:

print (4 and 5)
print (nil and 13)
print (false and 13)
print (4 or 5)

print (false or 5)

Output of code above:

5

nil
false
4

5

Both and and or use short-cut evaluation; that is, they evaluate their second
operand only when necessary. A useful TSL constructis x = x or v, whichis
equivalent to:

if not x then x = v end

2-38 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

For example, it sets x to a default value v when x is not set (provided that x is
not set to false).

To select the maximum of two numbers x and y, use the following statement
(note the and operator has a higher precedence than or):

max = (x > y) and X or y

When x > vy is true, the first expression of the and is true, so the and results in
its second argument x (which is also true, because it is a number), and then the
or expression results in the value of its first expression, x. When x > y is false,
the and expression is false and so are the or results in its second expression,

y

The operator not always returns true or false:

print (not nil)
print (not false)
print (not 0)

print (not not nil)

Output of code above:

true
true
false
false

Concatenation

TSL denotes the string concatenation operator by ".." (two dots). If any of its
operands is a number, TSL converts that number to a string:

print ("Hello ".."World")
print (0 .. 1)

Output of code above:

Hello World
01

3700S-901-01 Rev. C / July 2008 2-39

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Branching

TSL uses the if keyword to do conditional branching.

-- This is 1if expression 1. Zero is true in Lua language;
this is a contrast to C language, where 0 evaluates

false. In TSL, nil is false and everything else is true.
if 0 then

print ("Zero is true!")
else

print ("Zero is false.")
end

b4 1
y = 2
-- This is if expression 2.
if (x and y) then

print ("' if ' expression 2 was not false.")

end

-- This is if expression 3.
if (x or y) then

print ("' if ' expression 3 was not false.")
end

-— This is if expression 4.
if (not x) then

print ("' if ' expression 4 was not false.")
else

print ("' if ' expression 4 was false.")
end

This is if expression 5.
if x == 10 then
print ("x = 10")
elseif y > 2 then
print ("y > 2")
else
print ("x is not equal to 10, and y is not less than 2.")

end

2-40 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 2: TSP _Programming Fundamentals

Output of code above:

Zero 1is true!

' 1if ' expression 2 was not false.

' 1f ' expression 3 was not false.

' if ' expression 4 was false.

x 1is not equal to 10, and y is not less than 2.

Loop control

TSL has familiar constructs for doing things repetitively or until an expression
evaluates to false.

The following code contains an example iteration:

list = {"One", "Two", "Three", "Four", "Five", "Six"}

print ("Counting from one to three:")
for element = 1, 3 do
print (element, list[element])

end
print ("Counting from one to four,")
print ("in steps of two:")
for element =1, 4, 2 do
print (element, list[element])

end

-- Will exit when list[element] = nil

print ("Counting elements in list")
print ("on numeric index")

element = 1
while list[element] do
list[element] = nil

print (element, list[element])
element = element + 1

end

3700S-901-01 Rev. C / July 2008 2-41

Section 2: TSP Programming Fundamentals

Series 3700 System Switch/Multimeter Reference Manual

print ("Counting elements in list")
print ("using repeat")

element = 1

repeat

print (element, list[element])
element = element + 1

until not list[element]

Output of code above:

Counting from one to three:
1 One

2 Two

3 Three

Counting from one to four,
in steps of two:

1 One

3 Three

Counting elements in list
on numeric index

One

Two

Three

Four

Five

Six

Counting elements in list
using repeat

One

Two

Three

Four

Five

Six

o Ul W

o U1 W N

Standard libraries

In addition to the standard programming constructs above, TSL includes
standard libraries that contain useful functions for string manipulation,
mathematics, and more. TSL also includes instrument control extension
libraries, which provide programming interfaces to the instrumentation
accessible by the TSP™. These libraries are automatically loaded when the TSP

starts and do not need to be managed by the programmer.

2-42

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 2: TSP _Programming Fundamentals

Base library functions

print (x)

Prints the argument x to the active host interface, using
the tostring () function to convert x to a string.

collectgarbage ([limit])

Sets the garbage-collection threshold to the given limit (in
Kbytes) and checks it against the byte counter. If the new
threshold is smaller than the byte counter, then TSL
immediately runs the garbage collector. If the limit
parameter is absent, it defaults to O (thus forcing a
garbage-collection cycle). See NOTE below for more
information.

gcinfo ()

Returns the number of Kbytes of dynamic memory that
TSP™ is using.

tonumber (x [,base])

Returns x converted to a number. If x is already a
number, or a convertible string, then the number is
returned; otherwise, it returns nil.

An optional argument specifies the base to interpret the
numeral. The base may be any integer between 2 and
36, inclusive. In bases above 10, the letter A (in either
upper or lower case) represents 10, B represents 11, and
so forth, with Z representing 35. In base 10, the default,
the number may have a decimal part, as well as an
optional exponent. In other bases, only unsigned integers
are accepted.

tostring (x)

Receives an argument of any type and converts it to a
string in a reasonable format.

type (v) Returns the type of its only argument, coded as a string.
The possible results of this function are: nil, number,
Boolean, table, or function.

NOTE TSL does automatic memory management, which means you do not have to allocate

memory for new objects and free it when the objects are no longer needed. TSL
manages memory automatically by occasionally running a garbage collector to
collect all "dead" objects (that is, those objects that are no longer accessible from
TSL). All objects in TSL are subject to automatic management: tables, variables,
functions, threads, and strings.

TSL uses two numbers to control its garbage-collection cycles. One number counts
how many bytes of dynamic memory TSL is using; the other is a threshold. When
the number of bytes crosses the threshold, TSL runs the garbage collector, which
reclaims the memory of all "dead” objects. The byte counter is adjusted, and then
the threshold is reset to twice the new value of the byte counter.

3700S-901-01 Rev. C / July 2008

2-43

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

String library functions

This library provides generic functions for string manipulation, such as finding
and extracting substrings. When indexing a string in TSL, the first character is at
position 1 (not 0 as in ANSI C). Indices may be negative and are interpreted as
indexing backward from the end of the string. Thus, the last character is at
position 1, and so on.

-— Returns the internal numerical code of the i-th

character of string S, or nil if the index is out of
range.

string.byte(s [,1])

-— Receives 0 or more integers. Returns a string with
length equal to the number of arguments, in which each
character has the internal numerical code equal to its
corresponding argument.

string.char(il, i1, ..)

-- Returns a formatted version of its variable number of
arguments following the description given in its first
argument, which must be a string. The format string
follows the same rules as the print family of ANSI C
functions. The only differences are that the

options/modifiers *, |, L, n, p, and h are not supported.
The options ¢, d, E, e, f, g, G, I, 0o, u, X, and x all
expect a numeric argument, where S expects a string

argument. String values to be formatted with %S cannot
contain embedded zeros.

string.format (fs, el, e2, ..)

-- Returns the length of the strings.
string.len(s)

-- Returns a copy of the string S with all uppercase
letters changed to lowercase.

string.lower (s)

-- Returns a string that is the concatenation of n copies
of the string S.
string.rep(s, n)

-- Returns the substring of S that starts at i and continues

until j. i and j may be negative. If j is absent, then it
is assumed to be equal to -1, which is the same as the

string length. In particular, the call string.sub(s,1,j)
returns a prefix S with length j, and string.sub(s, -i)
returns a suffix S with length i.

string.sub(s, i1 [,31)

-- Returns a copy of the string S with all lowercase
letters changed to uppercase.

string.upper (s)

2-44 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 2: TSP _Programming Fundamentals

Math library functions

This library is an interface to most of the functions of the ANSI C math library. All
trigonometric functions work in radians. The functions math.deg () and
math.rad () convert between radians and degrees.

Function Definition

math.abs (x) Returns the absolute value of the argument x.

math.acos (x) Returns the principal value of the trigonometric arc cosine function
of x.

math.asin (x) Returns the principal value of the trigonometric arc sine function of
X.

math.atan (x) Returns the principal value of the trigonometric arc tangent
function of x.

math.atan2 (y, x) Returns the principal value of the trigonometric arc tangent
function of v/ x.

math.ceil (x) Returns the smallest floating-point number not less than x whose
value is an exact mathematical integer.

math.cos (x) Returns the trigonometric cosine function of x.

math.deg (x) Returns the value of x in degrees, where x is in radians.

math.exp (x) Returns the exponential function of x; that is, e*, where e is the
base of the natural logarithms.

math.floor (x) Returns the largest floating-point number not greater than x
whose value is an exact mathematical integer.

math.log(x) Returns the natural logarithm function of .

math.loglO (x) Returns the base-10 logarithm function of x.

math.max (x, vy, Returns the maximum value of its numeric argument(s).

math.min (x, vy, Returns the minimum value of its argument(s).

math.mod (x, y) Returns an approximation to the mathematical value f such that £
has the same sign as x, the absolute value of f is less than the
absolute value of y, and there exists an integer k such that
k*y+f = x.

math.pi Variable containing the value of &t (3.141592654).

math.pow(x, y) Returns xvy.

math.rad(x) Returns the value of x in radians, where x is in degrees.

math.sin (x) Returns the trigonometric sine function of x.

math.sqgrt (x) Returns the non-negative square root of x.

math.tan (x) Returns the trigonometric tangent function of x.

3700S-901-01 Rev. C / July 2008

2-45

Section 2: TSP Programming Fundamentals Series 3700 System Switch/Multimeter Reference Manual

Function Definition
math.frexp () Splits x into a fraction £ and exponent n, such that £ is 0. 0 or
0.5 <=1 £ | <= 1.0,and £ * 2nisequalto x. Both £

and n are returned: £,n = math.frexp (x).

math.ldexp(x, n) Returns the inverse of the math.frexp() function; it computes the
value x * 2n.

math.random([x], [When called without an argument, returns a pseudo-random real
v]) number in the range [0, 1].

When called with number x, returns a pseudo-random integer in
therange [1,n].

When called with two arguments, x and y, returns a pseudo-
random integer in the range [x, V]

math.randomseed(x | Sets a "seed" for the pseudo-random generator. Equal seeds
) produce equal sequences of numbers.

2-46 3700S-901-01 Rev. C/ July 2008

Section 3

TSP Advanced Features

In this section:

INEFOAUCTION ...t 3-1
Using groups to manage nodes on TSP-LIinkTM network . 3-4
Running parallel test SCriptSoccovveiiiieieiiiee e 3-6
Using the data queue for real-time communication........... 3-8
Copying test scripts across the TSP-LIinkTM network........ 3-8
Removing stale values from the reading buffer................. 3-9
Commands related to TSP advanced features 3-10

Introduction

Use the TSP advanced features to run test scripts in parallel, to manage
resources allocated to test scripts running in parallel, and to use the data queue
to facilitate real-time communication between nodes on the TSP-Link network.

Running test scripts in parallel improves functional testing, provides higher
throughput, and expands system flexibility.

There are two methods you can use to run test scripts in parallel:

e Create multiple TSP-Link networks
e Use a single TSP-Link network with groups
The following figure displays the first method, which consists of multiple

TSP-Link networks. Each TSP-Link network has a master node and a GPIB
connection to the PC.

Section 3: TSP Advanced Features Series 3700 System Switch/Multimeter Reference Manual

Figure 3-1: Multiple TSP-Link networks

Single-instrument TSP-Link network

GPIB, LAN, or USB == Yo
TSP-Link In

3706 TSP-Link Out

Two-instrument TSP-Link network

GPIB, LAN, or USB
Master TSP-Link In
3706 TSP-Link Out

GPIB, LAN, or USB
Slave TSP-Link In

3706 TSP-Link Out

TSP-Link network with more than three instruments

GPIB, LAN, or USB == M)
Master TSP-Link In

3706 TSP-Link Out

GPIB, LAN, or USB
Slave TSP-Link In
3706 TSP-Link Out

GPIB, LAN, or USB
Slave TSP-Link In

3706 TSP-Link Out

3-2 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

The second method to run parallel test scripts is to use groups with a single
TSP-Link network. A group consists of one or more nodes with the same group
number. Each group on the TSP-Link network can run different test scripts at the
same time (in parallel).

The following figure displays a TSP-Link network with groups. This method
requires one TSP-Link network and a single GPIB connection to the PC.

Figure 3-2: Single TSP-Link network with groups

GPIB, LAN, or USB |

Gm,spte(; TSP-Link In |
3706 TSP-Link Out
ISl GPIB, LAN, or USB
Node 2 TSP-Link In |

L AN 3706 TSP-Link Out

GPIB, LAN, or USB |

GN;gge ? TSP-Link In

P 3706 T1SP-Link Outi

Group 1 e
Group Leader GPIB, LAN, or USB |
Node 5 TSP-Link In |

PN 3706 TSP-Link Out

GPIB, LAN, or USB |
TSP-Link In

Node 6
Group 3

3706 TSP-Link Out |

3700S-901-01 Rev. C/ July 2008 3-3

Section 3: TSP Advanced Features

Series 3700 System Switch/Multimeter Reference Manual

The following table describes the functions of a single TSP-Link network. Each
group in this example runs multiple test scripts at the same time or in parallel
(see the previous figure).

TSP-Link network group functions

Group
number

Group members

Current function

Master node

¢ Initiates and runs a test script on
Node 2

¢ Initiates and runs a test script on
Node 5

e Initiates and runs a test script on
Node 6

Group leader
Node 2

¢ Runs the test script initiated by the
master node

e Initiates remote operations on Node 3

Node 3

e Performs remote operations initiated
by Node 2

Group leader
Node 5

¢ Runs the test script initiated by the
master node

¢ Initiates remote operations on Node 4

Node 4

e Performs remote operations initiated
by Node 5

Group leader
Node 6

¢ Runs the test script initiated by the
master node

TSP-Link™ has three synchronization lines that function similar to the Digio
synchronization lines. See digio functions and attributes (on page 13-11) and
Hardware trigger modes (on page 8-18) for more detailed information.

Using groups to manage nodes on TSP-LinkTM network

The primary purpose of a group is to assign each node to run different test
scripts at the same time (in parallel). Each node must belong to a group; a group
can consist of one or more members. Group numbers are not assigned
automatically; you must use the Instrument Control Library (ICL) (on page 12-1)
commands to assign each node to a group.

3-4

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

Master node overview

The master node is always the node that coordinates activity on the TSP-Link
network. All nodes assigned to group 0 belong to the same group as the master
node.

The following list describes the functionality of the master node:

e The only node that can send the execute command on a remote node

e Cannot initiate remote operations on any node in a remote group if any node
in that remote group is performing an overlapped operation

e Sends the waitcomplete command to wait for the local group that the
master node belongs to, to wait for a remote group, or to wait for all nodes
on the TSP-Link network to complete overlapped operations

Group leader overview

Each group has a dynamic group leader. The last node in a group running any
operation initiated by the master node is the group leader.

The following list describes the functionality of the group leader:

e Runs operations initiated by the master node
e Initiates remote operations on any node with the same group number
e Cannot initiate remote operations on any node with a different group number

e Can send the waitcomplete command without a parameter to wait for all
nodes assigned to the same group number

Assigning groups

Group numbers can range from 0 (zero) to 64. The default group number is 0.
You can change the group number at any time.

Use the following code to dynamically assign nodes to a group.

Note the following:

e Each time the node powers off, the group number for that node changes to 0
e Replace N with the node number

e N represents the node number that runs the test scripts and the TSL code

e Each time the node powers off, the group number for that node changes to 0
e Replace G with the group number

-- Assigns the node to a group.
node [N] .tsplink.group = G

3700S-901-01 Rev. C / July 2008 3-5

Section 3: TSP Advanced Features Series 3700 System Switch/Multimeter Reference Manual

Reassigning groups

Use the following code to change group assignment. You can add or remove a
node to a group at anytime.

-- Assigns the node to a different group.
node [N] .tsplink.group = G

Running parallel test scripts

You can issue the execute command from the master node to initiate test
script and TSL code on a remote node. The execute command places the
remote node in the overlapped operation state. As a test script runs on the
remote node, the master node continues to process other commands in parallel.

Note the following:

e Use the following code to send the execute command on a remote node.
e N represents the node number that runs the test script
e Replace N with the node number

To set the global variable on Node N equal to 2.5:

node [N] .execute ("setpoint = 2.5")

The following code is an example of how to run a test script on a remote node.

NOTE For this example, myscript is defined on the local node.

To run myscript on Node N:

node [N] .execute (myscript.source)

The following code demonstrates how to run a test script defined on a remote
node.

NOTE For this example, myscript is defined on the remote node.

To execute a script defined on the remote node:

node [N] .execute ("myscript () ")

It is recommended that you copy large scripts to a remote node to improve
system performance. See Copying test scripts across the TSP-Link™ network
(on page 3-8) for more information.

3-6 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

Coordinating overlapped operations in remote groups

Errors occur if you send a command to a node in a remote group running an
overlapped operation. All nodes in a group must be in the overlapped idle state
before the master node can send a command to the group.

Use the waitcomplete command to:

e Group leader and master node: To wait for all overlapped operations
running in the local group to complete

e Master node only: To wait for all overlapped operations running on a
remote group to complete on the TSP-Link™ network

e Master node only: To wait for all groups to complete overlapped operations

For additional information, see waitcomplete() (on page 3-16).

The following code is an example on how to issue the waitcomplete
command from the master node:

-- Waits for each node in group N to complete all
overlapped operations.

waltcomplete (N)

-- Waits for all groups on the TSP-Link network to complete
overlapped operations.

waitcomplete (0)

The group leader can issue the waitcomplete command to wait for the local
group to complete all overlapped operations.

The following code is an example of how to issue the waitcomplete
command:
-—- Waits for all nodes in a local group to complete all

overlapped operations.
waitcomplete ()

3700S-901-01 Rev. C / July 2008 3-7

Section 3: TSP Advanced Features Series 3700 System Switch/Multimeter Reference Manual

Using the data queue for real-time communication

You cannot access the reading buffers or global variables from any node in a
remote group while a node in that group is performing an overlapped operation.
You can use the data queue to retrieve data from any node in a group
performing an overlapped operation. In addition, the master node and the group
leaders can use the data queue as a way to coordinate activities.

The data queue uses the first-in, first-out (FIFO) structure to store data. Nodes
running test scripts in parallel can store data in the data queue for real-time
communication. Each Series 3700 has an internal data queue. You can access
the data queue from any node at any time.

You can use the data queue to post numeric values, strings, and tables. Tables
in the data queue consume one entry. A new copy of the table is created when
the table is retrieved from the data queue. The copy of the table does not
contain any references to the original table or any subtables.

To add or retrieve values from the data queue and view the capacity, see the
Instrument Control Library (ICL) (on page 12-1).

Copying test scripts across the TSP-LinkTM network

To run a large script on a remote node, it is highly recommend that you copy the
test script to the remote node to increase the speed of test script initiation.

Use the code below to copy test scripts across the TSP-Link network. This
example creates a copy of a script on the remote node with the same name:

Note the following:

e Replace N with the number of the node that receives a copy of the script

e Replace myscript with the name of the script that you want to copy from
the local node

-— Adds the source code from myscript to the data queue.
node [N] .dataqueue.add (myscript.source)
-- Creates a new script on the remote node
-- using the source code from myscript.
node [N] .execute (myscript.name.." =

script.new (dataqueue.next (),
[["..myscript.name.."]1])")

3-8 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

Removing stale values from the reading buffer

The node that acquires the data stores the data for the reading buffer. To
optimize data access, all nodes can cache data from the node that stores the
reading buffer data.

Running TSL code remotely can return stale values from the reading buffer to
the cached data. If the values in the reading buffer change while the TSL code
runs remotely, another node can hold stale values. Use the clearcache
command to clear the cache.

The following code demonstrates how stale values occur and how to use the
clearcache command to clear the cache.

Note the following:

e Replace N with the node number

¢ Replace G with the group number

-- Creates a reading buffer on a node in a remote group.
node [N] .tsplink.group = G
node [N] .execute ("rbremote = dmm.makebuffer (20) "
"dmm.measure.count = 20 "
"dmm.measure (rbremote) ")

-- Creates a variable on the local node to
-- access the reading buffer.
rblocal = node[N].getglobal ("rbremote")

-— Access data from the reading buffer.
print (rblocal[l])

-—- Runs code on the remote node that updates the reading
buffer.
node [N] .execute ("dmm.measure (rbremote) ")

-- Use the clearcache command if the reading buffer
contains cached data.
rblocal.clearcache ()

-—- If you do not use the clearcache command, the data
buffer values will never update. Every time the print
command is issued after the first print command, the
same data buffer values will print.

print (rblocal[l])

3700S-901-01 Rev. C / July 2008 3-9

Section 3: TSP Advanced Features

Series 3700 System Switch/Multimeter Reference Manual

Commands related to TSP advanced features

dataqueue.add()

Function Store an item of data in the data queue.

Usage success = dataqueue.add(value[, timeout])
value: The data item to add.
timeout: Maximum amount of time in seconds to wait for room in the queue if it is full.
success: Success indication.

Remarks This function will add one entry to the data queue. If the queue is full, this function will

wait up to timeout seconds for room to be made available. This function will return
true if the value was added to the data queue. It will return false if the queue is full and
the item could not be added before the timeout expires.

The timeout value may only be specified when called from the local node. If a timeout
value is not given, the function will not wait for room in the queue if it is full.

NOTE If value is a table, this function will make a deep copy of it rather than
storing a reference to it. This will make a complete copy of all entries within
the table, including all nested tables.

dataqueue.CAPACITY

Attribute The maximum number of entries the data queue can hold.
Usage capacity = dataqueue.CAPACITY
capacity : Maximum number of entries in the data queue.
Remarks This constant indicates the maximum number of values that can be stored in the data

queue.

dataqueue.clear()

Function Clear the data queue.
Usage dataqueue.clear ()
Remarks This function will remove all entries from the data queue. If any nodes are waiting to

add data to the queue, this method will force them to fail as if they timed out.

dataqueue.count

Attribute

The number of entries currently stored in the data queue.

Usage

count = dataqueue.count

count: Number of entries in the data queue.

3-10

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

dataqueue.count

Remarks

This attribute is a read-only attribute that indicates how many entries are in the data
queue.

dataqueue.next()

Function Retrieve an entry from the data queue.

Usage value = dataqueue.next ([timeout])
timeout: Maximum amount of time in seconds to wait for data if the queue is empty.
value: The next entry from the data queue.

Remarks This function will remove the next entry from the data queue and return its value. If the

gueue is empty, this function will wait up to t imeout seconds for data to arrive. If no
data arrives before the timeout expires, this function will return nil.

The timeout value may only be specified when called from the local node. If a timeout
value is not given, the function will not wait for data to be put in the queue if it is empty.

NOTE If the entry is a table, this function will return a deep copy of its contents at
the time the table was added to the data queue rather than returning a
reference to the original table.

localnode.execu

te()

Function Execute TSL code.
Usage localnode.execute (chunk)

chunk: Source TSL code to execute.
Remarks This function will execute the given TSL code.

NOTE This command cannot actually be used on the local node. It is provided for
the sole purpose of executing scripts on this node from a remote master
node. The localnode prefix to the command is an artifact of command
organization and how remote commands are shared between nodes.

localnode.getglobal()

Function

Get a the value of a global variable.

Usage

value = localnode.getglobal (name)
name: The global variable name.

value: The value of the variable.

3700S-901-01 Rev. C / July 2008

3-11

Section 3: TSP Advanced Features

Series 3700 System Switch/Multimeter Reference Manual

localnode.getglobal()

Remarks

This function will return the value of the given global variable. This function is provided
to allow code running on a remote master node to retrieve values of variables from
that node. This function should not be used to retrieve the value of a global variable on
the local node when using the local node as the master. Accessing the variable
directly is far more efficient.

NOTE This command is provided for the sole purpose of accessing variables on
this node from a remote master node. The 1ocalnode prefix to the
command is an artifact of command organization and how remote
commands are shared between nodes.

localnode.setglobal()

Function Set a the value of a global variable.
Usage localnode.setglobal (name, value)
name: The global variable name to create.
value: The value to assign to the variable.
Remarks This function will assign the given value to a global variable. This function is provided

to assign values to variables from a remote master node. This function should not be
used to assign values to global variables on the local node when using the local node
as the master, assigning the value directly is far more efficient.

NOTE This command is provided for the sole purpose of accessing variables on
this NOTE from a remote master node. The 1localnode prefix to the
command is an artifact of command organization and how remote
commands are shared between nodes.

tsplink.group

Attribute The group number of a TSP-Link™ node.
Usage groupnumber = tsplink.group
tsplink.group = groupnumber
groupnumber: The TSP-Link group number for the node.
Remarks This attribute controls the TSP-Link group number used for DTNS. Set this attribute to

zero to remove the node from all subgroups.

tsplink.master

Attribute The node number of the master node.
Usage master = tsplink.master
master: The node number of the master node.
Remarks This read-only attribute indicates which node is the master node.

3-12

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 3: TSP Advanced Features

tsplink.trigger[N

].assert()

Function Simulates the occurrence of the trigger and generates the corresponding event id.
Usage tsplink.trigger[N].assert ()

N: The trigger line to assert (1-3).
Remarks This function will generate a trigger pulse on the given TSP-Link™ trigger line.
Also see tsplink.trigger[N].clear() (on page 3-13)

tsplink.trigger[N].mode (on page 3-13)
tsplink.trigger[N].overrun (on page 3-15)
tsplink.trigger[N].release() (on page 3-15)
tsplink.trigger[N].stimulus (on page 13-298)
tsplink.trigger[N].wait() (on page 3-15)

tsplink.trigger[N

].clear()

Function Clear the event detector for a trigger.

Usage tsplink.trigger[N].clear ()
N: The trigger line (1-3).

Remarks A trigger’s event detector remembers if an event has been detected since the last
tsplink.trigger [N] .wait call. This function clears a trigger's event detector
and discards the previous history of the trigger line.

Also see tsplink.trigger[N].mode (on page 3-13)

tsplink.trigger[N].overrun (on page 3-15)
tsplink.trigger[N].release() (on page 3-15)
tsplink.trigger[N].stimulus (on page 13-298)
tsplink.trigger[N].wait() (on page 3-15)

tsplink.trigger[N

].mode

Attribute

The trigger operation/detection mode.

Usage

To read trigger operation/detection mode:

mode

tsplink.trigger [N] .mode

To write trigger operation/detection mode:

mode

tsplink.trigger [N] .mode
N: The trigger line (1-3).

mode: Trigger mode.

3700S-901-01 Rev. C / July 2008

3-13

Section 3: TSP Advanced Features

Series 3700 System Switch/Multimeter Reference Manual

tsplink.trigger[N].mode

Remarks

This attribute controls the mode in which the trigger event detector as well as the
output trigger generator will operate on the given trigger line. mode can be one of the
following values:

tsplink. TRIG_BYPASS

Allow direct control of the line.

tsplink. TRIG_EITHER

Detect rising or falling edge triggers as input. Assert a TTL-low pulse for output.
tsplink. TRIG_FALLING

Detect falling edge triggers as input. Assert a TTL-low pulse for output.

tsplink. TRIG_RISING

Use digio. TRIG_RISINGA if the line is in the high output state. Use
digio.TRIG_RISINGM if the line is in the low output state.

tsplink. TRIG_RISINGA

Detect rising edge triggers as input. Assert a TTL-low pulse for output.

tsplink. TRIG_RISINGM

Assert a TTL-high pulse for output. Input edge detection is not possible in this mode.
tsplink. TRIG_SYNCHRONOUS

Detect falling edge triggers as input and latch them low. Assert a TTL-low pulse for
output.

tsplink. TRIG_SYNCHRONOUSA

Detect falling edge triggers as input and automatically latch and drive them low when
detected. Release a latched line for output.

tsplink. TRIG_SYNCHRONOUSM

Detect rising edge triggers as input. Assert a TTL-low pulse for output.

Remarks,
continued

The default trigger mode for a line will be TRIG_BYPASS. In this mode, the line can be
directly controlled as a digital I/0O line. When programmed to any other mode, the
output state of the 1/O line is controlled by the trigger logic and the user-specified
output state of the line will be ignored.

For compatibility with older firmware, when the trigger mode is set to TRIG_RISING,
the user specified output state of the line will be examined. If the output state selected
when the mode is changed is high, the actual mode used will be TRIG_RISINGA. If
the output state selected when the mode is changed is low, the actual mode used will
be TRIG_RISINGM.

3-14

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 3: TSP Advanced Features

tsplink.trigger[N

].mode

Also see

tsplink.trigger[N].assert (on page 3-12)
tsplink.trigger[N].clear() (on page 3-13)
tsplink.trigger[N].overrun (on page 3-15)
tsplink.trigger[N].release() (on page 3-15)
tsplink.trigger[N].stimulus (on page 13-298)
tsplink.trigger[N].wait() (on page 3-15)

tsplink.trigger[N

].overrun

Attribute

Event detector overrun status.

Usage

overrun = tsplink.trigger[N].overrun
overrun: Trigger overrun state.

N: The trigger line (1-3).

Remarks

This attribute is a read-only attribute. It indicates if an event was ignored due to the
event detector being in the detected state when the event occurred. This is an
indication of the state of the event detector built into the synchronization line itself.

This attribute does not indicate if an overrun occurred in any other part of the trigger
model or in any other construct that is monitoring the event.

Also see

tsplink.trigger[N].assert (on page 3-12)
tsplink.trigger[N].clear() (on page 3-13)
tsplink.trigger[N].mode (on page 3-13)
tsplink.trigger[N].release() (on page 3-15)
tsplink.trigger[N].stimulus (on page 13-298)
tsplink.trigger[N].wait() (on page 3-15)

tsplink.trigger[N

].release()

Function Release a latched trigger.
Usage tsplink.trigger [N].release ()
N: The trigger line (1-3).
Remarks This function will release a latched trigger on the given TSP-Link™ trigger line.
Also see tsplink.trigger[N].assert (on page 3-12)

tsplink.trigger[N].clear() (on page 3-13)
tsplink.trigger[N].mode (on page 3-13)
tsplink.trigger[N].overrun (on page 3-15)
tsplink.trigger[N].stimulus (on page 13-298)
tsplink.trigger[N].wait() (on page 3-15)

3700S-901-01 Rev. C / July 2008

3-15

Section 3: TSP Advanced Features

Series 3700 System Switch/Multimeter Reference Manual

tsplink.trigger[N].wait()

Function Wait for a trigger.
Usage triggered = tsplink.trigger[N].wait (timeout)
N: The trigger line (1-3).
timeout: Maximum amount of time in seconds to wait for the trigger.
triggered: Trigger detection indication.
Remarks This function will wait for an input trigger. If one or more trigger events were detected

since the last time tsplink.trigger[N].wait() or tsplink.trigger[N].clear() (on page 3-13)
was called, this function will return immediately.

After waiting for a trigger with this function, the event detector will be automatically
reset and rearmed. This is true regardless of the number of events detected.

waitcomplete()

Function Wait for all overlapped commands to complete.
Usage waitcomplete ([group])
group: Optional TSP-Link™ group on which to wait.
Remarks This function will wait for all overlapped operations within given group to complete. A

group number may only be specified from the master node. If no group is specified,
the local group will be used. If zero is given for the group, this function will wait for all
nodes in the system.

NOTE Any nodes that are not assigned to a group (their group number is zero) will
be considered to be part of the master's group.

This function will wait for all previously started overlapped commands to complete.
Currently the Series 3700 has no overlapped commands implemented. However,
other TSP™-enabled products like the Series 3700 has overlapped commands.
Therefore, when the Series 3700 is a TSP master to a slave device with overlapped
commands, use this function to wait until all overlapped operations are completed.

3-16

3700S-901-01 Rev. C/ July 2008

Section 4

Using the Front Panel

In this section:

Front panel introductioncceeeeeiiiiiieiee e 4-1
DISPIAY .t 4-4
Special keys and power SWItChcoccvveiiiieeeiiiieennns 4-11
Operation KEYS.......oooiuiiiiiieei e 4-17
Range keys, cursor keys, and navigation wheel 4-32
ACHION KBYS...ciiiiiiiiiiiii et 4-33

Front panel introduction

This section describes the Keithley Instruments Series 3700 System
Switch/Multimeter front panels.

The menu options under the CHAN key and CONFIG CHAN menus vary,
depending on the channel type of the selected channel. When selecting a range
of channels, all channel types might need to match for some operations like read
and write of a Digital I/O channel or opening and closing of Switch channels.
Some operations, like reset (), work with a range of mix channel types.

NOTE Not all models will have a digital multimeter (DMM) installed. All
DMM-related documentation is not applicable to those models.

If your model does not have a front panel, see the following sections to make the
appropriate changes.

e GPIB address with gpib.address (on page 13-187) command.

e LAN configuration using LAN functions and attributes (on page 13-190).

Use the menu system to scan channels, with the following limitations:

e You can add digital I/O and totalizer channels to a front panel scan list for
reading by using the INSERT key (ICL equivalent of scan.add () (on page
13-230)).

e You cannot add digital I/O and totalizer channels to a front panel scan list for
writing (ICL equivalent of scan.addwrite () (on page 13-231)).

e You cannot add DAC channels to a front panel scan list for writing or
reading.

e Pressing the INSERT key with a DAC channel selected generates an error
message.

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

NOTE Only widths of one are supported by the front panel when reading or
writing to a Digital I/0 channel.

Figure 4-1: Model 3706 System Switch/Multimeter

3708 SYSTEM SWITCH/MULTIMETER
w

H

e

1588 STATUS. (<]
N

U LAN STATUS

FowER POWER
I

o

Item Description

1 Special keys and power switch (on page 4-11)

Operation keys (on page 4-17)

Range keys, cursor keys, and navigation wheel (on page 4-32)

Display (on page 4-4)

2
3
4 Action keys (on page 4-33)
5
6

USB connector

Figure 4-2: Model 3706-S System Switch (ho DMM)

KEITIILEY

-
1588 STATUS.
O LA sTATUS
POWER
o
pey

POWER

®

4-2 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

NOTE To see current settings for LAN, see the applicable 1an.status.*
commands (for example, to see the present IP address of the Series
3700, send the following command: 1an.status.ipaddress (0On
page 13-201).

Figure 4-3: Model 3706-NFP System Switch/Multimeter

Figure 4-4: Model 3706-SNFP System Switch (no DMM)

3700S-901-01 Rev. C / July 2008 4-3

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

Display

The Series 3700 display provides visual information on the present active
channel, including the channel selected (or range or pattern), channel state, last
DMM measurement reading (where applicable), DMM settings (where
applicable), and error indications. The display and the navigation wheel provide
a way to change the active channel or channel ranges, as well as access, view,
and edit the various menus and menu items.

The Series 3700 has three LEDs on the front panel; these LEDs represent 1588
status, LAN status, and power.

e When you turn on the unit, the power LED is illuminated.

e When the instrument is connected through the Ethernet with no errors, the
LAN status LED is illuminated. However, the LAN status LED is off when the
instrument is not connected through the Ethernet or there is a connection
problem.

e When you press the identify option (ID button) on the home web page for
the Series 3700, the LAN status LED blinks.

e The 1588 status LED indicates 1588 operation. When this LED is off, the
1588 feature is disabled or improperly configured.

e The LED blinks at a one-second rate when the instrument is the 1588
master. If the instrument is a slave, the LED will not blink.

4-4 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

See the following figure (labeled "Active channel display example") for an active
channel example. The 4WQ and AUTO range annunciators are lit (1). Also, the
active channel is 1004 (Slot 1, Channel 004) (2). The present state of the
channel is open and it has two poles (3). The present state of the attributes for
this channel (4) are:

e 4WQ function set for AUTO range

e Dry-circuit ohms disabled (DRY-)

e Offset compensation off (OC-).

Other attributes, such as NPLC, are available for this specific active channel

(1004) as indicated by arrow (5) being lit. View them by turning the navigation
wheel (6) to scroll through the attribute list.

NOTE Access attribute and menu lists that are larger than the display by
turning the navigation wheel (6). Displayed arrows (5) indicate
additional attributes or menu items (as applicable) that are available
by turning the navigation wheel (6) in the direction the arrow points. If
an arrow (5) is not displayed, there are no additional menu choices in
that direction. Switch-only systems have none of these features.

Figure 4-5: Active channel display example

The top line of the display (1) contains the following annunciators:

Annunciator Description

* (asterisk) Readings are being stored in the selected reading buffer. This is OFF when no buffer
is selected or the selected buffer is full.

aw Displays 4-wire resistance or RTD temperature reading.

AUTO Auto range enabled for the selected DMM function.

EDIT Unit in edit mode (for front panel).

FILT Filter enabled for the selected DMM function.

LSTN Instrument addressed to listen over GPIB.

MATH mX+b, percent, or reciprocal (1/X) calculation enabled for the selected DMM
function.

3700S-901-01 Rev. C / July 2008 4-5

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

Annunciator Description

REL Relative enabled for selected DMM function.

REM Instrument in bus remote mode or web interface control mode (all interfaces, LAN,
GPIB, or USB).

SRQ Service request over GPIB.

TALK Instrument addressed to talk over GPIB bus.

TRIG ON when the front panel has requested a reading from the DMM. OFF when the
reading is finished.

The bottom left line of the display (4) contains the DMM attribute symbols. The
symbols that appear are dependent on whether the attribute exists for the
selected function. The following table indicates the DMM attribute symbols that
may appear on the front panel. If the symbol has a value associated with it, the
third column in the table indicates the value definition.

Front panel DMM attribute Symbol Values

range R= AUTO or n, where n equals the range
nplc N= n, where n equals the NPLC

auto delay AD + for ON, 1 for ONCE, or 0 for OFF
auto zero AZ + for ON or — for OFF

line sync LS + for ON or — for OFF

limit LIM + for a limit enabled or — for limits disabled
detector bandwidth DBW 3, 30, or 300

threshold THR= n, where n indicates the threshold
aperture A= n, where n indicates the aperture setting
dry circuit DRY + for ON or — for OFF

offset compensation ocC + for ON or — for OFF

thermocouple sensor K K_T/C N/A

thermocouple sensor T T_T/IC N/A

thermocouple sensor E E_T/C N/A

thermocouple sensor R R_T/C N/A

thermocouple sensor S S TIC N/A

thermocouple sensor B B_T/C N/A

thermocouple sensor N N_T/C N/A

thermistor THRM N/A

three-wire RTD 3RTD N/A

4-wire RTD 4RTD N/A

simulated reference junction RJ_SIM N/A

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 4: Using the Front Panel

Front panel DMM attribute Symbol Values
internal reference junction RJ_INT N/A
external reference junction RJ_EXT N/A

NOTE To access the main menu, press the MENU key.

See the following figure for a menu example. In the example, the MAIN MENU is
displayed. Turn the navigation wheel (6) or press the CURSOR keys to scroll
through the available menu items. In the following figure's first display, there is a
right arrow indicator. This indicates there are additional menu items to the right.
In the figure's second display, both right and left arrows are active, indicating
that there are additional items in both directions. To select the highlighted
(flashing) menu item, press the navigation wheel or press the ENTER key.

Figure 4-6: MAIN MENU display

NOTE

This arrow (pointing to the right)
indicates that additional menu items
exist. Turn the wheel to the right to
display the additional menu items.

NOTE

These arrows (pointing to the left
and right) indicate that additional
menu items exist. Turn the wheel
to the left or the right to display
the additional menu items.

3700S-901-01 Rev. C / July 2008

4-7

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

Channel type indication

When selecting channels, the following information is displayed, which indicates
the channel type on the front panel.

e For switch channels, the name of the assigned DMM configuration (for
example, “nofunction”, “dcvolts”, “my4wire”, and so on) is displayed and
below it, the channel state (for example, OPN or CLS, along with 2 or 4 for

pole setting) is displayed.

e For digital /O channels, DIGITAL 10 appears and below the channel
number is DIG IN or DIG OUT to indicate the channel mode.

e For totalizer channels, TOTALIZER appears and below the channel number
is Fall Ed or Rise Ed to indicate mode edge.

e For DAC channels, DAC OUTPUT appears and below the channel number
is pvl, off, and so on to indicate protection, function, and output enable.

4-8 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

Using the front panel with non-switch channels

To read a value from the main front panel screen, select the channel and press
TRIG. To see a digital I/0O channel in hex format (instead of normal binary) use
CONFIG+TRIG.

A star symbol (*) or exclamation point symbol (!) may appear after the reading.
The meaning of the symbol depends on channel type.

e A star symbol (*) appears after the reading to indicate that the reading
matches the MATCH setting for digital /O and totalizer channels.

e An exclamation point symbol (!) appears after the reading to indicate an
overload state condition on that channel for digital I/O and DAC channels.

e An exclamation point symbol (!) appears after the reading to indicate an
overflow state condition on a totalizer channel.

e |f the power state is OFF for totalizer or DAC channels, the display shows
“DISABLED” instead of any readings.

The following table lists the front panel channel attributes that indicate the
various channel mode settings (ICL equivalent channel.setmode () (on page
13-77)), channel output enable (ICL equivalent

channel.setoutputenable () (on page 13-78)), and channel label (ICL
equivalent channel.setlabel () (on page 13-74)). Some of the attributes
have alternate symbols, depending on the operation performing on front panel
and whether it is being used with the 6 or 12 character label symbol.

e For digital I/O and totalizer channels, the label symbol is listed first, followed
by a comma and then mode symbols. If the label is the factory default
setting, then only the mode is listed.

e For DAC channels, the label symbol is listed first, followed by a comma and
then mode symbols, followed by another comma and the output enable
symbol. If the label is the factory default setting, then only the mode and
output enable symbols are listed.

Front Panel Symbol Definition Symbol meaning
Channel Setting
Channel label XXXXXX First 6 characters of Used with single letter
label symbols
XXXXXXX XXX First 12 characters of Used with the non-single
XX label letter symbols
Digital /0 mode DIG IN Digital input mode Used with 12-character
settings label or no label
DIG OUT Digital output mode Used with 12-character
label or no label
DIG pOUT Digital output Used with 12 character
protected mode label or no label

3700S-901-01 Rev. C / July 2008 4-9

Section 4: Using the Front Panel

Series 3700 System Switch/Multimeter Reference Manual

Front Panel Symbol Definition Symbol meaning
Channel Setting
| (uppercase Digital input mode Used with 6-character
"i") label
@] Digital output mode Used with 6-character
label
P Digital output Used with 6-character
protected mode label
Totalizer mode Rise Ed Totalizer rising edge Used with 12-character
settings mode label or no label
Fall Ed Totalizer falling edge Used with 12-character
mode label or no label
Rise-TTL Totalizer rising edge Used with 12-character
TTL level mode label or no label
Fall-TTL Totalizer falling edge Used with 12-character
TTL level mode label or no label
Rise-RST Totalizer rising edge Used with 12-character
read reset mode label or no label
Fall-RST Totalizer falling edge Used with 12-character
read reset mode label or no label
RiseTRST Totalizer rising edge Used with 12-character
TTL read reset mode label or no label
FallTRST Totalizer falling edge Used with 12-character
TTL read reset mode label or no label
R Totalizer rising edge Used with 6-character
mode label
F Totalizer falling edge Used with 6-character
mode label
DAC mode settings \% Voltage function Used with 6-character
mode label
| (uppercase Current function Used with 6-character
"i") either 1 or 2 mode label
V1 Voltage function 1 Used with 12-character
mode label or no label
11 Current function 1 Used with 12-character
mode label or no label
12 Current function 2 Used with 12-character
mode label or no label
pVv1i Protected voltage Used with 12-character
function 1 mode label or no label
pll Protected current Used with 12-character

function 1 mode

label or no label

4-10

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 4: Using the Front Panel

Front Panel Symbol Definition Symbol meaning
Channel Setting
pl2 Protected current Used with 12-character
function 2 mode label or no label
DAC output enable Off Output enable is Used with 6 or 12
settings disabled character label
On Output enable is Used with 6 or 12
enabled character label

Special keys and power switch

CONFIG key

Press the CONFIG key to access an attribute menu that enables you to
configure channels, channel patterns, DMM functions or settings, reading
buffers, scans, and other operations. Refer to the following for more information:

e CHAN key configuration (see "CONFIG CHAN key - SWITCH channel type"
on page 4-11)

e PATT key configuration (on page 4-30)

e SCAN key configuration (on page 4-31)

e DMM key configuration (on page 4-21)

e LIMIT key configuration (on page 4-27)

e REL key configuration (on page 4-30)

e FILTER key configuration (on page 4-25)

CONFIG CHAN key

CONFIG CHAN key - SWITCH channel type

Press the CONFIG key and then the CHAN key to open the CHANNEL
ATTRibute menu. If you press the CHAN key when a pattern is selected, the
unit goes into channel selection mode.

When changing attribute settings for a range of channels, the menu option for
the first channel specified in the range is highlighted. For example, selecting
Channels 3 to 5 on Slot 3 on the front panel (3003:3005) as a range shows the
current attribute setting for 3003 when an attribute menu is displayed. When the
attribute setting is selected for a range, the entire range of channels is updated
to that value. To view or set an individual attribute setting for only one channel,
be sure to select a single channel range. For example, 3003:3003 would only
affect Channel 3 on Slot 3, which is displayed as 3003 with the channel state
and poles setting below it.

3700S-901-01 Rev. C / July 2008

4-11

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

The CHAN ATTR menu contains:

e LABEL: Sets the label associated with the specified channel. From the front
panel, the label can be up to 12 characters. Remotely, the label may be up
to 20 characters. This option will not be displayed if multiple channels are
selected. Related ICL command: channel.setlabel() (on page 13-74).

e BACKPLANE: Opens the BACKPLANE menu. Use this menu to add or
remove backplane channels from the specified channels. Related ICL
command: channel.setbackplane() (on page 13-70).

e FORBID: Allows or prevents the closing of the specified channels. Related
ICL commands: channel.setforbidden() (on page 13-73) and
channel.clearforbidden() (on page 13-36).

e POLE: Sets the number of poles for the specified channels. Related ICL
command: channel.setpole() (on page 13-79).

e DELAY: Sets additional delay time for the specified channels. Related ICL
command: channel.setdelay() (on page 13-72).

e COUNT: Displays closure cycles for the specified channel. This option is not
displayed if multiple channels are selected. Related ICL command:
channel.getcount() (on page 13-48).

e DMM_CONFIG: Sets the DMM configuration associated with the specified
channels. Related ICL command: dmm.setconfig() (on page 13-168).

CONFIG CHAN key - DIGIO channel type

Press the CONFIG CHAN key to open the DIGIO ATTR menu. The DIGIO
ATTR menu is not available when a range of channels is selected. If a range is
selected, pressing CONFIG CHAN displays the following:

e DIGIO ATTR MENU
e <No Edit by Range, Use EXIT>

Therefore, to see the following options, select a single DIGIO channel.

LABEL

Enter up to 12 characters for the label for a channel. Related ICL command:
channel.setlabel() (on page 13-74).

DELAY

Enter the value for the delay in 1ms steps from 0 to 60 seconds for a channel.
Related ICL command: channel.setdelay() (on page 13-72).

4-12 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

MODE
Sets the mode attribute on a channel. Select one of the following options:

e INPUT
e OUTPUT
e OUTPUT_PROTECTED

Related ICL command: channel.setmode() (on page 13-77).

MATCH

Sets the match value on a channel. Enter the value as 8-bit binary. Related ICL
command: channel.setmatch() (on page 13-76).

MATCH_TYPE

Sets the match type on a channel. Select one of the following options:

e EXACT

e ANY

e NOT_EXACT
e NONE

Related ICL command: channel.setmatchtype() (on page 13-76).

STATE

Queries for the state of a channel and displays the value in the top line, labeled
by STATE=. Related ICL command: channel.getstate() (on page 13-56).

CONFIG CHAN key - TOTALIZER channel type

Press the CONFIG CHAN key to open the TOTAL ATTR menu. The TOTAL
ATTR menu is not available when a range of channels is selected. If a range is
selected, pressing CONFIG CHAN displays the following:

e TOTAL ATTR MENU
e <No Edit by Range, Use EXIT>

Therefore, to see the following options, select a single Totalizer channel.
LABEL

Enter up to 12 characters for the label for a channel. Related ICL command:
channel.setlabel() (on page 13-74).

3700S-901-01 Rev. C / July 2008 4-13

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

MODE
Sets the mode attribute on a channel. Select one of the following options:

e EDGE. Indicates the edge for the Totalizer channel to increment its count.
Select from one of the following options:

e FALLING
e RISING

e THRESHOLD. Indicates the threshold range. Select from one of the
following options:

e TTL
e NON_TTL

e RESET. Indicates if the count value gets reset after being read. Select from
one of the following options:

e ON
e OFF

Related ICL command: channel.setmode() (on page 13-77).

MATCH

Sets the match value on a channel. Enter the value between 0 and 65535.
Related ICL command: channel.setmatch() (on page 13-76).

MATCH_TYPE

Sets the match type on a channel. Select one of the following options:

e EXACT

e ANY

e NOT_EXACT
e NONE

Related ICL command: channel.setmatchtype() (on page 13-76).

STATE

Queries for the state of a channel and displays the value in the top line, labeled
by STATE=. Related ICL command: channel.getstate() (on page 13-56).

4-14 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

POWER

Sets the power state attribute on a channel. Select one of the following options:

e ENABLE
e DISABLE

Related ICL command: channel.setpowerstate() (on page 13-80)

CONFIG CHAN key - DAC channel type

Press the CONFIG CHAN key to open the DAC ATTR menu. The DAC ATTR
menu is not available when a range of channels is selected. If a range is
selected, pressing CONFIG CHAN displays the following:

e DACATTR MENU
e <No Edit by Range, Use EXIT>

Therefore, to see the following options, select a single DAC channel.

NOTE If the DAC channel has power set to DISABLE, then the menu choices
change to only show the option to change the power setting, until the
power is set to ENABLE.

LABEL

Enter up to 12 characters for the label for a channel. Related ICL command:
channel.setlabel() (on page 13-74).

DELAY

Enter the value for the delay in 1ms steps from 0 to 60 seconds for a channel.
Related ICL command: channel.setdelay() (on page 13-72).

3700S-901-01 Rev. C / July 2008 4-15

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

MODE
Sets the mode attribute on a channel. Select one of the following options:

e FUNCTION. Sets the desired function for a channel. Select one of the
following options:

e VOLTAGE
e CURRENT_1
e CURRENT 2

e PROTECT. Indicates if the protection mode for a channel is enabled. Select
one of the following options:

e AUTO
e OFF

Related ICL command: channel.setmode() (on page 13-77).

OUTPUT

Sets the output enable attribute on a channel. Select one of the following
options:

e ENABLE
e DISABLE

Related ICL command: channel.setoutputenable() (on page 13-78)

STATE

Queries for the state of a channel and displays the value in the top line, labeled
by STATE=. Related ICL command: channel.getstate() (on page 13-56).

POWER
Sets the power state attribute on a channel. Select one of the following options:

e ENABLE
e DISABLE

Related ICL command: channel.setpowerstate() (on page 13-80)

DISPLAY key

Press this key to toggle between the main and user display modes.

4-16 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 4: Using the Front Panel

POWER switch

Press this switch to turn the Series 3700 on (). Press it again to turn the Series
3700 off (O).

RESET switch

Use the RESET switch to restore the Series 3700 factory default LAN settings.
Refer to the LAN functions and attributes (on page 13-190) (1an.config. x,
where x represents the specific command) for factory default information.

Operation keys

CHAN key

Different menus are displayed for switch channel types or non-switch channel
types when the CHAN key is pressed.

CHAN key - switch channel type

Press the CHAN key to open the CHANNEL ACTION menu.

The CHANNEL ACTION menu contains the following items:

OPEN: This menu item opens the specified channels for switching aspects.
Related Instrument Control Library (ICL) command: channel.open() (on
page 13-59).

CLOSE: This menu item closes specified channels. These closures are
appended to the already closed channels. Related ICL command:
channel.close() (on page 13-37).

EXCLOSE: This menu item closes the specified channels so that they are
exclusively closed. Related ICL command: channel.exclusiveclose() (on
page 13-41).

EXSLOTCLOSE: This menu item exclusively closes specified channels on
the specified slots. Related ICL command: channel.exclusiveslotclose() (on
page 13-43).

RESET: This menu item resets specified channels to factory default
settings. Resetting a channel deletes any channel patterns that contain that
channel. Related ICL command: channel.reset() (on page 13-68).

CHAN key - DIGIO channel type

Press the CHAN key to open the DIGIO ACTION menu. Unless noted, the menu

option supports a range of selected channels.

3700S-901-01 Rev. C / July 2008

4-17

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

READ

Displays a value from a channel as 8-bit binary. This menu option does not
appear if a range of channels is selected. Related ICL command: channel.read()
(on page 13-67).

NOTE Only widths of one are supported by the front panel when reading or
writing to a Digital /0 channel.

WRITE

Writes a value to a channel. Enter the value as 8-bit binary. Related ICL
command: channel.write() (on page 13-83).

NOTE Only widths of one are supported by the front panel when reading or
writing to a Digital 1/0 channel.

RESET_STATE

Resets the channel state. Related ICL command: channel.resetstatelatch() (on
page 13-70).

RESET

Restores the factory default settings of selected channels or all channels.
Related ICL command: channel.reset() (on page 13-68).

CHAN key - TOTALIZER channel type

Press the CHAN key to open the TOTAL ACTION menu. Unless noted, the
menu option supports a range of selected channels.

READ

Displays a value from a channel as a number between 0 and 65535. This menu
option does not appear if a range of channels is selected. Related ICL
command: channel.read() (on page 13-67).

WRITE

Writes a value to a channel. Enter the value between 0 and 65535. Related ICL
command: channel.write() (on page 13-83).

RESET_STATE

Resets the channel state. Related ICL command: channel.resetstatelatch() (on
page 13-70).

4-18 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

RESET

Restores the factory default settings of selected channels or all channels.
Related ICL command: channel.reset() (on page 13-68).

CHAN key - DAC channel type

Press the CHAN key to open the DAC ACTION menu. Unless noted, the menu
option supports a range of selected channels.

NOTE If the DAC channel has power set to DISABLE, then the menu choices
change to only show the option to change the power setting, until the
power is set to ENABLE.

READ

Displays a value from a channel. This menu option does not appear if a range of
channels is selected.

A number is displayed that is dependent on the channel’s selected mode
function, as well as the card model of the selected channel. For example, a
number from one of the following ranges is displayed for a DAC channel on the
3750, based on the channel’s selected mode function:

e -12to +12 for MODE-FUNCTION as VOLTAGE_1

e 0to 20 mA for MODE-FUNCTION as CURRENT_1

e 4to 20 mA for MODE-FUNCTION as CURRENT_2

Related ICL command: channel.read() (on page 13-67).

WRITE

Writes a value from a channel. This menu option does not appear if a range of
channels is selected.

A number is displayed that is dependent on the channel’s selected mode
function, as well as the card model of the selected channel. For example, a
number from one of the following ranges is displayed for a DAC channel on the
3750, based on the channel’s selected mode function:

e -12to +12 for MODE-FUNCTION as VOLTAGE_1

e 0to20 mAin 1 uA steps for MODE-FUNCTION as CURRENT_1

e 41020 mAin 1 uA steps for MODE-FUNCTION as CURRENT_2

Related ICL command: channel.write() (on page 13-83)

3700S-901-01 Rev. C / July 2008 4-19

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

RESET_STATE

Resets the channel state. Related ICL command: channel.resetstatelatch() (on
page 13-70).

RESET

Restores the factory default settings of selected channels or all channels.
Related ICL command: channel.reset() (on page 13-68).

DELETE key

Press the DELETE key to delete the first occurrence of the selected channel(s)
or channel pattern (including function) from the scan list. If a selected item is not
contained in the scan list, no error is reported.

To remove all occurrences of a channel from the list, keep pressing the DELETE
key.

To view the current scan list after deleting items:

1. Pressthe SCAN key when on the main display.
2. Select the LIST option and press the ENTER key.
3. Use the navigation wheel or CURSOR keys to scroll through the list.

4-20 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

DMM key
Press the DMM key to open the DMM ACTION menu.

The DMM ACTION menu contains the following items:

e MEASURE: Takes measurements on the digital multimeter (DMM) without
using the trigger model. Related ICL command: dmm.measure() (on page
13-150).

e COUNT: Indicates the number of measurements to take when a
measurement is requested. Related ICL command: dmm.measurecount (on
page 13-151).

e LOAD: Recalls a user or factory DMM configuration. Use the navigation
wheel to scroll through available configurations. Related ICL command:
dmm.configure.recall() (on page 13-128).

e SAVE: Creates a DMM configuration with the pertinent attributes based on
the selected function, and associates it with the specified name. Related ICL
command: dmm.configure.set() (on page 13-129).

e OPEN: Opens the specified channel and/or channel pattern. Related ICL
command: dmm.open() (on page 13-154).

e CLOSE: Closes the specified channel or channel pattern in preparation for a
DMM measurement. Related ICL command: dmm.close() (on page 13-123).

e RESETFUNC: Returns the DMM aspects of the system for only the active
function to factory default settings. Related ICL command: dmm.reset() (on
page 13-161).

e RESETALL: Returns all DMM functions of the instrument to the factory
default settings. Related ICL command: dmm.reset() (on page 13-161).

DMM key configuration

Press the CONFIG key and then the DMM key to open a DMM attribute menu
for the active function. For example, if the DCV function is active, pressing the
CONFIG key and then the DMM key opens the DC VOLT ATTR menu.

Each function only has access to the applicable attributes for that function. Brief
definitions of the available attributes are contained in the following paragraphs.
Refer to the appropriate ICL for additional attribute information in Instrument
Control Library (ICL) (on page 12-1).

APERTURE

Configures the aperture setting for the active DMM function in seconds. Related
ICL command: dmm.aperture (on page 13-110).

3700S-901-01 Rev. C / July 2008 4-21

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

AUTODELAY

Configures the auto delay setting for the active DMM function. Related ICL
command: dmm.autodelay (on page 13-112).

AUTORANGE

Configures the auto range setting for the DMM. Related ICL command:
dmm.autorange (on page 13-113).

AUTOZERO

Configures the auto zero setting for the DMM. Related ICL command:
dmm.autozero (on page 13-114).

DBREF

Configures the DB reference setting for the DMM in volts. Related ICL
command: dmm.dbreference (on page 13-131).

DETECTBW

Configures the detector bandwidth setting for the selected DMM function. For
more information, see Bandwidth (on page 5-7). Related ICL command:
dmm.detectorbandwidth (on page 13-132).

DIGITS

Configures the display digits setting for the selected DMM function. For more
information, see Digits ICL programming (on page 5-4). Related ICL command:
dmm.displaydigits (on page 13-132).

DRYCIRCUIT

Configures the dry circuit setting for the selected DMM function. Related ICL
command: dmm.drycircuit (on page 13-133).

FILTER

Opens the FILTER menu for the selected DMM function. See FILTER key
configuration (on page 4-25).

FUNC

Displays a menu that allows you to scroll through the available DMM functions.
Use the navigation wheel or CURSOR keys to scroll the menu options and press
ENTER as soon as the desired function is highlighted. Related ICL command:
dmm.func (on page 13-137).

4-22 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

INPUTDIV

Enables or disables the 10M Q input divider. Related ICL command:
dmm.inputdivider (on page 13-140).

LIMIT

Opens the LIMIT menu for the selected DMM function. See LIMIT key
configuration (on page 4-27).

LINESYNC
Enables or disables line sync during measurements.

Related ICL command: dmm.linesync (on page 13-144).

MATH

Selecting the MATH menu item opens the MATH MENU. Items contained in this
menu are:

e ENABLE: Enables or disables math operation on measurements. Related
ICL command: dmm.math.enable (on page 13-147).

FORMAT: Specifies the math operation to perform on measurements.
Related ICL command: dmm.math.format (on page 13-147).

BFACTOR: Specifies the offset for the y = mX + b operation. Related ICL
command: dmm.math.mxb.bfactor (on page 13-148).

MFACTOR: Specifies the scale factor for the y = mX + b operation. Related
ICL command: dmm.math.mxb.mfactor (on page 13-149).

MXBUNITS: Specifies the unit character for the y = mX + b operation.
Related ICL command: dmm.math.mxb.units (on page 13-149).

PERCENT: Specifies the constant to use for the percent operation. Related
ICL command: dmm.math.percent (on page 13-150).

For more information, see:

e mX+b (on page 6-4)
e Reciprocal (1/X) (on page 6-7)
e Percent (on page 6-6)

NPLC

Configures the integration rate in line cycles for the DMM. Related ICL
command: dmm.nplc (on page 13-152).

OFFSETCOMP

Configures the offset compensation setting for the DMM. Related ICL command:
dmm.offsetcompensation (on page 13-153).

3700S-901-01 Rev. C / July 2008 4-23

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

OPENDETECT

Configures the state of the thermocouple or 4-wire ohms open detector that is
being used. Related ICL command: dmm.opendetector (on page 13-155).

RANGE

Configures the range of DMM for the selected function for one channel type. For
more information, see Range (on page 5-1). Related ICL command: dmm.range
(on page 13-156).

REL

Opens the REL menu for the selected DMM function. See REL key configuration
(on page 4-30).

THERMO

Selecting the THERMO menu item opens the THERMO menu. Items contained
in this menu are:

e REFJUNCT: Allows selection of the reference junction to use. Available
choices are: SIMULATED, EXTERNAL, or INTERNAL. Related ICL
command: dmm.refjunction (on page 13-157).

e SIMREF: Specifies the simulated reference temperature for thermocouples.
Related ICL command: dmm.simreftemperature (on page 13-169).

e THERMISTOR: Specifies the type of thermistor. Related ICL command:
dmm.thermistor (on page 13-170).

e THERMOCOUPLE: Specifies the thermocouple type. Related ICL
command: dmm.thermocouple (on page 13-171).

e TRANSDUCER: Selects the transducer type (THERMOCOUPLE,
THERMISTOR, 3RTD, or 4RTD). Related ICL command: dmm.transducer
(on page 13-173).

e THREERTD: Specifies the type of 3-wire RTD. Related ICL command:
dmm.threertd (on page 13-172).

e FOURRTD: Specifies the type of 4-wire RTD. Related ICL command:
dmm.fourrtd (on page 13-137).

e USER: Specifies USER type of RTD (ALPHA, BETA, DELTA, or ZERO).
Related ICL commands: dmm.rtdalpha (on page 13-162), dmm.rtdbeta (on
page 13-163), dmm.rtddelta (on page 13-164), dmm.rtdzero (on page 13-
165).

THRESHOLD

Configures the threshold range. Related ICL command: dmm.threshold (on page
13-173).

4-24 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 4: Using the Front Panel

UNITS

Configures the units for voltage and temperature measurements. Related ICL
command: dmm.units (on page 13-174).

ENTER key

Press the ENTER key to accept the current selection or bring up the next menu
options.

NOTE Pressing the navigation wheel performs the same function as the

ENTER key.

EXIT key

Press the EXIT key to:

Cancel the selection and to return to the previous menu display.
Exit remote operation.

Abort a scan that is running.

Abort a script that is executing.

FILTER key

Press the FILTER key to enable and disable the filter for selected function.
When the filter is enabled, the FILT annunciator will light. See Filter (on page 5-
8) for more information.

FILTER key configuration

Press the CONFIG key and then the FILTER key to open the FILTER menu.

The FILTER menu contains the following menu items:

ENABLE: Enables or disables filtered measurements for the selected DMM
function. Related ICL command: dmm.filter.enable (on page 13-134).

COUNT: Indicates the filter count setting for the selected DMM function.
Related ICL command: dmm.filter.count (on page 13-134).

TYPE: Indicates the filter averaging type for the DMM measurements on the
selected DMM functions (MOVING or REPEAT). Related ICL command:
dmm.filter.type (on page 13-135).

WINDOW: Indicates the filter window for the DMM measurements (0 to 10%
in 0.1% increments). Related ICL command: dmm.filter.window (on page 13-
136).

3700S-901-01 Rev. C / July 2008

4-25

Section 4: Using the Front Panel

FUNCtion key

Each press of the FUNC key immediately configures the DMM for the next
function in the list:

e dcvolts: DC voltage

e acvolts: AC voltage

e dccurrent: DC current

e accurrent: AC current

e twowireohms: 2-wire ohm (resistance)

e fourwireohms: 4-wire ohm (resistance)

e commonsideohms: Common-side ohm (resistance)

e frequency: Frequency

e period: Period

e continuity: Continuity

e temperature: Temperature

For example, if the DMM function is configured for dcvolts, pressing the FUNC
key four times will configure the DMM for acvolts, then for dccurrent, then for
accurrent, and then finally for twowireohms, which ends up as the active function
on the DMM. If you do not want the DMM to be momentarily configured for the
other functions while getting to desired one then, press the CONFIG key
followed by the FUNC key. Next, scroll to the desired function and press the

ENTER key when the desired function is highlighted (blinking). Related ICL
command: dmm.func (on page 13-137).

FUNC key configuration

Press the CONFIG key and then the FUNC key to display a menu that allows
you to scroll through the available DMM functions. Turn the navigation wheel or
press the CURSOR keys to scroll through available functions. Press the
navigation wheel or the ENTER key to make the displayed function active when
it is highlighted and blinking. While in the configuration mode of the FUNC key,
the function takes effect for the highlighted function only when the ENTER key is
pressed (the function does not change while scrolling).

INSERT key

Press the INSERT key to append the present channels to the scan list.

Series 3700 System Switch/Multimeter Reference Manual

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 4: Using the Front Panel

LIMIT key

Press the LIMIT key to cycle through the four combinations of limit state
settings:

Limitl and Limit2 off
Limitl on and Limit2 off
Limitl off and Limit2 on
Limitl and Limit2 on

LIMIT key configuration

Pressing the CONFIG key and then the LIMIT key opens the LIMIT menu.
Select LIMIT 1 or LIMIT 2 to open the desired LIMIT 1 or LIMIT 2 menu.

These menus contain the following items:

ENABLE: Enables or disables limit testing. Related ICL command:
dmm.limit[Y].enable (on page 13-142).
CLEAR: Clears the test results of the limit. Related ICL command:
dmm.limit[Y].clear() (on page 13-141).

AUTOCLEAR: Indicates if the limit should be cleared automatically or not.
Related ICL command: dmm.limit[Y].autoclear (on page 13-141).

LOWVAL: Sets the low limit value. Related ICL command:
dmm.limit[Y].low.value (on page 13-144).

LOWFAIL: Queries for the low test results of the limit. Related ICL
command: dmm.limit[Y].low.fail (on page 13-143).

HIGHVAL.: Sets the high limit value. Related ICL command:
dmm.limit[Y].high.value (on page 13-143).

HIGHFAIL: Queries for the high test results of limit. Related ICL command:
dmm.limit[Y].high.fail (on page 13-142).

LOAD key

Press the LOAD key to load scripts along with the Lua chunks added with
display.loadmenu.add() (on page 13-100) for execution. The LOAD TEST menu
is displayed.

The LOAD TEST menu contains the following items:

USER: Provides access to Lua chunks specified by display.loadmenu.add()
(on page 13-100) (not scripts).

SCRIPTS: Provides access to scripts created by the user. The scripts can
be directly executed.

3700S-901-01 Rev. C / July 2008

4-27

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

MENU key
Press the MENU key to open the MAIN menu.

The MAIN menu contains the following items:

e SCRIPT: Opens the SCRIPT menu that contains LOAD and SAVE menu
items.

e SETUP: Opens the SETUP menu that contains SAVE, RECALL,
POWERON, and RESET menu items.

e GPIB: Opens the GPIB menu that contains ADDRESS and ENABLE menu
items.

e LAN: Opens the LAN menu that contains STATUS, CONFIG, APPLY,
RESET, and ENABLE menu items.

e TSPLINK: Opens the TSPLINK menu that contains NODE and RESET
menu items.

e UPGRADE: Upgrades the firmware on the unit and installed cards (see
Upgrade procedure using USB flash drive). This menu includes three
options (YES, NO, and PREVIOUS).

e CHANNEL: Opens the CONNECT menu that allows you to select a rule
(BBM, MBB, or OFF), or to connect sequentially (ON or OFF setting).
Related ICL commands: channel.connectrule (on page 13-39) and
channel.connectsequential (on page 13-40).

e DISPLAY: Opens the DISPLAY menu. Select the TEST item to open the
DISPLAY TESTS menu, which contains KEYS and DISPLAY-PATTERNS
menu items. Use KEYS to verify the operation of the keys. Use DISPLAY-
PATTERNS to verify each segment of the display.

¢ DIGIO: Opens the DIGIO I/O menu that is used to set DIGIO-OUTPUT and
WRITE-PROTECT menu items.

e BEEPER: Enables or disables the beeper, along with selection KEYCLICK
option.

e SYSTEM-INFO: Opens the SYSTEM INFORMATION menu that can query
FIRMWARE, SERIAL#, and CAL information.

4-28 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

PATT key

Press the PATT key to open the PATTERN ACTION menu.

If you press the PATT key, but no patterns have been created or if the unit is
powered up with the factory default settings, the only option that is displayed
is CREATE.

If you press the PATT key after creating channel patterns, the name of an
existing pattern blinks, and you are in pattern selection mode. Use the
CURSOR keys or navigation wheel to scroll through the available patterns,
and press ENTER to select the one you want to use. The selected pattern is
used with the OPEN and CLOSE action keys, among others.

The PATTERN ACTION menu contains the following items:

OPEN: Opens the specified channel pattern for switching aspects. Related
ICL command: channel.open() (on page 13-59).

CLOSE: Closes the specified channel pattern. These closures are
appended to the already closed channels. Related ICL command:
channel.close() (on page 13-37).

EXCLOSE: Closes the specified channel pattern so that the channels
associated with the pattern are exclusively closed. Related ICL command:
channel.exclusiveclose() (on page 13-41).

EXSLOTCLOSE: Exclusively closes specified channels in the channel
pattern image for the specified slots. Related ICL command:
channel.exclusiveslotclose() (on page 13-43).

CREATE: Creates a channel pattern from a snapshot and associates it with
the specified name. From the front panel, only the first 12 characters of the
name are visible. If no patterns exist in the system when the PATT key is
pressed, CREATE is the only menu item that is displayed. Related ICL
command: channel.pattern.snapshot() (on page 13-66).

VIEW: Shows the channels associated with the pattern. Related ICL
command: channel.pattern.getimage() (on page 13-62).

DELETE: Deletes a channel pattern. Related ICL command:
channel.pattern.delete() (on page 13-62).

RESET: Resets the channels representing the image of the selected
channel pattern to the factory default settings. Also, the pattern is deleted
because resetting a channel causes any patterns that contain a channel
being reset to be deleted. Related ICL command: channel.reset() (on page
13-68).

NOTE CREATE is the only item that is displayed unless a pattern has been

selected.

3700S-901-01 Rev. C / July 2008 4-29

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

PATT key configuration

Press the CONFIG key and then the PATT key to open the PATTERN
ATTRibute menu.

The PATTERN ATTRibute menu contains the following item:

e DMM_CONFIG: Sets the DMM configuration associated with the specified
channel pattern. Use the navigation wheel to scroll through the available
DMM configurations. Related ICL command: dmm.setconfig() (on page 13-
168).

REL key

Press the REL key to enable and disable relative for the selected function.
When enabled, the REL annunciator is lit. See Relative (on page 6-1).

REL key configuration

Press the CONFIG key and then the REL key to open the RELATIVE OFFSET
menu.

The RELATIVE OFFSET menu contains the following menu items:
e ACQUIRE: Acquires an internal measurement to store as the REL level
value. Related ICL command: dmm.rel.acquire() (on page 13-158).

e ENABLE: Enables or disables relative measurement control for the DMM.
Related ICL command: dmm.rel.enable (on page 13-159).

e LEVEL: Sets a specific offset value to use for relative measurements for the
DMM. Related ICL command: dmm.rel.level (on page 13-160).

RUN key

Press the RUN key to run the last selected script or load menu item.

4-30 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 4: Using the Front Panel

SCAN key

If the scan list is present, press the SCAN key to open the SCAN ACTION
menu.

The SCAN ACTION menu contains the following items:

NOTE Use the INSERT key to create and add the present active channel to

the scan list.

BACKGROUND: Runs the scan. Related ICL command: scan.background()
(on page 13-232).

CREATE: Displays following message: Use <INSERT> key.

LIST: Displays the scan list (turn the navigation wheel to scroll). Related ICL
command: scan.list() (on page 13-237).

CLEAR: Clears the scan list. Related ICL command (when sent with an
empty string): scan.create() (on page 13-234).

RESET: Resets the scan settings to factory default values. Related ICL
command: scan.reset() (on page 13-242).

SCAN key configuration

Press the CONFIG key and then the SCAN key to open the SCAN ATTR menu.

The SCAN ATTR menu contains the following items:

ADD: Instructs how to add an additional list of channels and/or channel
patterns to scan. When you select ADD from the SCAN ATTR menu, "Use
<INSERT> key" is displayed for a few seconds before going back to the
SCAN ATTR menu options. To add items to an existing scan list, press
INSERT.

NOTE Press the INSERT key when you are not in the SCAN ATTR
menu on the MAIN display.

BYPASS: Enables or disables bypassing the first item in the scan. Related
ICL command: scan.bypass (on page 13-233).

3700S-901-01 Rev. C / July 2008

4-31

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

e MODE: Sets the scan.mode value to one of the following:

e OPEN_ALL, which is equivalent to scan.MODE_OPEN_ALL or 0
(default setting)

e OPEN_SELECT, which is equivalent to
scan.MODE_OPEN_SELECTIVE or 1

e FIXED_ABR, which is equivalent to scan.MODE_FIXED_ABR or 2
Related ICL command: scan.mode() (on page 13-239)

e MEAS_CNT: Sets the measure count value. Related ICL command:
scan.measurecount (on page 13-238)

e SCAN_CNT: Sets the scan count value. Related ICL command:
scan.scancount (on page 13-242)

SLOT key

Press the SLOT key to display information about the installed card(s) and the
main system. The information that is displayed includes firmware revisions,
model names, and model numbers. After pressing this key, scroll through all
available instruments, including the internal DMM (if installed), using the
CURSOR keys, navigation wheel, or multiple presses of the SLOT key.

TRIG key

Press the TRIG key to trigger a measurement equivalent to the dmm.measure()
(on page 13-150) command. If the TRIG key is held for more than two seconds,
the unit will go into continuous trigger mode and take measurements every .25
seconds (if possible, as defined by DMM attributes). Press TRIG or EXIT to stop
continuous trigger mode.

The TRIG key can also be tied to the system trigger model and event system
(see Trigger model (on page 8-4)).

Range keys, cursor keys, and navigation wheel

AUTO key

Press the AUTO key to enable or disable autorange for the selected function.
The AUTO annunciator lights when enabled.

CURSOR keys

Press the < CURSOR > keys in a menu to control the cursor position when
making selections or changing values.

4-32 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 4: Using the Front Panel

Navigation wheel

Turn the navigation wheel to scroll to the desired menu option or to change the
value of the selected numeric parameter. Pressing the navigation wheel has the
same functionality as pressing the ENTER key. See ENTER key (on page 4-25)
for more information.

When changing a multiple character value, such as an IP address or channel
pattern name, press the navigation wheel to enter edit mode, rotate the
navigation wheel to change the characters value as desired, but do not leave
edit mode. Use the CURSOR keys to scroll to the other characters and use the
navigation wheel to change their value as needed. Press the ENTER key when
finished changing all the characters.

RANGE keys

Press the RANGE keys A Y to select the next higher or lower measurement
range on the measurement display for the selected function.

If the Series 3700 displays the overflow message on a particular range, select a
higher range until an on-range reading is displayed. Use the lowest range
possible without causing an overflow to ensure best accuracy and resolution.
You can also use these keys when entering a range value from the front panel.
For details, see Auto ranging over the front panel (on page 5-3).

If you select a range of channels, that range must stop when the channel type
changes. Therefore, you can never select a range of channels which includes
different channel types.

For more information, see Range (on page 5-1).

Action keys

CLOSE key

Press the CLOSE key to close specified channels or channel patterns.

OPEN ALL key

Press the OPEN ALL key to open all closed channels.

3700S-901-01 Rev. C / July 2008 4-33

Section 4: Using the Front Panel Series 3700 System Switch/Multimeter Reference Manual

OPEN key

Press the OPEN key to open selected channels or channel patterns.

RATE key

Press the RATE key to set the measurement speed (fast, medium, or slow) for
the active or selected function. For more information, see Rate (on page 5-5).

RECall key

Press the RECall key to display stored readings and buffer statistics for selected
reading buffer. Use the < CURSOR > keys or turn the navigation wheel to
navigate through the buffer. For more information, see Recalling readings (on
page 7-5).

STEP key

Press the STEP key to step through the defined scan list, where each press
results in one scan step.

NOTE You cannot use an external trigger event, like digital I/O, for the
channel stimulus setting of the trigger model when using the STEP
key. For more information, see Scanning (on page 7-1) and Trigger
model (on page 8-4).

4-34

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 4: Using the Front Panel

STORE key

Press the STORE key to open the RD BUFF ACTION menu or <selected buffer
name> menu. For more information, see Buffer: Data Storage and Retrieval (on
page 7-1).

The RD BUFF ACTION menu contains the following items:

CREATE: Allows creation of a reading buffer. When a new buffer is created,
you can enter the name and set the number of readings to store. The new
buffer is created with append mode ON and is automatically selected for
front panel use (store readings, clear, delete, save, and so on). Related
Instrument Control Library (ICL) command: dmm.makebuffer() (on page 7-
8).

SELECT: Allows you to select a previously created reading buffer, which
you can use to store readings taken on the front panel.

CLEAR: Removes readings from a selected buffer.

SAVE: Allows you to save a selected reading buffer to a USB flash drive
(the flash drive must be installed and have enough available memory).

DELETE: Lets you delete a selected reading buffer from the system. All
data associated with the deleted buffer will be lost. This is equivalent to
setting the reading buffer variable name to nil over the bus.

STORE key configuration

With a buffer selected, press the CONFIG key and then the STORE key to open
the RD BUFFER ATTR menu.

This menu contains the following menu items:

CAPACITY: Displays the maximum number of readings that can be stored.
COUNT: Displays the actual number of readings that have been stored.

APPEND: Indicates the append mode setting of the reading buffer. For
buffers created on the front panel or web, this defaults to ON or enabled. For
buffers created over the bus, the default is OFF or disabled.

3700S-901-01 Rev. C / July 2008

4-35

Section 5

Range, Digits, Rate, Bandwidth, and Filter

In this section:

RANGE ... 5-1
Digits ICL programmingc.ceeereeeerimreeeinineeesnieeesnneeeens 5-4
RALE ... 5-5
BandWidthcoooiiiiiiie e 5-7
FIIEET e 5-8

Range

The range setting is "remembered" by each measurement function. Selecting a
function returns the instrument to the last range setting for that function. You
cannot select a range that includes different channel types.

NOTE A power cycle or an instrument will clear "remembered" ranges.

Measurement ranges and maximum readings

The range that is selected affects both measurement accuracy as well as the
maximum measurable level. Input values that exceed the maximum readings
cause an "Overflow" message to be displayed.

Function Ranges Maximum reading

DCV (DC voltage) 100mv, 1V, 10V, 100V, 300V + 303V

ACV (AC voltage) 100mv, 1V, 10V, 100V, 300V + 303V

DCI (DC current) 10pA, 100pA, ImA, 10mA, + 3.1A
100mA, 1A

ACI (AC current) 1mA, 10mA, 100mA, 1A +3.1A

Q2 (2-wire ohm) 100, 100902, 1k, 10k, 120MQ
100kQ, 1MQ, 10MQ, 100MQ

Q4 (4-wire ohm) 10, 109, 100Q, 1kQ, 10kQ, 120MQ
100kQ, 1MQ, 10MQ, 100MQ

Q4 OC (4-wire ohm offset 10, 109, 1002, 1kQ, 10kQ 12kQ

compensated)

Q4 DRY+ (4-wire ohm dry 1Q, 10Q, 100Q, 1kQ, 10kQ 2.4kQ

circuit)

Section 5: Range, Digits, Rate, Bandwidth, and Filter Series 3700 System Switch/Multimeter Reference Manual

Function Ranges Maximum reading
TMP (temperature) -200°C to 1820°C Sensor dependent
FREQ (frequency) 100mv, 1V, 10V, 100V, 300V 3Hz to 500kHz
PER (period) 100mv, 1V, 10V, 100V, 300V 2us to 333ms
CNT (continuity) 1kQ

Threshold adjustable 1Q to

1000Q
CSQ (common-side ohm) 10, 109, 1009, 1kQ, 10k, 120MQ

100kQ, 1IMQ, 10MQ, 100MQ

Temperature

There is no range selection for temperature measurements, which are
performed on a single fixed range. Depending on the sensor, the maximum
temperature readings range from -200°C to 1820°C.

Manual range keys

To change range, press the RANGE A or ¥ key. The instrument changes one
range value of the active function per key press. The selected range is displayed
in the attribute list on the second line of the front panel display.

NOTE The manual range keys have no effect on temperature
measurements.

If the instrument displays the "Overflow" message on a particular range, select a
higher range until an on-range reading is displayed. For best accuracy and
resolution, use the lowest range available that does not cause an overflow.

5-2 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 5: Range, Digits, Rate, Bandwidth, and Filter

Auto ranging over the front panel

To enable auto range, press the AUTO key. The AUTO indicator turns on when
auto ranging is selected. While auto ranging is enabled, the instrument
automatically selects the best range to measure the applied signal. Auto ranging
should not be used when optimum speed is required.

NOTE The AUTO key has no effect on temperature measurements.

Up-ranging occurs at 120% of range. The Series 3700 will down-range when the
reading is <10% of nominal range.

To disable auto ranging, press the AUTO key. This will leave the instrument on
the present range.

You can also disable auto ranging by pressing the A or ¥ key. However, this
may cause a range change.

Scanning

Each channel of scan configuration can be associated with a unique digital
multimeter (DMM) configuration (which includes a range setting). When a scan
completes, the DMM remains in the configuration associated with the last
completed measurement step. For remote programming, the <ch list>
parameter is used to configure channels for a scan (see dmm.configure.set() (on
page 13-129), dmm.setconfig() (on page 13-168), scan.create() (on page 13-
234), and scan.add() (on page 13-230) commands, and the Scanning (on page
7-1) section for more details, including front panel operation).

Range remote programming (ICL)
Instrument control library (ICL) commands are sent to the Series 3700 when

controlling it over the bus. See Instrument Control Library (ICL) (on page 12-1)
for detailed information.

Selecting a manual range

The range is selected by specifying the expected reading as an absolute value
using the <n> parameter for the dmm. range (on page 13-156) command. The
Series 3700 will then go to the most sensitive range for that expected reading.
For example, if you expect a reading of approximately 3V, let the parameter
(<n>) equal 3 (dmm.range = 3)to select the 10V range.

3700S-901-01 Rev. C / July 2008 5-3

Section 5: Range, Digits, Rate, Bandwidth, and Filter Series 3700 System Switch/Multimeter Reference Manual

Selecting an auto range

Auto range is enabled by setting the dmm.autorange attribute (see
dmm.autorange (on page 13-113)) to either dmm.ON or 1. When auto range is
enabled, the range is changed automatically for the selected range value. When
auto range is disabled, the instrument remains at the selected range. To disable
auto range, either set the dmm.autorange attribute to dmm.OFF or 0, or send
avalid dmm.range attribute (see dmm.range (on page 13-156)).

Digits ICL programming

Set the dmm.displaydigits (on page 13-132) attribute to change the display
resolution for the Series 3700 from 3% to 7% digits. Each mainframe input
function can have its own unique digits setting. Digits has no effect on the
remote reading format. The number of displayed digits does not affect accuracy
or speed.

Scanning

When a scan is configured, each channel can have its own unique digits setting.

Setting digits

Even though the parameters for the dmm.displaydigits attribute (see
dmm.displaydigits (on page 13-132) for remote control or DIGITS under the
function attribute menu on front panel) are expressed as integers (3 to 7), you
can specify resolution using a real number. For example, to select 3%z digit
resolution, let <n> = 3.5. Internally, the instrument rounds the entered parameter
value to the nearest integer. Each mainframe input function can have its own
unique digits setting.

5-4 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 5: Range, Digits, Rate, Bandwidth, and Filter

Rate

The RATE key sets the integration time (measurement speed) of the A/D
converter. This controls how long the input signal is measured (also known as
aperture). The integration time affects the amount of reading noise, as well as
the ultimate reading rate of the instrument.

The integration time is specified in parameters based on a nhumber of power line
cycles (NPLC), where 1 PLC for 60Hz is 16.67msec (1/60) and 1 PLC for 50Hz
is 20msec (1/50).

In general, the fastest integration time (0.1 PLC using the front panel RATE key,
or 0.0005 PLC from the bus or through the DMM > CONFIG NPLC menu)
results in increased reading noise and fewer usable digits, while the slowest
integration time (5 PLC using the front panel RATE key, or 15 PLC from the bus
or through the DMM > CONFIG NPLC menu) provides the best common-mode
and normal-mode rejection. In-between settings are a compromise between
speed and noise. To set the NPLC from 0.0005 to 15 on the front panel, press
the CONFIG key, and then press the DMM key to open the function attribute
menu. From the function attribute menu, select NPLC to dial in a specific value
for NPLC.

The Series 3700 has a parabola-like shape for its speed versus noise
characteristics. The Series 3700 is optimized for the 1 PLC to 5 PLC reading
rate. At these rates (lowest noise region in graph), the Series 3700 will make
corrections for its own internal drift and will still be fast enough to settle a step
response <100ms.

Figure 5-1: Speed versus noise characteristics

-

Lot
oltage noise

noise i region

166.7ps 16.67ms 33.33ms 15
{0.01 PLC) 1 PLZCY & PLC)

Aperture time

3700S-901-01 Rev. C / July 2008 5-5

Section 5: Range, Digits, Rate, Bandwidth, and Filter

Series 3700 System Switch/Multimeter Reference Manual

The front panel RATE settings for all but the AC functions are explained as

follows:

e FAST sets integration time to 0.1 PLC. Use FAST if speed is of primary
importance (at the expense of increased reading noise and fewer usable

digits).

e MEDium sets integration time to 1 PLC. Use MEDium when a compromise
between noise performance and speed is acceptable.

e SLOW sets integration time to 5 PLC. SLOW provides better noise
performance at the expense of speed.

For the AC functions (ACV, ACV dB, and ACI), the RATE key sets integration
time and bandwidth. As listed in the following table, FAST sets NPLC to 1, while
the MEDium and SLOW NPLC settings are ignored.

NPLC = Number of power line cycles.
BW = Bandwidth (in Hz).
APER = Aperture in seconds.

X = Setting ignored (fixed NPLC).

Function Slow Medium Fast
DCV, DCI NPLC=5 NPLC=1 NPLC=0.1
ACV, ACI NPLC=X, NPLC=X, BW=30 NPLC=1,
BW=3 BW=300
Q2, Q4, CSQ NPLC=5 NPLC=1 NPLC=0.1
FREQ, PERIOD APER=0.250s APER=0.1s APER=0.01s
Continuity X X NPLC=0.006
NOTES:

You can use unique rate settings for each function when using the front panel or

the remote interface.

NOTE Rate cannot be set for continuity; it is fixed at 0.006PLC.

5-6

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 5: Range, Digits, Rate, Bandwidth, and Filter

Setting Rate from the front panel

The RATE key is used to set measurement speed from the front panel. Press
the RATE key until the desired speed message is displayed. The second line of
the display will contain the NPLC setting. Alternatively, use the NPLC option
under the function attribute menu (press CONFIG > DMM keys to display).

NOTE The Series 3700 uses internal references to calculate an accurate and
stable reading. When the NPLC setting is changed, each reference
will be automatically updated to the new NPLC setting before a
reading is generated. Therefore, frequent NPLC setting changes can
result in slower measurement speed.

Setting measurement speed from a remote interface

Use the dmm. aperture (on page 13-110) or dmm.nplc (on page 13-152)
command to set the measurement speed (integration time) over the bus.

Bandwidth

There are three bandwidth settings for ACV and ACI measurements. The RATE
setting determines the bandwidth setting as follows:

e SLOW: 3Hz to 30Hz
e MEDium: 30Hz to 300Hz
e FAST: 300Hz to 300MHz

When the SLOW bandwidth (3Hz to 30Hz) is chosen, the signal goes through an
analog root-mean-square (RMS) converter. The output of the RMS converter
goes to a fast (1kHz) sampling A/D and the RMS value is calculated from 1200
digitized samples (1.2s).

When the MEDium bandwidth (30Hz to 300Hz) is chosen, the same circuit is
used. However, only 120 samples (120ms) are needed for an accurate
calculation because the analog RMS converter has turned most of the signal to
DC.

3700S-901-01 Rev. C / July 2008 5-7

Section 5: Range, Digits, Rate, Bandwidth, and Filter Series 3700 System Switch/Multimeter Reference Manual

In the FAST bandwidth (300Hz to 300kHz), the output of the analog RMS
converter (nearly pure DC at these frequencies) is measured at 1 PLC (16.6ms).
For remote programming, the integration rate can be set from 0.0005PLC to
12PLC or 15PLC.

To achieve the best accuracy for ACV and ACI measurements, use the
bandwidth setting that best reflects the frequency of the input signal. For
example, if the input signal is 40Hz, then a bandwidth setting of 30 should be
used.

NOTE A rate command (dmm.nplc (on page 13-152) or dmm.aperture (On
page 13-110)) for ACV and ACI is only valid if the bandwidth for that
AC function is set to 300 (300Hz to 300kHz). Bandwidth is set using
the dmm.detectorbandwidth (on page 13-132) ICL command or
the DETECTBW menu option under the function's attribute menu).

Filter

The digital filter is used to stabilize noisy measurements. The displayed, stored,
or transmitted reading is a windowed-average of a number of reading
conversions (from 1 to 100).

The filter setup is retained and can be unique for each measurement function
(DCV, ACV, DCI, ACI, Q2, Q4, CSQ, and TEMP). When you select a function,
the instrument will return to the last filter setup for that function.

NOTE The various instrument operations, including Filter, are performed on
the input signal in a specific, predetermined order. For example, if
both REL and MXB (a math operation) are enabled, the REL
operation will always be performed before MXB.

Filter characteristics

In general, the digital filter places a specified number of A/D conversions ("Filter
Count") into a memory stack. These A/D conversions must occur consecutively
within a selected reading window ("Filter Window"). The readings in the stack
are then averaged to yield a single filtered reading. The stack can be filled using
the moving or repeating average filters. Details about digital filter characteristics
are provided in the following paragraphs.

Digital filter types

There are two digital filter types: moving and repeating.

5-8 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 5: Range, Digits, Rate, Bandwidth, and Filter

Moving average filter

The moving average filter uses a first-in first-out stack, where the newest
reading conversion replaces the oldest. An average of the stacked reading
conversions yields a filtered reading. After the specified number of reading
conversions ("Filter count”) fill the stack, the moving filter gives a new reading for
every new conversion.

Figure 5-2: Moving average filter

Conversion 10 Conversion 11 Conversion 12
g 10 N
. 3 . 8 0
7 Average 8 Average g Average
. g — reading . E — reading . ? — reading
1 #1 A #*2 5 #3
[] [] []
3 4 5
2 3 1
Conwversion 1 Corwersion 2 Conversion 3
Repeating average filter
The repeating filter takes a specified number of conversions, averages them,
and yields a filtered reading. It then clears its stack and starts over. This setting
is useful when scanning because readings for other channels are not averaged
with the present channel. The stack is then cleared and the process starts over.
NOTE The moving filter cannot be used when scanning (see Scanning (on
page 7-1)). If a scan channel is set up to use the moving filter, the
filter will not turn on.
Figure 5-3: Repeating average filter
Conversion 10 Conversion 20 Conversion 30
18 Ly
. & . B . 28
7 Awerage 17 Average 2 fverage
. g 3 reading . 12 — reading . %g — reading
- 4 # s 14 #2 s 24 #3
3 1 2
2 12 2z
Conversion 1 Corversion 11 Conversion 2

3700S-901-01 Rev. C / July 2008 5-9

Section 5: Range, Digits, Rate, Bandwidth, and Filter Series 3700 System Switch/Multimeter Reference Manual

Digital filter window

The digital filter uses a "noise" window to control the filter threshold. As long as
the input signal remains within the selected window, A/D conversions continue
to be placed in the stack. If the signal changes to a value outside the window,
the filter resets and starts processing again, starting with a new initial conversion
value from the A/D converter.

The noise window, which is expressed as a percentage of range (or maximum
temperature reading), allows a faster response time to large signal step changes
(for example, scanned readings). A reading conversion outside the plus or
minus noise window fills the filter stack immediately.

If the noise does not exceed the selected window, the reading is based on the
average of the reading conversions. If the noise does exceed the selected
window, the reading is a single reading conversion and new averaging starts
from this point. The noise window for the two filter types are compared in the
filter window below.

5-10 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 5: Range, Digits, Rate, Bandwidth, and Filter

Figure 5-4: Filter window

“olta e I ‘L +1% of range
B L
Wndp'ﬂ@ —
violstion t 4eaf range
‘L +1% of range
F
T-1 Y of range Irtegration
time
1 1 1 1 1 1 1 1 1 1 1 =
1 1 1 1 1 1 1 1 1 1 |
. £ g td 15 13 t7 iz e 110 111
Comwersions: | : i i :
Filter configuration A A A A A, A B B B B B
_ A A A &, A A, A, B B B B
Ty e = Maowing a, a, a, a, a, a, a, a, B B B
Count= 5 2, £, 2, & N 2, £, 2, & B B
Window = Mone A A A A A, A A A A A B
Rik) 71 Ry 2 Ralg#3 R e Rag#s Fik) 75 Falg =1 Fik] 75 Fiky 72 Rlg#10 Rdg# 11
Filter configuration A A A A A A B B B B B
) A A A A, A A B B B B B
Type = Moving 2, &, &, &, &, & B B B B B
Count =5 &, a, a, a &, &, B B B B B
Wiind o = 1% &, &, &, &, &, &, B B B B B
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
Rk 21 Fck) #2 Frlg #3 Radgs4 Rik 75 Edgsé Rdg =T Fik) #5 Ralgss Rekps10 Relg =11
Fitter configuration A, &, 2, &, &, &, B B B B B
_ A A A &, A A, A B B B B
Type = Repeating A, A, &, A, A, A, A, A, B B B
Count= 1% A A & &, & &, A, A A B B
Window = Mone A, A, A A A, A, A, A A A B
Feliy #1 Felg#2
Fitter configuration & o, 2, o 2, a B B B B B
] A A A A, A A B B B B B
Type = Repeating & & Iz & & 2, B B B B B
Count =3 &, & &, &, &, & B B B B B
Windome = 1% &, a, a, o &, &, B B B B B
¥ ¥
Fik) #1 Rag 2

3700S-901-01 Rev. C / July 2008 5-11

Section 5: Range, Digits, Rate, Bandwidth, and Filter Series 3700 System Switch/Multimeter Reference Manual

For both front panel and remote programming, the window can be set to any
value from 0.0% to 10%, where 0.0% represents no window being applied.

For voltage, current, and resistance, the filter window is expressed as a percent
of range. For example, on the 10V range, a 10% window means that the filter
window is +1V.

For temperature, the filter window is expressed as a percent of the maximum
temperature reading. The maximum temperature depends on which
thermocouple is being used. For example, for a Type J thermocouple, the
maximum reading is 760°C; a 10% window means that the filter window is
+76°C. For temperatures below 0°C, the overflow point is -200°C, so a 10% filter
window is £20°C. If using °F units, a 20% filter window is calculated as follows:
9/5 x 20 = 36. The filter window for the 20% window is +36°C.

5-12 3700S-901-01 Rev. C/ July 2008

Section 6

Relative

Relative, Math, and dB

In this section:

RElAtiVE ... 6-1
Math calculationscooooviiiiiiieeeieeeee e 6-3
AB COMMANAScovvviiiiieieeee e 6-10

Use the REL (relative) function to null offsets or subtract a baseline reading from
present and future readings. When REL is enabled, subsequent readings will be
equal to the difference between the actual input value and the REL value.

You can define a REL value for each function. Once a REL value is established
for a measurement function, the value is the same for all ranges. For example, if
50V is set as a REL value on the 100V range, the REL is also 50V on the
1000V, 10V, 1V, and 100mV ranges.

Therefore, when you perform a zero correction, the displayed offset becomes
the reference value. Subtracting the offset from the actual input zeros the
display, as follows:

Actual input - Reference = Displayed reading
A REL value can be as large as the highest range.
Selecting a range that cannot accommodate the REL value does not cause an
overflow condition, but it also does not increase the maximum allowable input for

that range. For example, on the 10V range, the Series 3700 still overflows for a
12V input.

NOTE The various instrument operations, including REL, are performed on
the input signal in a specific, predetermined order. For example, if
both REL and MXB (a math operation) are enabled, the REL
operation will always be performed before MXB.

Section 6: Relative, Math, and dB Series 3700 System Switch/Multimeter Reference Manual

Basic front panel REL procedure

1. Select the desired measurement function and an appropriate range setting.

2. Apply the signal you want to REL to a switching channel input or to the
Series 3700 inputs.

3. If you are using a switching module, close the input channel. (see Operation
keys (on page 4-17) for basic information about the front panel graphical
user interface).

4. Press the REL key to acquire the REL value. The REL annunciator will turn
on, but the displayed value will not become zero until a new reading is
triggered.

5. Apply the signal to be measured. The relative value will be subtracted from
the next reading that is triggered.

Pressing REL a second time disables the REL function. You also have the
option to manually enter a REL value rather than acquiring a value from an input
signal. To do this, select REL > LEVEL from the front panel and enter the value.
You will still need to enable REL by selecting the ENABLE menu item. You can
also perform a REL acquire from this menu. Note that pressing the REL key is
equivalent to doing an acquire followed by enabling REL.

NOTE You can perform the equivalent of REL manually by using the mX+b
(on page 6-4) math function. Set M for 1and B for any value you want.

REL remote operation

The dmm.rel.level () command specifies the REL value (for the active
function only), while the dmm.rel.acquire () command uses the input signal
as the REL value (again, for the active function only). The

dmm.rel.acquire () command is typically used to zero the display. For
example, if the instrument is displaying a 1pV offset, sending
dmm.rel.acquire () and enabling REL (dmm.rel.enable = dmm.ON)
zeros the display.

The following command sequence is equivalent to pressing the front panel REL
key:

dmm.rel.acquire ()
dmm.rel.enable=dmm.ON

To manually set a REL value of 1.5uV, use this command sequence:

dmm.rel.level=1.5e-6
dmm.rel.enable=dmm.ON

For example, if the instrument is on the DCV function, the
dmm.rel.acquire () command is applicable to DCV measurements.

6-2 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 6: Relative, Math, and dB

Scanning

When a scan is configured, each channel can have its own unique REL value.
For remote programming, the <ch 1ist> parameter is used to configure
channels for a scan.

For example:

To attach a 1uV REL level to a desired configuration, send the following
commands:

-— Select DC volts function.
dmm. func = 'dcvolts'

-—- Reset DC volts only.
dmm.reset ('active')

-—- Set the rel level.
dmm.rel.level=le-6

-— Enable REL.
dmm.rel.enable = dmm.ON

-- Call the configuration myconfig.
dmm.configure.set ('myconfig')

-- Set Channels 1001 to 1030 to use myconfig configuration.
dmm.setconfig('1001:1030"', 'myconfig')

-- Create scan list of channels 1001 to 1030 using
myconfig.
scan.create ('1001:1030™)

Math calculations

The Series 3700 has three built-in math calculations that are accessed from the
MATH menu: mX+b, percent, and reciprocal (1/X). The settings shown in the
menu tree are the factory default settings.

NOTE The various instrument operations, including Math, are performed on
the input signal in a specific, predetermined order. For example, if
both REL and MXB (a math operation) are enabled, the REL
operation will always be performed before MXB.

3700S-901-01 Rev. C / July 2008 6-3

Section 6: Relative, Math, and dB Series 3700 System Switch/Multimeter Reference Manual

mX+b

This math operation lets you manipulate normal display readings (X)
mathematically according to the following calculation:

Y=mX+Db

Where:

e Xis the normal display reading.
e m and b are the user-entered constants for scale factor and offset.
e Y is the displayed result.

Use dmm.math.mxb.bfactor (on page 13-148) and
dmm.math.mxb.mfactor (on page 13-149) to set the b and m factor for mX+b.

Once all settings are configured, use dmm.math.enable = dmm.ON to enable
math operation.

NOTE The REL'ed reading of the input signal (if using REL) is used by the
mX+b calculation.

mX+b REL

Use the mX+b function to manually establish a REL value. To do this, set the
scale factor (M) to 1 and set the offset (b) to the REL value. Each subsequent
reading will be the difference between the actual input and the REL value
(offset).

Setting mX+b units

The attribute for dmm.math.mxb.units (on page 13-149) must be one
character enclosed in single or double quotes. It can be any letter of the
alphabet, the degrees symbol (°), or the ohms symbol (Q).

6-4 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 6: Relative, Math, and dB

To set mX+B units from the front panel:

NOTE The following procedure sets MXBUNITS. You can change the other
MATH menu options (BFACTOR and MFACTOR) by changing the b
and m values.

Press the CONFIG key.

Press the DMM key.

Turn the navigation wheel to highlight the MATH menu item.

With MATH highlighted, press the ENTER key. The MATH MENU opens.
Select the MXBUNITS menu item.

With MXBUNITS highlighted, press the ENTER key.

Press the navigation wheel to enter EDIT mode.

© N o g k~ w DN PRE

Scroll until the desired character is displayed, and then press the ENTER
key. The MATH MENU will open.

9. From the MATH MENU, turn the navigation wheel to highlight and select the
ENABLE menu item.

10. Select ON and press the ENTER key.

11. Press the EXIT key twice to return to the main display.

To set mX=B units from a remote interface:

The ohms symbol (Q), the micro symbol (u), and the degrees symbol (°) are not
ASCII characters and must be substituted with the ', '[' and \' characters. Valid
characters are therefore from A to Z, ']’ for ohms, '[' for microvolts, and '\' for
degrees.

To use the ohms symbol (Q) as units designator:

value = ']'!
dmm.math.mxb.units = value

To use the micro symbol (4) as units designator:

value = '[!
dmm.math.mxb.units = value

To use the degrees symbol (°) as units designator:

value = "\\'
dmm.math.mxb.units = value

NOTE When sending mxb units remotely, to embed a '\' into a string, precede
the '\' with an additional '\' (see the previous paragraph).

3700S-901-01 Rev. C / July 2008 6-5

Section 6: Relative, Math, and dB Series 3700 System Switch/Multimeter Reference Manual

Percent

This math function determines percent deviation from a specified reference
value. The percent calculation is performed as follows:

input — reference

Percent =
reference

]x 100%

Where:
Input: The normal measurement (if using REL, it will be the REL'ed value)
Reference: The user-entered constant (dmm.math.percent)

Percent: The result

NOTE The REL'ed reading of the input signal (if using REL) is used by the
percent calculation.

NOTE The result of the percent calculation is positive when the input
exceeds the reference and negative when the input is less than the
reference. The result of the percent calculation may be displayed in
exponential notation. For example, a displayed reading of
+2.500E+03% is equivalent to 2500% (2.5K%).

The dmm.math.percent attribute (see dmm.math.percent (on page 13-150))
specifies the reference value for the percent calculation, while the
dmm.rel.acquire function (see dmm.rel.acquire (on page 13-158)) uses the
input signal as the reference value.

The acquire function triggers a single reading and uses the result as the new
REL value. When a value is set using dmm.math.percent (on page 13-150), the
dmm.math.percent (on page 13-150) query command returns the programmed
value. When reference is set using dmm.rel.acquire() (on page 13-158), the
dmm.math.percent (on page 13-150) query command returns the acquired
reference value.

6-6 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 6: Relative, Math, and dB

To set a percent value from a remote interface, send the following commands:

-— Set percent to 5
dmm.math.percent = 5

-- Sends 5 to the PC for display
print (dmm.math.percent)

To set a percent value on the front panel:

1. Open the function attribute menu:

e Press the CONFIG key.

e Press the DMM key.

Turn the navigation wheel to highlight the MATH menu item.

With MATH highlighted, press the ENTER key. The MATH MENU opens.
Select the PERCENT menu item.

Press the ENTER key to enter edit mode.

Turn the navigation wheel to edit the value.

T S T A

Once the desired value is displayed, press the ENTER key. The MATH
MENU opens.

8. From the MATH MENU, turn the navigation wheel to highlight and select the
ENABLE menu item.

9. Select ON and press the ENTER key.
10. Press the EXIT key twice to return to the main display.

REL can be used to set percent (bus-only operation) as follows:

-- Sets percent with REL acquire value.
dmm.math.percent = dmm.rel.acquire()

-- Send the result of REL acquire to a computer.
print (dmm.math.percent)

Reciprocal (1/X)

The reciprocal of a reading is displayed when the reciprocal (1/X) math function
is enabled:
Vin

dB = 20log ——
Vref

3700S-901-01 Rev. C / July 2008 6-7

Section 6: Relative, Math, and dB Series 3700 System Switch/Multimeter Reference Manual

Where: X is the normal input reading

The displayed units designator for reciprocal readings is "R." You cannot change
this units designator.

Example:

Assume the normal displayed reading is 002.5000Q. The reciprocal of
resistance is conductance. When the reciprocal math function is enabled, the
following conductance reading will be displayed:

0.400000 R

NOTE The result of the 1/X calculation may be displayed in exponential

notation. For example, a displayed reading of +2.500E+03 R is
equivalent to 2500 R (2.5K R). When using REL, the REL'ed reading
of the input signal is used by the 1/X calculation.

Basic reciprocal operation

1.
2.

Select the desired measurement function.

Configure and enable the mX+b, percent, or reciprocal (1/X) math function
as previously explained.

Apply the signal to be measured to a switching channel input.

Close the input channel. The result of the math calculation will be displayed
when a reading is triggered.

6-8

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 6: Relative, Math, and dB

Scanning

When a scan is configured, each channel can have its own unique math setup.
For remote programming, the <ch 1ist> parameter is used to configure
channels for a scan.

Example:

To perform the reciprocal math operation on DC volt measurements, send the
following commands:

-— Select DC volts function.
dmm. func = 'dcvolts'

-— Reset DC volts only.
dmm.reset ('active')

-- Set the math operation to be reciprocal for
measurements.

dmm.math.format = dmm.MATH RECIPROCAL

-- Enable the math operation for measurements.
dmm.math.enable = dmm.ON

-—- Call the configuration mymath.
dmm.configure.set ('mymath')

-- Set Channels 1001 to 1030 to use the mymath
configuration.

dmm.setconfig('1001:1030', 'mymath')

-- Create scan list of channels 1001 to 1030 using mymath.
scan.create ('1001:1030")

3700S-901-01 Rev. C / July 2008 6-9

Section 6: Relative, Math, and dB Series 3700 System Switch/Multimeter Reference Manual

dB commands

Expressing DC or AC voltage in dB makes it possible to compress a large range
of measurements into a much smaller scope. The relationship between dB and
voltage is defined by the following equation:

dB = 20i0g /"
Vref

Where:

Vw: DC or AC input signal.

Veer: Specified voltage reference level.

The instrument will read 0dB when the reference voltage level is applied to the
input. If a relative value is in effect when dB is selected, the value is converted to

dB, and then REL is applied to dB. If REL is applied after dB has been selected,
dB has REL applied to it.

NOTE The dB calculation takes the absolute value of the ratio VIN / VREF.
The largest negative value of dB is -160dB. This will accommodate a
ratio of VIN = 1pV and VREF = 1000V.

dB configuration
You can select UNITS (V or dB) from the front panel.

To select UNITS from the front panel, while in DCV or ACV:

Press the CONFIG key.

Press the DMM key.

Turn the navigation wheel to scroll to the UNITS menu item.
Press the navigation wheel (or the ENTER key) to select.
Select units: V for voltage or dB for decibels.

Press the navigation wheel (or the ENTER key) to set.

N o bk~ w e

Press the EXIT key to close the attribute menu.

6-10 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 6: Relative, Math, and dB

dB scanning

Each channel in a scan may be configured to use dB. Create a configuration
that has the dB enabled for units for the desired function by using the
dmm.configure.set command. Once the configuration exists, use the
dmm.setconfig () (on page 13-168) command to connect the configuration to
the desired channels. Now the channels can be added to scanning (see
scan.create () (on page 13-234) and scan.add () (on page 13-230)
commands). To remotely control the units for AC and DC volts, use the
dmm.units (on page 13-174) command.

3700S-901-01 Rev. C / July 2008 6-11

Section 7

Buffer: Data Storage and Retrieval

In this section:

BUFfer OVEIVIEWcociiiiiiiiiicec e 7-1
Front panel 0perationccocovveieiiiee e 7-2
Remote buffer operationcccceeeiiiieiiiiiii e 7-7

Buffer overview

The Keithley Instruments Series 3700 System Switch/Multimeter uses
synchronous reading acquisitions to take readings for a dynamically-created
reading buffer. The instrument stores the numbered readings that are acquired
during the storage process. Each reading includes reading units with options
that include time stamp and channel information. All routines that return
measurements can return the measurements in a reading buffer. Synchronous
measurements return a single value or both a single value and a reading buffer.
More advanced users can access the additional information stored in the
reading buffer.

You can configure single-point measurement routines to make multiple
measurements where only one would ordinarily be made. Also, the measured
value is not the only component of a reading. The measurement status (for
example, limit or overflow) is also data associated with a particular reading.

Create and configure buffers using the front panel or through a remote interface
using the Instrument Control Library (ICL) commands.

CAUTION Once you create a reading buffer, using that buffer name for
another buffer or variable will cause access to the original data
to be lost.

Reading buffer names are just like any other global variables in the system. For
example, if bufl is a reading buffer name, then buf1 = 5 will cause the
reading buffer data currently associated with buf1 to be lost and buf1 to equal
5.

NOTE The various instrument operations, including buffer operation, are
performed on the input signal in a specific, predetermined order. For
example, if both REL and MXB (a math operation) are enabled, the
REL operation will always be performed before MXB.

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

Front panel operation

In the following procedures, pressing in the navigation wheel (as a button) will
perform the same function as pressing the ENTER key. Also, you can turn the
navigation wheel instead of using the < CURSOR > keys.

Read Creating and selecting a reading buffer (on page 7-2) or Selecting a
reading buffer (on page 7-3) before performing the following procedures:
e Storing readings (on page 7-3)

e Saving readings (on page 7-3)

e Clearing readings (on page 7-4)

e Deleting a reading buffer (on page 7-5)

e Recalling readings (on page 7-5)

e Buffer configuration (front panel) (on page 7-6)

e Appending readings (on page 7-7)

Creating and selecting a reading buffer

To create a new reading buffer that will be automatically selected after it is
created:

1. Pressthe STORE key.
2. Select CREATE from the buffer choices and press the ENTER key.

3. Using the navigation wheel and the < CURSOR » keys, scroll through the
characters, changing them until the desired name is shown.

NAME =

4. Press the ENTER key. The starting name is:
fpbuifn

Where:
fp = front panel
buf = buffer
n = number, sequentially incremented
5. Specify the number of readings to store in the buffer.

6. Pressthe ENTER key. The append attribute of this buffer is enabled (set
to 1).

NOTE The newly-created buffer is automatically selected as the buffer
for storing front panel readings.

7-2 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

Selecting a reading buffer

You can only select an existing reading buffer. If necessary, create it first. See
Creating and selecting a reading buffer (on page 7-2) for more information.

NOTE When you create a new reading buffer from the front panel, it is
automatically selected.

To select a reading buffer:

1. Setup the Series 3700 to take measurements.

2. Press the STORE key.

3. Select SELECT from the buffer choices and press the ENTER key.
4. Use the < CURSOR » keys to select the desired buffer.

Storing readings

Before storing readings, make sure you have selected the desired reading
buffer. See Selecting a reading buffer (on page 7-3) for more information.

To store a reading, press the TRIG key or execute a scan. The asterisk (*)
annunciator turns on, which indicates that the buffer is enabled, and turns off
when storage is finished. The annunciator stays on as long as the created
buffer's capacity is less than the number of readings stored.

To stop the buffer, press the EXIT key, or if you are taking continuous readings,
press the TRIG key.

NOTE Stored readings are lost when the instrument is turned off. To save
your stored readings, see Saving readings (on page 7-3).

Saving readings

When saving readings to a USB flash drive, you must select a non-empty
reading buffer. See Selecting a reading buffer (on page 7-3) for more
information.

3700S-901-01 Rev. C / July 2008 7-3

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

To save readings to a USB flash drive:

1. Select a non-empty reading buffer.
2. Pressthe STORE key. The [BUFFER NAME] MENU is displayed.

3. Select the SAVE menu item, and press the ENTER key. The SAVE RD
BUFFER menu is displayed.

4. Press the ENTER key when USB is highlighted.

5. Using the navigation wheel and < CURSOR > keys, enter the filename
where the data will be saved on the installed USB flash drive. The starting
name is:

<reading buffer name> nn

Where: nn starts at 01 and automatically increments. For example, if the
selected reading buffer is fpbufl, then the starting name is fpbufl 01

6. Pressthe ENTER key to save the data to the installed USB flash drive or the
EXIT key to cancel.

Clearing readings

When clearing readings, you must select a reading buffer. See Selecting a
reading buffer (on page 7-3) for more information.

To clear readings:

1. Select a reading buffer.

2. Press the STORE key. The [BUFFER NAME] MENU is displayed.
3. Select the CLEAR menu item, and press the ENTER key.

4. Atthe prompt, select YES or NO and press the ENTER key.

7-4 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 7: Buffer: Data Storage and Retrieval

Deleting a reading buffer

To delete areading buffer:

1
2
3.
4

Select the reading buffer you want to delete.

Press the STORE key. The [BUFFER NAME] MENU is displayed.
Select the DELETE menu item, and press the ENTER key.

At the prompt, select YES or NO and press the ENTER key.

e Ifyou select YES, the RD BUFF ACTION MENU is displayed.
e If you select NO, the [BUFFER NAME] MENU is displayed.

NOTE To delete a buffer (including front panel buffers) remotely (over the

bus), set the buffer's name to nil. For example, to delete a buffer
named FPBUF1, send the command: FPBUF1 = nil.

Recalling readings

When recalling readings, you must select a non-empty reading buffer. See
Selecting a reading buffer (on page 7-3) for more information.

Readings stored in the buffer are displayed by pressing the REC key. Turn the
navigation wheel or use the < CURSOR > keys to cycle through the buffer's
contents. A message is displayed if a buffer is empty.

When recalling a buffer, the display contains the following information:

Measurement reading for each entry is at the top right.
Buffer location number is at the bottom left.
Time stamp (on page 7-5) (if used) is positioned at the bottom right.

Channel display (on page 7-6) or channel pattern (if used) associated with
the reading for each entry is at the top left.

Time stamp

When time stamps are enabled, they are shown in absolute time and stored as
the number of seconds in Universal Coordinated Time (UTC) format. Therefore,
the displayed time stamp will show month, day, and year, as well as hour,
minutes, seconds, and fractional seconds.

3700S-901-01 Rev. C / July 2008

7-5

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

Channel display

The returned value provides different information, based on what is opened or
closed when the reading is acquired:

¢ If no channel or channel pattern is closed when the reading is acquired,
"None" is displayed.

e If only a single channel or backplane relay is closed, the channel number is
displayed (for example, 5003 or 5915).

e If a channel or backplane relay plus another backplane relay or other
channel is closed, then the channel number is displayed, followed by a +
sign (for example, 3005+ or 3915+). The channel is in the image unless the
last close operation involved only backplane relays.

e If multiple channels and/or backplane relays are closed in a channel list, the
last channel specified is stored. Channels take precedence over backplane
relays when stored. However, if only multiple backplane relays are specified,
then the first one is stored.

e If a channel pattern is closed, then the first eight characters of the channel
pattern name are returned (for example, mypatternl is shown as
mypatter).

Buffer configuration (front panel)

When configuring the buffer through the front panel, you must select a reading
buffer. See Selecting a reading buffer (on page 7-3) for more information.

1. Pressthe CONFIG key.
2. Press the STORE key. The RD BUFFER ATTR menu opens.

3. To view the count and capacity of a selected buffer, select the COUNT or
CAPACITY menu choice. To configure the buffer's append mode, select
APPEND, then ON or OFF.

7-6 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

Appending readings

When the buffer append mode is disabled, the buffer is cleared (readings lost)
before a new storage operation starts.

When buffer append mode is enabled, the buffer is not cleared and each
subsequent storage operation appends the readings to the buffer. When the
buffer is filled to capacity, the storage process stops. The readings must be
cleared before the next storage operation starts.

See dmm.appendbuffer() (on page 13-111) for more information.

NOTE Buffers created on the front panel have the append mode enabled by
default.

Remote buffer operation

Control the Series 3700 buffer over the bus by sending ICL (Instrument Control
Library) commands.

3700S-901-01 Rev. C / July 2008

7-7

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

Data store (buffer) commands

The following commands are associated with data store operation:

e dmm.makebuffer () (on page 7-8)
e dmm.savebuffer () (on page 7-10)

To delete a dynamically allocated buffer, use the command mybuffer = nil.

Command Description

dmm.buffer.catalog() An iterator that can act on all reading buffer names in
the system.

dmm.]'O'Uffer .info ("buffer Returns the number of stored readings in the specified

name") buffer, along with the overall buffer capacity. The first

returned value is the stored readings number, while the
second is the capacity.

dmm.buffer.maxcapacity Returns the overall maximum storage capacity of all
reading buffers in the system.

dmm.buffer.usedcapacity Returns the sum storage capacity allocated for all
currently created reading buffers in the system.

To see the current storage number and capacity of all reading buffers in the
system, use the following at a Test Script Processor (TSP™) prompt or in a

script:

for n in dmm.buffer.catalog() do stored, cap =
dmm.buffer.info(n) print(n, 'stored = ' .. stored,
'capacity = ' .. cap) end

Sample output

bufl stored =0 capacity = 1000
buf2 stored =0 capacity = 2000
buf4 stored =0 capacity = 4000
buf5 stored =0 capacity = 5000
buf3 stored =0 capacity = 3000

As the sample output shows, the system has five reading buffers, but currently
none of them have data stored in them (stored = 0). The storage capacity of
the buffers range from 1000 to 5000. If you send:

print (dmm.buffer.usedcapacity)

The output is 1.500000000e+004.

Overall, the system is allocating 15000 of its max storage capacity for reading
buffers.

7-8 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 7: Buffer: Data Storage and Retrieval

dmm.makebuffer()

Function

Creates a user buffer for storing readings.

Usage

mybuffer =

dmm.makebuffer (buffersize)

buffersize: Maximum number of readings that can be stored.

Remarks

These reading buffers are allocated dynamically. This function creates the buffers
where buffersize indicates the maximum number of readings the buffer can store.

These buffers can be deleted by setting mybuffer to nil.

Details

Once a buffer is created, the attributes are:

e mybuffer.appendmode =1 (ON) or O (OFF) — default 0 over a bus interface,
but 1 for ones created on the front panel

e nybuffer.basetimeseconds returns the seconds for reading buffer entry 1
(read-only attribute).

e nybuffer.basetimefractional returns the seconds and fractional

seconds for reading buffer entry 1 (read-only attribute).

e nybuffer.capacity for overall buffer size

e mybuffer
e mybuffer
e mybuffer
e mybuffer

.collecttimestamps = 1(ON) or O(OFF) — default 1
.collectchannels = 1(ON) or O(OFF) — default 1
. n for number of readings stored in buffer currently

.timestampresolution returns the resolution of the time

stamping (read-only attribute).

The following buffer bits indicate buffer statuses:

dmm.
dmm.
dmm.
dmm.
dmm.

dmm .

buffer

buffer.
buffer.
buffer.
buffer.

buffer.

.LIMIT1 LOW BITor1l

LIMIT1 HIGH BIT or2
LIMIT2 LOW_BIT or4
LIMIT2 HIGH BITor 8
MEAS OVERFLOW_BIT or 64

MEAS CONNECT QUESTION BIT or 128

3700S-901-01 Rev. C / July 2008

7-9

Section 7: Buffer: Data Storage and Retrieval

Series 3700 System Switch/Multimeter Reference Manual

dmm.makebuffer()

Details, To see readings in buffer:
continued printbuffer(x, y, mybuffer)
x and y: represent reading numbers desired
To see readings, channels, and units:
printbuffer(x, y, mybuffer, mybuffer.channels,
mybuffer.units)
x and y: represent reading numbers desired
To see time stamps in buffer:
mybuffer.collecttimestamps = 1
print (x, y, mybuffer, mybuffer.timestamps)
x and y: represent readings and time stamps for elements x to y
To see seconds, fractional seconds, and relative time stamps,
mybuffer.collecttimestamps = 1
printbuffer(x,y, mybuffer.seconds)
printbuffer (x,y, mybuffer.fractionalseconds)
printbuffer (x,y, mybuffer.relativetimestamps)
Also see Reading buffers (on page 7-12) for more information on reading buffer aspects in the
system
Example To create a user reading buffer named mybuf fer2, with a capacity of 300:

mybuffer2 = dmm.makebuffer (300)

To delete mybuffer2:
mybuffer2 = nil

dmm.savebuffer

0

Function

Saves data from the specified dynamically-allocated buffer to the USB flash drive
using the specified filename.

7-10

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

dmm.savebuffer()

Usage

dmm.savebuffer ('<reading buffer name>', '<filename>',
time format)

reading buffer name: The name of a previously created DMM reading buffer,
specified as a string. Do not pass the reading buffer name without quotes because this
generates a data type error. For example, if the reading buffer is mybuf fer, then the
buffer name should be specified as "mybuffer" and not mybuffer.

filename: The destination filename located on the USB flash drive. The filename must
specify the full path (including /usb1/) and include the name of file with the file
extension .csv. If no file extension is specified, .csv will be added to filename.

time_format: This optional parameter indicates what date and time information should
be saved in the file to the thumb drive. Use the following values for time format:

e dmm.buffer.SAVE RELATIVE TIME, which saves relative time stamps only

e dmm.buffer.SAVE FORMAT TIME, which is the default if no time format
specified and saves dates, times and fractional seconds

e dmm.buffer.SAVE RAW TIME, which saves seconds and fractional seconds
only

e dmm.buffer.SAVE TIMESTAMP TIME, which only saves time stamps

For options that save more than one item of time information, each item is comma

delimited. For example, dmm.buffer.SAVE FORMAT TIME will have <date>,
<time>, and <fractional seconds> for each reading.

Remarks

The first parameter (reading buffer name) represents the reading buffer to be saved.
The second (filename) is the filename of file to save reading buffer data to on USB
flash drive. The third parameter is optional and indicates how the date and time
information from the buffer should be saved. For options that save more than one item
of time information, each item is comma delimited. For example, the default format will
have <date>, <time>, and <fractional seconds) for each reading.

Errors will be generated if reading buffer does not exist or is not a DMM buffer, or if the
destination filename is not specified correctly. The . csv is appended to the filename
(unless the . csv is specified by user). Any specified file extension other than . csv
will generate errors.

Valid destination filename examples:

dmm.savebuffer ('mybuffer', '/usbl/mydata')
dmm.savebuffer ('mybuffer', '/usbl/mydata.csv')
Invalid destination filename examples:

dmm. savebuffer ('mybuffer', '/usbl/mydata.')
-Invalid extension due to period by no following letters for extension.
dmm.savebuffer ('mybuffer', '/usbl/mydata.txt')
-Invalid extension. Use . csv or do not specify (no period)

dmm.savebuffer ('mybuffer', '/usbl/mydata.txt.csv')

-invalid extension because 2 periods specified (mydata txt.csv would be
correct).

3700S-901-01 Rev. C / July 2008

7-11

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

dmm.savebuffer()

Example To save readings from valid DMM buffer named mybuffer with default time information
to a file named mydata.csv onthe USB flash drive:

dmm.savebuffer ('mybuffer', '/usbl/mydata.csv')

To save readings from mybuffer with relative time stamps to a file named
mydatarel.csv on the USB flash drive:

dmm.savebuffer ('mybuffer', '/usbl/mydatarel.csv',
dmm.buffer. SAVE_RELAT IVE_T IME)

Reading buffers

A reading buffer is based on a Lua table. The measurements themselves are
accessed by ordinary array notation. If rb is a reading buffer, the first
measurement is accessed as rb[1], the 9th measurement as rb[9], and so
on. The additional information in the table is accessed as additional members of
the table.

Reading buffer designations

To access the buffer, include the buffer attribute in the respective command. For
example, the following commands would store five readings from the DMM into
a buffer named readingbuffer:

-- Sets how many readings to take with the dmm.measure
command.

dmm.measurecount = 5

-—- Takes the measurements and stores them in readingbuffer.
dmm.measure (readingbuffer)

NOTE Do not use quotes around the reading buffer name when you send the
dmm.measure (readingbuffer) command from the instrument
front panel, because a data type error message will be logged to the
error queue.

Buffer storage control attributes

Buffer storage attributes are summarized in the following table. To control which
elements are stored in the buffer, enable the desired attribute for the buffer
(which sets it to 1). The following attributes are all available per reading buffer.
For example, to access the appendmode attribute for a buffer named rb, send
rb.appendmode.

7-12 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 7: Buffer: Data Storage and Retrieval

Attribute

Description

appendmode

When off, a new measurement to this buffer will clear the previous
contents before storing the new measurement. When on, the first new
measurement will be stored at what was formerly rb [n+17].

This attribute is initialized to off when the buffer is created over the bus.

However, the default is on for the front panel or web interface to allow
triggered readings to fill a buffer without clearing the previous ones.

collectchannels

When on, channel or channel pattern information is stored with
readings in the buffer. This requires eight extra bytes of storage per
reading.

This value, of £ or on, can only be changed when the buffer is empty
(cleared). When the buffer is created, this attribute is initialized to on.

collecttimestamps

When on, time stamps will be stored with readings in the buffer. This
requires eight extra bytes of storage per reading.

This value, of £ or on, can only be changed when the buffer is empty
(cleared). When the buffer is created, this attribute is initialized to on.

Buffer read-only attributes

Use buffer read-only attributes to access the information contained in an existing
buffer. The following attributes are available per reading buffer (for example,
rb.basetimeseconds would access basetimeseconds for reading buffer
rb, and the number of readings the reading buffer can store is accessed as

rb.capacity).

Attribute

Description

basetimefractional

The fractional portion of the time stamp of when the reading at
rb [1] was stored in the reading buffer (in seconds).

basetimeseconds The seconds portion of the time stamp, in whole seconds, when the
reading at rb [1] was stored in the buffer.
capacity The total number of readings that can be stored in the reading buffer.

timestampresolution

The time stamp resolution, in seconds. The resolution is fixed at 1e-9
seconds.

Buffer programming examples

Refer to the following for buffer control programming examples. In the example,
the buffer is named readingbuffer.

NOTE You must clear the buffer using the readingbuffer.clear ()
command before changing buffer control attributes.

3700S-901-01 Rev. C / July 2008

7-13

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

Command Description
readingbuffer.collectchannels = 1 Enable channel storage.
readingbuffer.appendmode = 1 Enable the buffer append mode.
readingbuffer.collecttimestamps = 0 Disable time stamp storage.

Refer to the following for buffer read-only attribute programming examples. In
the example, the buffer is named readingbuffer.

Command Description

number = readingbuffer.n Request number of readings stored in the
buffer.

buffer size = readingbuffer.capacity Request the buffer storage capacity.

Buffer reading attributes

The table in Buffer recall attributes (on page 7-14) lists the attributes that control
which elements are recalled from the buffer. To access specific elements,
append the desired attribute to the buffer designation.

For example, the following command line returns 100 readings from
readingbufferl:
printbuffer(l, 100, readingbufferl.readings)

Similarly, the following command line returns 100 channel values from
readingbufferl:

printbuffer(l, 100, readingbufferl.channels)

The default reading buffer recall attribute is readings, which can be omitted.
Thus, the following command line also returns 100 readings from
readingbufferl:

printbuffer(l, 100, readingbufferl)

Buffer recall attributes

The following table lists the attributes that control which elements are recalled
from the buffer. Each is actually a nested table. Related entries are stored at the
same index as the relevant measurement.

NOTE The default attribute is readings and can be omitted. For example,
readingbufferl and readingbufferl.readings will both
return readings from the buffer named readingbufferl.

7-14

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 7: Buffer: Data Storage and Retrieval

Recall attribute

Description

channels An array (a Lua table) of strings indicating the channel or channel

pattern associated with the measurement.

The returned value provides different information, based on what was

opened or closed when the reading was acquired:

¢ If no channel or channel pattern is closed when the reading was
acquired, "None" is displayed.

e If only a single channel or backplane relay was closed, the
channel number is displayed (for example, 5003 or 5915).

¢ If a channel or backplane relay plus another backplane relay or
other channel is closed, then the channel number will be displayed
followed by a + sign (for example, 3005+ or 3915+). The channel
will be in the image unless the last close operation involved only
backplane relays.

¢ If multiple channels and/or backplane relays were closed in a
channel list, the last channel specified will be stored. Channels
take precedence over backplane relays when stored. However, if
only multiple backplane relays are specified, then the first one will
be stored.

¢ If a channel pattern was closed, then the first eight characters of
the channel pattern name are returned (for example,
mypatternl is shown as mypatter).

dates

An array (a Lua table) of strings, indicating the date of the reading
formatted in month, day, and year.

formattedreadings

An array (a Lua table) of strings indicating the formatted reading as
viewed on the display.

ptpseconds An array (a Lua table) of the seconds portion of the time stamp of
when the reading was stored. These seconds are absolute and in
PTP format.

readings An array (a Lua table) of the readings stored in the reading buffer.

This array holds the same data that is returned when the reading
buffer is accessed directly, thatis, rb[2] and rb.readings[2]
are the same value.

relativetimestamps

An array (a Lua table) of time stamps, in seconds, of when each
reading occurred relative to the time stamp of reading buffer entry
number 1. These are equal to the time that has lapsed for each
reading since the first reading was stored in the buffer. Therefore, the
relative time stamp for entry number 1 in the buffer will equal 0.

statuses An array (a Lua table) of status values for all readings in the buffer.
The status values are floating-point numbers that encode the status
value into a floating-point value (see the table in Buffer status (on
page 7-16)).

times

An array (a Lua table) of strings, indicating the time of the reading
formatted in hours, minutes, and seconds.

3700S-901-01 Rev. C / July 2008

7-15

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

Recall attribute Description

timestamps An array (a Lua table) of strings, indicating the time stamp of the
reading formatted in month, day, year, hours, minutes, seconds, and
fractional seconds.

fractionalseconds An array (a Lua table) of the fractional portion of the time stamps, in
seconds, of when each reading occurred. These are absolute
fractional times.

seconds An array (a Lua table) of the seconds portion of the time stamp when
the reading was stored, in seconds. These seconds are absolute and
in UTC format.

units An array (Lua table) of the strings, indicating the unit of measure
stored with readings in the buffer. Units may be designated as one of
the following: ‘Volts AC’, ‘Volts DC’, ‘Amps AC’, ‘Amps DC’, ‘dB VAC’,
‘dB VDC’, ‘Ohms 2wire’, ‘Ohms 4wire’, ‘Ohms ComSide’, ‘Fahrenheit’,
‘Kelvin’, ‘Celsius’, ‘Hertz’, ‘Seconds’, and ‘Continuity’.

Example to access recall attributes

To see seconds, fractional seconds, and relative time stamps for entry numbers
2 and 3 in buffer mybuffer2, assuming mybuffer2.collecttimestamps
was set to 1 when the readings were stored
(mybuffer2.collecttimestamps = 1):

printbuffer (2,3, mybuffer2.seconds)
printbuffer (2,3, mybuffer2.fractionalseconds)
printbuffer (2,3, mybuffer2.relativetimestamps)

Time and date values

Time and date values are represented as a number of UTC seconds since 12:00
a.m. Jan. 1, 1970. The os.time () command returns values in this format. Use
os.date () to return values in month, day, year, hours, and minutes format, or
to access the time stamp table. The only exception to this is the use of the
ptpseconds recall attribute, which has the seconds in PTP format.

Buffer status

The buffer reading status attribute can include the status information as a
numeric value shown in the following table. To access status information, send
the following command:

stat info = readingbuffer.statuses[2]

Buffer status bits

7-16 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 7: Buffer: Data Storage and Retrieval

Bit Name Hex ICL
value
BO Low limit 1 0x01 dmm.buffer.LIMITl_LOW_BIT
Bl High limit 1 0x02 dmm.buffer.LIMITl_HIGH_BIT
B2 Low limit 2 0x04 dmm.buffer.LIMIT2_LOW_BIT
B3 High limit 2 0x08 dmm.buffer.LIMIT2_HIGH_BIT
B6 Measure 0x40 dmm.buffer. MEAS OVERFLOW BIT
overflow
B7 Measure 0x80 dmm.buffer. MEAS CONNECT QUESTION BIT
connect
question

Dynamically-allocated buffers

RAM reading buffers are created and dynamically allocated with the
dmm.makebuffer (n) command, where n is the maximum number of readings

the buffer can store.

Example:

To allocate a buffer named mybuffer that can store 100 readings:

mybuffer = dmm.makebuffer (100)

Example:

To delete an allocated buffer named mybuffer:

mnybuffer = nil

Example:

To see if the high limit 1 was exceeded during the reading:

stat info = readingbuffer.statuses[3]
(bit.bitand(stat info, dmm.buffer.LIMIT1 HIGH BIT) ==

if

dmm.buffer.LIMIT1 HIGH BIT)

then

print ("Limit 1 high exceeded")

else

end

print ("Limit 1 high okay")

3700S-901-01 Rev. C / July 2008

717

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

Dynamic buffer programming example

The programming example below shows how to store data using a dynamically-
allocated buffer named mybuff.

-— Reset the DMM.
dmm.reset ('all')

-- Create a buffer named mybuffer and allocate space for
100,000 readings.

mybuffer = dmm.makebuffer (100000)

-— Enable append buffer mode.
mybuffer.appendmode = 1

-— Set count to 1.
dmm.measurecount = 1

-— Select the DMM function as DC volts.
dmm. func = dmm.DC VOLTS

-- Start for..do loop. Measure and store readings in buffer.
End loop.

for x = 1, 100 do
dmm.measure (mybuffer)
end

-- Return readings 1-100.
printbuffer(l, 100, mybuffer.readings)

-- Return units 1-100.
printbuffer(l, 100, mybuffer.units)

7-18 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

Buffer for...do loops

The following examples illustrate the use of for...do loops with respect to
recalling buffer data from a reading buffer called mybuf fer. The following code
may be sent as one command line or as part of a script. Sample outputs follow
the line of code. Also see the printbuffer () (on page 13-221) ICL command.

NOTE Buffer mybuffer has time stamp collection enabled in the example
below.

This example loop uses printbuffer to show the reading, units, and relative
time stamps for all readings stored in the buffer. The information for each
reading (reading, units, and relative time stamps) is shown on a single line with
the elements comma-delimited.

for x = 1,mybuffer.n do

printbuffer (x,x,mybuffer, mybuffer.units,
mybuffer.relativetimestamps)

end

Sample comma-delimited output of above code:
3.535493836e-002, Volts DC, 0.000000000e+000
-4.749810696e-002, Volts DC, 5.730966000e-002
-8.893087506e-002, Volts DC, 7.722769500e-002
4.164193198e-002, Volts DC, 1.246876800e-001
-6.900507957e-002, Volts DC, 1.815213600e-001
-8.851423860e-002, Volts DC, 2.009161500e-001
3.891038895e-002, Volts DC, 2.647790700e-001
-7.581630349e-002, Volts DC, 3.032140350e-001
-8.236359060e-002, Volts DC, 3.226125750e-001

-8.551311493e-002, Volts DC, 3.425625900e-001

3700S-901-01 Rev. C / July 2008 7-19

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

The following loop uses the print command instead of the printbuffer
command. This loop shows the same information described in the previous
example (reading, units, and relative time stamps for all readings stored in the
buffer). However, because the print command is used over printbuffer,
each line is tab-delimited (rather than comma-delimited) to produce a columnar
output, as shown below:

for x = 1,mybuffer.n do

print (mybuffer.readings[x], mybuffer.units[x],
mybuffer.relativetimestamps|[x])

end

Sample columnar output of above code:

3.535493836e-002 Volts DC 0.000000000e+000
-4.749810696e-002 Volts DC 5.730966000e-002
-8.893087506e-002 Volts DC 7.722769500e-002
4.164193198e-002 Volts DC 1.246876800e-001
-6.900507957e-002 Volts DC 1.815213600e-001
-8.851423860e-002 Volts DC 2.009161500e-001
3.891038895e-002 Volts DC 2.647790700e-001
-7.581630349e-002 Volts DC 3.032140350e-001
-8.236359060e-002 Volts DC 3.226125750e-001
-8.551311493e-002 Volts DC 3.425625900e-001

If data was collected by executing a three-channel scan list with a scan count of
10, the buffer has 30 readings in it. To see the comma-delimited data on the
three-channel boundary:
x =1
y = 3
for z = 1, 10 do

printbuffer(x, y, mybuffer, mybuffer.channels)

X =x + 3
y=y+3
end

7-20 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

The sample output from the above code has six comma-delimited entries per
line (reading, channel, reading, channel, reading, channel):

3.181298825e-002, 2001+, -5.602844334e-002, 2002+, -7.811298360e-002,

2920238+547367e-002, 2001+, -5.299202901e-002, 2002+, -8.676257870e-002,
2970336;69697&002, 2001+, -3.247188344e-002, 2002+, -5.106155438e-002,
-28(4)132406636&002, 2001+, -9.218081926e-002, 2002+, 3.419026595e-002,
-2??(2)322921662&002, 2001+, -6.672781529e-002, 2002+, -7.762540017e-002,
3980736231571&002, 2001+, -4.056434134e-002, 2002+, -6.119288115e-002,
-270.(1)%3106472%-002, 2001+, 2.893913659e-002, 2002+, -3.164065858e-002,
-232:32576932&002, 2001+, -8.067066262e-002, 2002+, 2.339088329e-002,
-250.32g247880e-002, 2001+, -6.769966949e-002, 2002+, -7.572277347e-002,
3960138+149827e-002, 2001+, -3.164126270e-002, 2002+, -6.306067024e-002,
2003+

If you want to see more information about the readings, add the appropriate
buffer recall attribute to the printbuffer line in the sample code. For example,
to see the relative time stamp with each reading, add
mybuffer.relativetimestamps to the printbuffer command as follows:

printbuffer(x, y, mybuffer, mybuffer.channels,
mybuffer.relativetimestamps)

In the output from this printbuffer command, nine comma-delimited entries
appear on each line. Each line will include the following entries: reading,
channel, relative time stamp, reading, channel, relative time stamp, reading,
channel, relative time stamp.

Exceeding reading buffer capacity

If the reading buffer count is not exceeded, readings are stored as expected. But
if the reading buffer capacity would be exceeded by new readings being added
to the current buffer index, the count is lowered to a new count so it does not
exceed the buffer capacity. Once the buffer is full (to the new count), no more
readings are taken and error message 4915 is displayed, stating that you
attempted to exceed the capacity of the reading buffer. If you attempt to store
additional readings in a full buffer, the same message appears, and no readings
are taken.

3700S-901-01 Rev. C / July 2008 7-21

Section 7: Buffer: Data Storage and Retrieval Series 3700 System Switch/Multimeter Reference Manual

Example:

Create a buffer with:

e A capacity for 50 readings
e Append mode enabled
e Measure count to 30

Tell the instrument to print the current number of buffer elements stored and
take readings to store in the buffer. The following occurs:

1. The first time the measurement is called, the buffer is empty (no readings)
so it stores 30 readings.

2. The second time the measurement is called it stores only 20 readings. This
is because 30 + 30 is 60 readings, which exceeds buffer capacity (50).
Because 30 readings are already stored, only 20 readings are taken and
stored. Error message 4915 is displayed.

3. The third time the measurement is called, the buffer is full (already has 50
readings). Because there is no more room, no readings are taken (nil
response for reading) and error message 4915 is again displayed.

The following listing provides the coding for the previous example:

-- Create a buffer named buf and allocate space for 50
readings.

buf = dmm.makebuffer (50)

-— Enable append buffer mode.
buf.appendmode = 1

-- Set count to 30.
dmm.measurecount = 30

-- Show the current number of readings in the buffer, and
then measure and store readings in the buffer (first
pass) .

-— Output from the print command:
-- 0.000000000e+000
-- 5.245720223e-002

print (buf.n, dmm.measure (buf))

-- Show the current number of readings in the buffer, and
then measure and store readings in the buffer (second
pass) .

-- Output from the print command:
-- 3.000000000e+001
-—- -1.388141960e-001

-- 4915, Attempting to store past capacity of reading
buffer

print (buf.n, dmm.measure (buf))

7-22 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 7: Buffer: Data Storage and Retrieval

-- Show the current number of readings in the buffer, and
then measure and store readings in the buffer (third
pass) .

-- Output from the print command:
-- 5.000000000e+001
-- nil

-- 4915, Attempting to store past capacity of reading
buffer

print (buf.n, dmm.measure (buf))

3700S-901-01 Rev. C / July 2008 7-23

Section 8

Scanning

In this section:

Scanning fundamentals.............ccccvveeeeiiiiiiiiee e 8-1
Scan and SteP COUNES.......uueveiiirieeeiiiie et 8-7
BasiC Scan ProCedure........cccouvviviieeeiiiiee e 8-7
Front panel SCanning............oooovveeiiieeiriiiiiiee e 8-10
Bus operation SCaNNING.........cccuvveeieeeaiiiiiiieeee e 8-12
Hardware trigger modes.........cc.uvveieeeiiiiiiiiieeee e 8-18

Scanning fundamentals

A scan is a series of steps which open and close switches to be optionally
measured. The step-by-step flow is defined by the trigger model.

The Keithley Instruments Series 3700 System Switch/Multimeter can scan
channels with up to six Keithley Instruments switching modules installed. Each
scan channel can have its own unique setup. Aspects of operation that may be
uniquely set for each channel include function, range, rate, AC bandwidth, REL,
filter, digits, math, offset compensation, temperature transducers, limits, volts
dB, and so on.

NOTE If desired, readings for scanned channels may be automatically stored
in a specified reading buffer (see Buffer: Data Storage and Retrieval
(on page 7-1)).

You can configure and execute scans from the front panel, remotely over the
bus, or through the Series 3700 web interface. The steps are executed in the
order that they are added. When adding a range of channels, they are added to
the end of the existing scan list.

For example:

e 1003:1005 will add Channels 1003, 1004, and 1005 to the list as three
distinct steps, with Channel 3 added first, Channel 4 added second, and
Channel 5 added third.

e Adding individual channels in the order of 1003, 1005, and 1004 will add the
channels to the list as three distinct steps with Channel 3 added first,
Channel 5 added second, and Channel 4 added last.

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

Channel assignments

Each switching module has a certain number of channels. For example, the
Model 3720 switching module has 60 channels (1 through 60). When you
encounter a 1- to 3-digit channel number in this manual, the switching module
channel is the point of discussion. A 4-digit channel number includes the slot
number followed by the 3-digit channel number.

A switching module can be installed in any of the mainframe's six slots.
Therefore, to close, open, or scan a channel, you must specify the slot location
and channel number of the switching module by using a four-digit channel
number for the mainframe. The first digit (1, 2, 3, 4, 5, or 6) indicates the slot
number, and the next three digits indicate one of the following:

e The MUX (multiplexer) channel notation
e The row and column of matrix card notation
e The modules' backplane relay notation

Events

Event detectors monitor an event. They have one input signal (the stimulus),
which is the event that they monitor (in some cases, the stimulus is an action in
the system, like a timer expiring or a key press). They have two optional output
signals (see figure below). "Detected" reflects the detection state of the event
detector. If an event was detected, the detected signal is asserted. Event
detectors are usually coupled to something that consumes the events. When an
event is consumed, the detected state of the event detector is reset. Should an
event be detected while the event detector is in the detected state, the overrun
signal will be asserted. You can only clear the overrun signal by sending an ICL
command.

Figure 8-1: Event detector

Detected

Stimulus
Event

detector

Overrun

8-2 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

Event blenders

Advanced event handling requires a way to wait for one of several events (or all
of several events). An event blender provides for this combining or blending of
events. An event blender can combine up to four events in either an "or" mode
or an "and" mode. When in "or" mode, any one of the input events will cause an
output event to be generated. When in "and" mode, all the input events must
occur before an output event is generated.

When operating in "and" mode, if an event is detected more than once before all
events necessary for the generation of an output event, an action overrun will be
generated. When operating in "or" mode, an action overrun will be generated
when two or more source events are detected simultaneously.

Event blenders each have an associated event detector that can be accessed
through script control. Event blenders can only be accessed over the bus (no
front panel control is available). The following ICL commands provide additional
information on available blenders:

e trigger.blender[N].clear() (on page 13-287)

e trigger.blender[N].orenable (on page 13-287)

e trigger.blender[N].overrun (on page 13-288)

e trigger.blender[N].stimulus[M] (on page 13-288)
e trigger.blender[N].wait() (on page 13-289)

Foreground and background scan execution

You can execute a scan in the foreground or background. Background execution
allows you to query settings or access reading buffer data. If a scan is running in
the foreground, it will need to finish or be aborted before you can query any
settings or access reading buffers.

When a scan is running in the background, you can send ICL commands to be
processed. The commands that you can use include most of the command
messages that you use to query for settings, for example:

print (dmm. func)

print (dmm.scan.state())
printbuffer(l, 5, rb)
print (scan.state())

Most of the commands to change how the instrument is configured will log the
following error message to the error queue, if not allowed:

5522, Scan Running, Must Abort Scan

3700S-901-01 Rev. C / July 2008 8-3

Section 8: Scanning

Series 3700 System Switch/Multimeter Reference Manual

Trigger model

The following flowchart represents a trigger model implemented in the Series
3700. The trigger model is used during a scan only. For front panel operation,
you use the SCAN and STEP keys to perform scan actions. For remote

operation, you use the scan functions and attributes commands, for example,
scan.execute () and scan.mode.

Figure 8-2: Trigger model

Front Panel: SCAN_EXECUTE

Scan Execute

ICL: scan.execute ()
scan. background (
Arm Action Trigger

scan.trigger.arm.stimulus
L

A J

Wait Scan Start
Trigger

¢ " Scan Ready Event

scan.trigger . EVENT SCAN_ READY

——————— 1

1Scan Count = 1, Step Count =1

: Channel Action Trigger—-|

scan.trigger.channel.stimulus

Wait Channel
Action Trigger

Bypass

Execute
Channel Action
& Config DMM

» Scan Start Event

scan.trigger.EVENT_SCAN_START

------- 1

Wait Sequence

Y

Sequence Alction Trigger

Trig

v

scan.trigger.sequence.stimulus

Wait Measure

Y

Trig

I
Measure Action Trigger

¥

scan.trigger.measure.stimulus:

Execute

DMM Measure

Switch only

Channel Ready Event

scan.trigger .EVENT CHANNEL READY

» Measure Complete Event
scan.trigger .EVENT_MEASURE_COMP

Y

Sequence Complete Event
scan.trigger.EVENT_SEQUENCE_COMP

Idle

Scan Complete Event
scan.trigger.EVENT_SCAN_COMP

Idle Event

scan.trigger.EVENT IDLE

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

The Series 3700 trigger model has the following events and associated ICL
command attributes. These events, along with other events in the system, may
be used to configure various stimulus settings.

For example, the channel ready event
(scan.trigger.EVENT CHANNEL READY) may be set to pulse digital I/O line
3 when it gets generated. The command message for this would be:

digio.trigger[3].stimulus =
scan.trigger.EVENT CHANNEL READY

Likewise, you can use the digital I/O line 5 trigger event to satisfy the scan
trigger channel stimulus, which causes the channel action to occur when a
trigger is detected on line 5. The command message for this is:

scan.trigger.channel.stimulus = digio.trigger[5].EVENT ID

Event Associated ICL attribute

Scan Ready Event scan.trigger.EVENT SCAN READY
Scan Start Event scan.trigger.EVENT SCAN START
Channel Ready Event scan.trigger.EVENT CHANNEL READY
Measure Complete Event scan.trigger.EVENT_MEASURE_COMP
Sequence Complete Event scan.trigger.EVENT SEQUENCE COMP
Scan Complete Event scan.trigger.EVENT_SCAN_COMP

Idle Event scan.trigger.EVENT IDLE

NOTE Scanning operations run through the trigger model, but individual
open, close, and DMM measure commands have no interaction with
the trigger model.

Trigger model components

The individual components of the trigger model are explained in the following
paragraphs.

Idle

When a scan is initiated, the operation leaves the idle state and finalizes aspects
to start scanning. Once everything is ready for scanning, the instrument
generates the Scan Ready Event and waits for the arm stimulus event (see the
Arm Action Trigger in the trigger model figure in Trigger model (on page 8-4)).
After the last channel in the scan is measured, operation returns to the idle
state, where measurements are halted and the last channel in the list is closed.

3700S-901-01 Rev. C / July 2008 8-5

Section 8: Scanning

Triggers

The following four action triggers are associated with the trigger model
operation:

e Arm Action Trigger

e Channel Action Trigger (this trigger may be bypassed for the first channel of
the first scan count)

e Sequence Action Trigger
e Measure Action Trigger

STEP operation: When the trigger event is detected, a channel is closed and a

measurement may be taken, if it is configured for one. The step operation, which
is only available over the front panel, processes one step at a time until all steps
are completed.

SCAN operation: When the trigger event is detected, all the channels in the
scan list are scanned. The scan operation processes all steps before finishing.

The channel closing occurs when the channel stimulus event is detected. After

closing the channels, the Channel Ready Event is generated. See the Channel

Action Trigger in the trigger model figure in Trigger model (on page 8-4). Before
the measurement occurs, the sequence and measure stimulus events must be

detected. One or both of these events may be used.

After the measurement is completed, a Measure Event Complete message is
generated. If a sequence of measurements is taken, a Sequence Complete
Event message is generated after all measurements are taken (that is, the
measure count reaches zero). Use the sequence stimulus event if you want
each measurement to be paced by an event. Otherwise, use the measure event
stimulus to have a single event trigger all of the measure count readings.

When all steps are complete, the Scan Complete Event message is generated.
Otherwise, it loops back to the Channel Action Trigger. When all scans are
complete, the Idle Event is generated. Otherwise, it loops back to the Arm Action
Trigger.

Series 3700 System Switch/Multimeter Reference Manual

Stimulus Description

trigger is associated with the ICL
scan.trigger.arm.stimulus (on page 13-244).

Arm Action Trigger Affects the "Wait Scan Start Trigger" block of the trigger model. This

This trigger is associated with the ICL

Channel Action Trigger Affects the "Wait Channel Start Trigger" block of the trigger model.

scan.trigger.channel.stimulus (on page 13-246).

trigger is associated with the ICL

Sequence Action Trigger | Affects the "Wait Sequence Trigger" block of the trigger model. This

scan.trigger.sequence.stimulus (on page 13-249).

8-6

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

Stimulus Description

Measure Action Trigger Affects the "Wait Measure Trigger" block of the trigger model. This
trigger is associated with the ICL
scan.trigger.measure.stimulus (on page 13-247).

Scan and step counts

When running a scan, it may be necessary to determine the scan progress. Use
scan and step count to determine the point in the scan table being executed.

"Scan count" represents the number of the current iteration through the scan
portion of the trigger model. This number does not increment until after the scan
begins. Therefore, if a unit is waiting for an input to trigger a scan start, the scan
count will represent the previous number of scan iterations. If no scan has yet to
begin, the scan count will be zero.

"Step count” represents the number of times the scan has completed a pass
through the channel action portion of the trigger model. This number does not
increment until after the action completes. Therefore, if the unit is waiting for an
input to trigger a channel action, the step count will represent the previous step.
If no step has yet to complete, the step count will be zero. If the step count has
yet to complete the first step in a subsequent pass through a scan, the scan
count represents the last step in the previous scan pass.

Basic scan procedure

To perform a scan:

1.

Configure the channels for scanning as needed. Select (or create, if
necessary) the reading buffer to store measurements (if desired).

Build the scan list:
e Front panel: Press the INSERT key.
e Bus: Sendthe scan.create () or scan.add () command.

Configure the scan settings (for example, scan count, bypass, mode, and so
on).
To start the scan:

e Front panel: Press the STEP key or the SCAN key and select the
BACKGROUND menu item.

e Bus: Send an ICL command such as scan.execute,
scan.background, scan.nobufferbackground, or other
appropriate scan command.

3700S-901-01 Rev.

C / July 2008 87

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

5. The trigger model leaves the idle state and opens channels involved in
scanning, along with channels that would interfere with scanning, such as
AMP channels, analog backplane relays 1 and 2 on all slots, common-side
ohm backplane channels, and other channels in banks involved in scanning.

When you press the STEP key, the Series 3700 leaves the idle state and
performs the channel action associated with the first step in the scan list.

Measurements are then taken (if part of the scan). If a reading buffer was
selected, the result from the measurements are stored there. The
measurement action, if started, is completed. The channel and DMM remain
as previously configured until the next step in the scan is initiated. The DMM
configuration changes to the attribute settings tied to the channel in the next
step.

NOTE While scanning is enabled, pressing most front panel keys will
display the message "ERROR CODE: 5522 Scan Running, Must
Abort Scan."

6. The channels are scanned or stepped in the order they were added to the
list.

e Front panel: If you are stepping through the scan, press the STEP key
to proceed to the next step in the list.

e Bus: You cannot step a scan remotely over the bus.
7. To abort the scan:
e Front panel: Press the EXIT key.

e Bus: Usethe scan.abort ICL command.

NOTE Even if the scan is aborted, the DMM remains as configured in the
last completed step of a scan that involved measuring. Channel
states match the aborted state of channels in terms of which are
closed and opened.

The DMM remains as previously configured in the last completed measurement
step of a scan that involved measuring. The function associated with that
configuration will have the associated DMM attributes updated to match. All
other functions will remain as configured prior to scanning.

If programmed to scan the channels in the scan list again, the Series 3700 will
wait at the control source for another trigger event. After all the scan list
channels are measured again, the Series 3700 will output another trigger pulse,
if configured to do so. After all programmed scans are completed, the instrument
returns to the idle state with the channels associated with last scan step closed.

8-8

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

Buffer

To recall scanned readings stored in the buffer, press the REC key and turn the
navigation wheel to navigate through the buffer. See Recalling readings (on
page 7-5) for details on recalling buffer readings. When finished, make sure to
exit from buffer recall (press the EXIT key). Also see Buffer: Data Storage and
Retrieval (on page 7-1).

Changing channel and DMM attributes of an existing scan

When a scan already exists, changing channel and DMM attributes also causes
the scan to change. Once a scan list has been defined, the Series 3700 will try
to incorporate your changes into the scan. For example, changing a DMM
configuration assigned to a channel used in scanning affects the scan list. But
changing a DMM configuration on a channel not involved in scanning does not
affect the scan list. If the change impacts the ability of the scan to function
properly (such as deleting something referenced by the scan), an error message
is logged.

To see how the scan list may have changed, view the current scan list. On the
front panel, press the SCAN key and select the LIST option, using the
navigation wheel to scroll through the options. For bus operation, use the
scan.list () function. For performance reasons, it is always better to
configure all channel and DMM attributes before creating a scan. Afterward,
changes may cause the scan to take more time to modify the scan list. You can
clear an existing scan list before making any changes after making a scan list.
From the front panel, press the SCAN key and select the CLEAR option. For
bus operation, use the scan.create () function.

Some changes may cause channels to be dropped from the list when they
become paired with another channel for a 4-wire operation. These channels will
not be added back into the list during subsequent changes that free the paired
channel from a 4-wire operation. To get a recently unpaired channel back in the
list, create a new scan list or add it back into the list.

For example, a scan list is comprised of Channels 1 to 60 on a Model 3720 card
with the channels configured to measure DC volts. Changing Channels 1 to 30
to be configured for 4-wire ohms measurements causes the scan list to change.
The scan list changes to contain Channels 1 to 30 measuring 4-wire ohms, and
Channels 31 to 60 are removed because they are paired with Channels 1 to 30.
If you then change Channels 1 to 60 to be configured for measuring DC volts,
the scan list will still only contain Channels 1 to 30, but it will be measuring DC
volts. Channels 31 to 60 are not automatically added back into the list.

3700S-901-01 Rev. C / July 2008 8-9

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

The ICL commands to simulate this example follow. Assume the Model 3720 is
in Slot 3:

-- Configure Channels 1 to 60 to measure DC volts.
dmm.setconfig('slot3', 'dcvolts')

-- Create a scan list, channels measuring DC volts.
scan.create('slot3"')

-- View the scan list, 60 channels measuring DC volts.
print (scan.list())

-- Change Channels 1 to 30 to 4-wire ohms.
dmm.setconfig('slot3', 'fourwireohms')

-- List now has Channels 1 to 30 measuring 4-wire ohms.
print (scan.list())

-- Change back to DC volts on Channels 1 to 60.
dmm.setconfig('slot3', 'dcvolts')

-— List still has Channels 1 to 30, but measures DC volts.
print (scan.list())

Front panel scanning

After channels have been added to the scan list, press the SCAN key to display
the SCAN ACTION MENU. If no scan list exists, pressing the SCAN key will
briefly display "No Scan List. Use INSERT to add selection.”

The menu contains the following items:

e BACKGROUND: Runs scan list in the background
e CREATE: Displays Use <INSERT> key (reserved for future enhancements)

e LIST: Displays the current scan list steps. Turn the navigation wheel to
scroll through the list.

e CLEAR: Clears the existing scan list.

e RESET: Resets the unit's scan aspects, which include scan count, clearing
the scan list, and scan stimulus settings like scan trigger arm.

Press the INSERT key to add the selected channels or pattern to the existing
scan list.

Press the DELETE key to remove the selected channels or pattern from the
existing scan list. Only the first occurrence of the selected item will be removed.
For example, if Channel 3003 appears in the list three times and Channel 3003
is selected when the DELETE key is pushed, the first step using Channel 3003
will be removed (the remaining two will stay in the list).

8-10 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

When removing channels, channel patterns will not be checked to determine if
the channel being removed is associated with its image. To remove a channel
pattern in a scan list, select the channel pattern to be removed, and then press
the DELETE key. Continuing the previous example of Channel 3003, if ‘mypat1'
is comprised of Channels ‘3003, 3033, 3911, and 3922' when the remove
request for Channel 3003 is made, it will not remove 'mypatl’ from the list. To
remove 'mypatl’ from list, select the channel pattern 'mypatl' and press the
DELETE key, which removes the step and all associated channels.

Press the STEP key to single step through a scan list.

Scan configuration
To configure a scan from the SCAN ATTR MENU, while in an active scan
list:
1. Press the CONFIG key.
2. Press the SCAN key. Modify any of the following menu items as desired:

e ADD: Displays Use <INSERT> key. The related ICL is scan.add,
without the optional DMM configuration.

e BYPASS: Enables (ON) or disables (OFF) bypassing the first step of the
first scan pass. Related ICL command: scan.bypass (on page 13-
233).

e MODE: Sets the scan mode value to one of the following:
e OPEN_ALL (default setting)
e OPEN_SELECT
e FIXED_ABR
Related ICL command: scan.mode () (on page 13-239).

e MEAS_CNT: Sets the measure count value. Related ICL command:
scan.measurecount (on page 13-238).

e SCAN_CNT: Sets the scan count value. Related ICL command:
scan.scancount (on page 13-242).

3. Press the EXIT key to leave the menu.

3700S-901-01 Rev. C / July 2008 8-11

Section 8: Scanning

Series 3700 System Switch/Multimeter Reference Manual

Bus operation scanning

ICL commands

The following list contains ICL commands associated with triggers and bus
operation scanning:

trigger.blender[N].clear() (on page 13-287)
trigger.blender[N].orenable (on page 13-287)
trigger.blender[N].overrun (on page 13-288)
trigger.blender[N].stimulus[M] (on page 13-288)
trigger.blender[N].wait() (on page 13-289)
trigger.timer[N].clear (on page 13-290)
trigger.timer[N].stimulus (on page 13-292)
digio.trigger[N].clear() (on page 13-88)
digio.trigger[N].pulsewidth (on page 13-90)
digio.trigger[N].stimulus (on page 13-91)
digio.trigger[N].wait (on page 13-92)
lan.trigger[N].assert() (on page 13-203)
lan.trigger[N].clear (on page 13-204)
lan.trigger[N].overrun (on page 13-206)
lan.trigger[N].stimulus (on page 13-208)
lan.trigger[N].wait (on page 13-209)
scan.add() (on page 13-230)
scan.background() (on page 13-232)
scan.bypass (on page 13-233)
scan.create() (on page 13-234)
scan.execute() (on page 13-236)

scan.list() (on page 13-237)

8-12

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

e scan.measurecount (on page 13-238)

e scan.mode() (on page 13-239)

e scan.nobufferbackground() (on page 13-240)

e scan.reset() (on page 13-242)

e scan.scancount (on page 13-242)

e scan.state() (on page 13-243)

e scan.trigger.arm.clear() (on page 13-244)

e scan.trigger.arm.set() (on page 13-244)

e scan.trigger.arm.stimulus (on page 13-244)

e scan.trigger.channel.clear() (on page 13-245)

e scan.trigger.channel.set() (on page 13-245)

e scan.trigger.channel.stimulus (on page 13-246)
e scan.trigger.clear() (on page 13-247)

e scan.trigger.measure.clear() (on page 13-247)

e scan.trigger.measure.set() (on page 13-247)

e scan.trigger.measure.stimulus (on page 13-247)
e scan.trigger.sequence.clear() (on page 13-248)
e scan.trigger.sequence.set() (on page 13-248)

e scan.trigger.sequence.stimulus (on page 13-249)

3700S-901-01 Rev. C / July 2008 8-13

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

Scanning examples

The following examples assume a Keithley Instruments Model 3720 module is
installed in Slot 3 of a Series 3700.

NOTE Inthe examples, to clear a trigger stimulus after setting, set the
stimulus to 0, which returns the stimulus setting back to its factory
default value, which may or may not be 0.

Example 1:

Command list to scan the entire card in a switch-only application (no measuring)
that has digital I/O line 1 initiate a background scan (see the comments for other
specifics).

-— Reset the Series 3700 to factory defaults
reset ()

-— Create scan for all channels on the card installed in
Slot 3.

scan.create('slot3"'")

-- Setup digital I/O line 1 to detect a falling-edge
trigger.

digio.trigger[l].mode = digio.TRIG_FALLING

-— Use a digital I/0 event as the ARM layer's stimulus.
scan.trigger.arm.stimulus = digio.trigger[1l].EVENT ID

-- Initiate the scan to execute in the background.
scan.background ()

Example 2:

Command list to scan the entire card while measuring DC volts on each channel
and storing readings in a buffer called mybuffer (see the comments for other
specifics).

-— Reset the Series 3700 to factory defaults.
reset ()

-- Set the range of DC volts to the 10 volt range.
dmm.range = 10

-- Set NPLC to 0.1 NPLC.
dmm.nplc = .1

-- Save the DMM configuration as "mydcv."
dmm.configure.set ('mydcv')

-- Make buffer named "mybuffer" and configure it to store
up to 1000 readings.

mybuffer = dmm.makebuffer (1000)

8-14 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

-—- Set up digital I/O line 1 to detect a falling edge
trigger.

digio.trigger[l].mode = digio.TRIG_FALLING

-- Set each channel so it closes with a digio 1 event
trigger.
scan.trigger.channel.stimulus = digio.trigger[1l].EVENT ID

-- Set bypass to off so that first channel needs to see
trigger before closing.

scan.bypass = scan.OFF

-— Create scan for Channels 1 to 60 on the card installed
in Slot 3.

scan.create('3001:3060', 'mydcv')

-- Initiate the scan to execute in the background and save
readings to a buffer called "mybuffer."

scan.background (mybuffer)

Example 3:

Command list to scan the entire card while measuring 4-wire ohms using a
background scan (see the comments for other specifics).

-- Reset the Series 3700 to factory defaults.
reset ()

-- Set the configuration for all channels in Slot 4 to 4-
wire ohms.

dmm.setconfig('slot4', 'fourwireohms')

-— Create scan for all channels on the card installed in
Slot 4.

scan.create('slotd')

-- Set up digital I/O Line 1 to detect a falling-edge
trigger.
digio.trigger[l].mode = digio.TRIG_FALLING

-- Set up digital I/O Line 2 to detect a falling-edge
trigger.

digio.trigger[2].mode = digio.TRIG FALLING

-—- Set each channel so that it will close with a
measurement complete event.

scan.trigger.channel.stimulus =
scan.trigger.EVENT MEASURE COMP

-- Set digio 2 to pulse when a channel ready event occurs.
digio.trigger[2].stimulus =
scan.trigger.EVENT CHANNEL READY

-- Set each measurement to occur with a digio 1 event
trigger.

scan.trigger.measure.stimulus = digio.trigger[1l].EVENT ID

3700S-901-01 Rev. C / July 2008 8-15

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

-- Set bypass to ON so first channel closes without taking
a measurement.

scan.bypass = scan.ON

-- Make buffer named "mybuffer" and configure it to store
up to 1000 readings.

mybuffer = dmm.makebuffer (1000)

-- Initiate the scan to execute in the background and save
readings to a buffer called "mybuffer."

scan.background (mybuffer)

Example 4:
Optimizing scanning for speed.

Some cards, such as the Model 3723, use relays that are optimized for
switching speed and reliability. However, these cards still use backplane relays
(EMR) that are slow and have a shorter life. Full speed and reliability of the card
can be realized by avoiding scan modes that intelligently open and close
backplane relays (for example, scan.MODE_OPEN SELECTIVE). By setting the
scan mode (scan.mode) to scan.MODE_FIXED ABR, all required backplane
relays will be closed prior to the start of the scan and remain closed until you
program them to open.

Here's an example of a Model 3706 configured for fast scanning with the Model
3723 card. Sixty channels will be scanned ten times on 200V DCV.

-- Reset the Series 3700 to factory defaults.
reset ()

-— Select active function as DC volts.
dmm. func= 'dcvolts'

-—- Turn auto range off.
dmm.autorange=dmm.OFF

-— Select the range based on 200 volts.
dmm.range='200"

—-— Turn autozero off.
dmm.autozero=dmm.OFF

-—- Set the NPLC to .006.
dmm.nplc=.006

-— Turn auto delay off.
dmm.autodelay=dmm.OFF

-- Create a reading buffer to hold 600 readings.
reading buffer=dmm.makebuffer (600)

-- Save the current dmm settings as "mydcvolts"
configuration.

dmm.configure.set ('mydcvolts')

8-16 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

-—- Assign that configuration to Channels 1 to 60 on Slot 1.
dmm.setconfig('1001:1060"'" , 'mydcvolts')

-- Set the scan mode to fixed ABR.
scan.mode=scan.MODE FIXED ABR

-— Create a scan list of Channels 1 to 60 on Slot 1.
scan.create ('1001:1060")

-- Set the scan count to 10.
scan.scancount=10

-- Scan in the foreground.
scan.execute (reading buffer)

-— Write the data out to a file on a USB flash drive.
dmm.savebuffer ('reading buffer', '/usbl/mydata.csv')

NOTE The NPLC setting is at .006 in the example, but the fastest NPLC
setting supported in a Series 3700 is .0005. Another speed
improvement option is to set the channel connect rule to OFF
(channel.connectrule = channel.OFF). Using this setting
allows channels to open and close at the same time, provided the
application supports this operation.

Example 5:

Command list to scan the entire Model 3723 card while measuring DC volts on
each channel, and store readings in a buffer called mybuffer (see the
comments for other specifics).

NOTE For the Model 3723, the channels are reed relays, while the analog
backplane relays are EMR relays. Therefore, to have the scan run
faster, set the scan mode to fixed ABR, which closes the backplane
relays before scanning starts and keeps them closed during the entire
scan.

-- Reset the Series 3700 to factory defaults.
reset ()

-- Set the range of DC volts to the 10 volt range.
dmm.range = 10

-- Set NPLC to 0.1 NPLC.
dmm.nplc = .1

-- Save the DMM configuration as "mydcv."
dmm.configure.set ('mydcv')

-- Make buffer named "mybuffer" and configure it to store
up to 1000 readings.

mybuffer = dmm.makebuffer (1000)

3700S-901-01 Rev. C / July 2008 8-17

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

-—- Set up digital I/O Line 1 to detect a falling edge
trigger.
digio.trigger[l].mode = digio.TRIG_FALLING

-- Set each channel so it closes with a digio 1 event
trigger.
scan.trigger.channel.stimulus = digio.trigger[1l].EVENT ID

-- Set bypass to OFF so that the first channel needs to see
the trigger before closing.

scan.bypass = scan.OFF

-- Set the mode to fixed ABR so that the backplane relays
are closed at the start of scanning and maintained
closed throughout scanning without being opened/closed.

scan.mode = scan.MODE FIXED ABR

—-— Create scan for Channels 1 to 60 on the card installed
in Slot 3.

scan.create('3001:3060', 'mydcv')

-- Initiate the scan to execute in the background and save
readings to a buffer called "mybuffer."

scan.background (mybuffer)

Hardware trigger modes

Use the hardware trigger modes to integrate Keithley Instruments and non-
Keithley instruments into an efficient test system. The hardware synchronization
lines are classic trigger lines. The Series 3700 contains 14 digital I/O lines and
three TSP-Link synchronization lines that you can use for input or output
triggering. The following table provides a summary for each hardware trigger

mode.
Trigger mode | Output Input Notes
Unasserted | Asserted Detects
Bypass N/A N/A N/A Usethe writetbit and
writeport commands for
direct line control (Version 1.4.0
and higher)
Either edge High Low Either Short input pulses can cause a
trigger overrun.
Falling edge High Low Falling
Rising edge N/A N/A N/A e The programmed state of the
line determines if the behavior
is similar to RisingA or
RisingM
e High similar to RisingA
e Low similar to RisingM

8-18 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 8: Scanning

Trigger mode | Output Input Notes
Unasserted | Asserted Detects
Rising A High Low Rising
RisingM Low High None
Synchronous High Low Falling e Behaves similar to
. SynchronousA
latching i o
e Trigger overrun detection is
disabled
e To mirror the SynchronousA
trigger mode, set the pulse
duration to 1ps or any small
nonzero value
SynchronousA | High High Falling Ignores the pulse duration
latching
SynchronousM | High Low Rising

Each trigger mode controls the input trigger detection and output trigger
generation. The input detector monitors for and detects all edges, even if the

node that generates the output trigger causes the edge.

A trigger overrun generates if an input trigger is received before the previous
input trigger processes. To determine if a trigger overrun has occurred,

reference the trigger overrun attributes.

For additional information on the hardware trigger modes, see Instrument
Control Library (ICL) (on page 12-1).

NOTE To have direct control of the line state, use the Bypass trigger mode.

3700S-901-01 Rev. C / July 2008

8-19

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

Falling edge trigger mode

The falling edge trigger mode generates low pulses and detects all falling edges.
The following graphic illustrates the characteristics for the falling edge input
trigger.

Figure 8-3: Falling edge input trigger

External Dirive

Intemal Drive

Physical Line State
Ewent | H

Ingnat Trigzer

Input characteristics:
Detects all falling edges as input triggers

Figure 8-4: Falling edge output trigger

Extetnal Drive L
Intemal Drive 1] L
Physical Line State i [

P .

v

FPulse Duration

Ouatpat Trigger

8-20 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

Output characteristics:

The trigger.assert command generates a low pulse for the programmed
pulse duration.

Rising edge master trigger mode (version 1.4.0 or higher)

Use the rising edge master trigger mode (RisingM) to synchronize with
non-Keithley Instruments that require a high pulse. Input trigger detection is not
available in this trigger mode. You can use the RisingM trigger mode to generate
rising edge pulses.

NOTE The RisingM trigger mode does not function properly if the line is
driven low by an external drive.

Figure 8-5: RisingM output trigger

External Drive

Intemal Drive _J ‘_ .
FPhysical Line State ,J I_,_ S

Ewvent

e S

—
Pulse Duration

Dutput Trigger

Output characteristics:

The trigger.assert command causes the physical line state to float high
during the trigger pulse duration.

3700S-901-01 Rev. C / July 2008

8-21

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

Rising edge acceptor trigger mode (version 1.4.0 or
higher)
The rising edge acceptor trigger mode (RisingA) generates a low pulse and
detects rising edge pulses. The following graphic displays the RisingA input
trigger.

Figure 8-6: RisingA input trigger

External Dirive

’_
Intemal Drive
Physical Line State

I

Esrent

Iyt Trigger

Input characteristics:
All rising edges generate an input event.

Figure 8-7: RisingA output trigger

External Diive

Intemal Drive

Physical Line State

P

Event

i

e ——
Pulse Duration

Cutput Trigget

8-22 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

Output characteristics:

The trigger.assert command generates a low pulse that is similar to the
falling edge trigger mode.

Either edge trigger mode

The either edge trigger mode generates a low pulse and detects both rising and
falling edges.

Figure 8-8: Either edge input trigger

External Drive

Intemal Dirive

Phyysical Line State - “
Event _ J— l H

Itpnat Trigzer

3700S-901-01 Rev. C / July 2008 8-23

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

Input characteristics:
All rising or falling edges generate an input trigger event

Figure 8-9: Either edge output trigger

External Drive

Intemal Drive T [_
Phyical LinnSiats: | | BB
Brac | M ni

=

FPulse Duration

Cuatpat Trigger

Output characteristics:

The trigger.assert command generates a low pulse that is similar to the
falling edge trigger mode.

Understanding synchronous triggering modes

Use the synchronous triggering modes to implement bidirectional triggering, to
wait for one node, or to wait for a collection of nodes to complete all triggered
actions.

All non-Keithley instrumentation must have a trigger mode that functions similar
to the SynchronousA or SynchronousM trigger modes.

To use synchronous triggering, configure the triggering master to the
SynchronousM trigger mode or the non-Keithley equivalent. Configure all other
nodes in the test system to SynchronousA trigger mode or a non-Keithley
equivalent.

8-24 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

Synchronous master trigger mode

Use the synchronous master trigger mode (SynchronousM) to generate falling
edge output triggers, to detect the rising edge input triggers, and to initiate an
action on one or more external nodes with the same trigger line.

In this mode, the output trigger consists of a low pulse. All nhon-Keithley
instruments attached to the synchronization line in a trigger mode equivalent to
SynchronousA must latch the line low during the pulse duration.

To use the SynchronousM trigger mode, configure the triggering master as
SynchronousM and then configure all other nodes in the test system as
Synchronous, SynchronousA, or to the non-Keithley equivalent.

NOTE Use the SynchronousM trigger mode to receive notification when the
triggered action on all nodes is complete.

Figure 8-10: SynchronousM input trigger

External Drive |

Intemal Dirive

Physical Line State lil —[—.‘,-
Event l_l ﬂ |

Inpuat Trigger

3700S-901-01 Rev. C / July 2008 8-25

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

Input characteristics:

e Allrising edges are input triggers.

e When all external drives release the physical line, the rising edge is detected

as an input trigger.

e Arising edge cannot be detected until all external drives release the line and

the line floats high.

Figure 8-11: SynchronousM output trigger

External Drive e

Intemal Dirive

Phyysical Line State

Event

- ——

i
[
[

R
FPulse Duration

Output Trigger

Output characteristics:

The trigger.assert command generates a low pulse that is similar to the

Falling Edge trigger mode

8-26

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 8: Scanning

Synchronous acceptor trigger mode

Use the synchronous acceptor trigger mode (SynchronousA) in conjunction with
the SynchronousM trigger mode. The role of the internal and external drives are

reversed in the SynchronousA trigger mode.

Figure 8-12: SynchronousA input trigger

External Drive el]
Intemal Dirive - ;

Physical Line State
Ewent |_|

Ingnat Trigger

Input characteristics:

The falling edge is detected as the external drive pulses the line low, and the

internal drive latches the line low

Figure 8-13: SynchronousA output trigger

External Ditive !

Intemal Dirive _l
Physical Line State [;

Eswrent

Dutpnat Trigger

Output characteristics:

e The trigger.assert command releases the line if the line is latched low.

e The physical line state does not change until all drives (internal and

external) release the line.

3700S-901-01 Rev. C / July 2008

8-27

Section 8: Scanning Series 3700 System Switch/Multimeter Reference Manual

Synchronous trigger mode

The synchronous trigger mode is a combination of SynchronousA and
SynchronousM trigger modes. Use the synchronous trigger mode for backwards
firmware compatibility.

The SynchronousA and SynchronousM trigger modes provide additional
flexibility. It is recommended that you use SynchronousA and SynchronousM for
firmware v1.4.0 or higher, and use the synchronous trigger mode for firmware
prior to v1.4.0.

Figure 8-14: Synchronous input trigger

External Drive u

Intemal Dirive k ; |
Phyysical Line State
Event ./

Inpuat Trigger

8-28 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 8: Scanning

Input characteristics:
The falling edge generates an input event and latches the internal drive low.

Figure 8-15: Synchronous output trigger

External Dirive

Intemal Dirive

[]
Physical Line State ﬁ
[

Eswrent

e o

% —_—
Pulse Thraton Pulse Dhpation
Output Triggers

Output characteristics:

e The trigger.assert command generates a low pulse for the
programmed pulse duration If the line is latched low, a falling edge does not
occur.

e Whenthe trigger.assert command is issued and the line is latched
low, the pulse duration is enforced, and then the internal line drive is
released.

e A normal falling edge pulse generates when the internal drive is not latched
low and the trigger.assert command is issued.

3700S-901-01 Rev. C / July 2008 8-29

Section 9

Files

In this section:

File fOrmatscoooiiiiiiieee e 9-1
Default file eXteNSIONSoovvviieieieeieee e 9-1
File system navigation...........c.cccoveieiiiieeeiiiie e 9-2
FIle 1O o 9-3
SCript @XamPIES ..oooiiiieee e 9-4
Command table entrieScccoeevveveviiiiieeeeeccee e, 9-9

File formats

Each script, reading buffer, and saved setup is represented on a flash drive as a
separate file.

Directories on a flash drive used with the Series 3700 can only contain a limited
number of files. The top-level directory is limited to approximately 150 files, while
subdirectories are limited to approximately 500 files. Once the limit has been
reached, a "file system full" error message is generated.

Default file extensions

You must specify the full filename, including the extension, when sending
commands. Note, however, that the front panel automatically generates a
generic filename that you can use as a base for naming your files. Also, some
commands (for example, io.open (on page 9-13)) will work with either a
relative or absolute path to the current working directory.

The Series 3700 has the following set of default extensions:

e .tsp (Test Script Processor for scripts
e .csv (Comma Separated Values) for reading buffers
e .set for saved setups

Section 9: Files Series 3700 System Switch/Multimeter Reference Manual

File system navigation

The Lua FS library provides the command set necessary to navigate the file
system and list the available files on a flash drive. The instrument encapsulates
this command set as an f£s logical instrument, so that the file system of any
given node is available to the entire TSP-Link™ system. For example, the
command node [5] . fs.readdir (".") can be used to read the contents of
the current working directory on Node 5.

To allow for future enhancements, the root folder of the USB memory stick has
the absolute path "/usbl1/".

NOTE Both slash (/) and backslash (\) are supported as directory separators,
but because backslash is an escape character in Lua, it appears as a
double backslash in this context.

The following Lua FS commands, which support basic navigation and directory
listing, are included for your reference.

e fs.chdir () (on page 9-9)

e fs.cwd() (on page 9-9)

e fs.is dir () (on page 9-9)
e fs.is file() (on page 9-9)
e fs.mkdir () (on page 9-9)

e fs.readdir () (on page 9-9)
e fs.rmdir () (on page 9-10)

The following Lua FS commands are not supported at this time:

e fs.chmod
e fs.chown

e fs.stat

9-2 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 9: Files

File 1/10

Lua supports file /0 with its io library commands. A subset of these commands
is supported for use with Series 3700 instruments. As with Lua FS, these
commands are encapsulated as an io logical instrument so that the files on any
given node are accessible to the entire TSP-Link™ system.

Lua organizes its file /O commands into two groups:

e Commands that reside in the io table, for example: io.open, io.close,
io.input, and io.output. These commands are responsible for opening
and closing file descriptors and performing basic I/O operations on a pair of
default files, one input and one output.

e Commands that reside in the file descriptors themselves, for example:
file:seek, file:write, and file:read. These commands operate
exclusively on the file with which they are associated.

NOTE File descriptor commands for file I/O use a colon (;) to separate the
command parts rather than a period (.) like the io commands.

A file descriptor (similar to a reading buffer) can only be used with the logical
instrument that created it. Therefore, file descriptors cannot be passed between
nodes in a TSP-Link system.

The default input and output files mentioned above allow for the execution of
many file I/O operations without any reference to a file descriptor. Remote
access to the io.open command is not allowed.

The following Lua I/O commands, which support basic file I/O, are included for
your reference:

e file:close () (on page 9-10)
e file:flush() (on page 9-10)
e file:read() (on page 9-10)
e file:seek() (on page 9-11)
e file:write() (on page 9-11)
e io.close() (onpage 9-12)

e io.flush() (on page 9-12)

e io:input () (on page 9-12)

e io:open() (onpage 9-13)

e io:output () (on page 9-13)
e io:read() (on page 9-13)

e io:write() (on page 9-14)

3700S-901-01 Rev. C / July 2008 9-3

Section 9: Files Series 3700 System Switch/Multimeter Reference Manual

e io.type (on page 9-14) (supported on the local node only when the Series
3700 is a master)

The following standard I/O commands are not supported at this time:

e file:lines

e file:setvbuf
e io.lines

e io.popen

e dio.tmpfile

Script examples

The following script will open three different files to help illustrate the differences
between the io commands and file descriptor commands. After opening the
files, the script designates each one as the default output file (using the
io.output command). While each file is the default for file writes (using the
io.write command), the script also uses the file descriptor from the io.open
to write to the file (file:write command).

After all files are closed (using the io.close command), the script will open the
files again for reading. Two files are read by:

e Designating the file the default input file (using the io.input command)

e Being the default read contents of file (using the io.read command)

The third file is read by using the file descriptor from the open (file:read

command). After reading all files, they are closed using the file descriptor and
close option (file:close command).

9-4 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 9: Files

loadscript file io test

-- get the current date and time
date time = os.date('3c', os.time())

-- open the three files for writing
myfilel, myfilel err, myfilel errnum =
io.open('/usbl/myfile iol', 'w')
myfile2, myfile2 err, myfile2 errnum =
io.open('/usbl/myfile io2', 'w')
myfile3, myfile3 err, myfile3 errnum =
io.open('/usbl/myfile io3', 'w')

if (io.type (myfilel) == "file') then
if (io.type(myfile2) == 'file') then
if (io.type(myfile3) == 'file') then

-- make myfilel the default output file
io.output (myfilel)
-—- write some data to the default file

io.write('Using io write to myfilel to io output\n')

io.write(date time)
io.write('\n")

-- now write to myfile2 using descriptor rather than

io write command

myfile2:write (' file handle to write to
myfile2\n')

myfile2:write (' while myfilel is output file for
io\n")

-- make myfile2 the default output file
io.output (myfile2)
-- write some data to the default file

io.write('Using io write to myfile2 to io output\n')

io.write(date time)
io.write('\n")

-- now write to myfile3 using descriptor rather than

io write command

myfile3:write (' file handle to write to
myfile3\n')

myfile3:write (' while myfile2 is output file for
io\n"')

-- make myfile3 the default output file
io.output (myfile3)
-- write some data to the default file

io.write('Using io write to myfile3 to io output\n')

io.write (date time)

io.write('\n"'")

-- now write to myfilel using descriptor rather than

io write command

myfilel:write (' file handle to write to
myfilel\n'")

myfilel:write (' while myfile3 is output file for
io\n"')

-- use the io close rather than file descriptor
close command

io.close (myfilel)

io.close (myfile2)

io.close (myfile3)

else

print ('myfile3 did not open for write')
print ('error string is ' .. myfile3 err)

3700S-901-01 Rev. C / July 2008

9-5

Section 9: Files Series 3700 System Switch/Multimeter Reference Manual

print ('error number is myfile3 errnum)

end
else
print ('myfile2 did not open for write')
print ('error string is ' .. myfile2 err)
print ('error number is ' .. myfileZ errnum)
end
else
print ('myfilel did not open for write')
print ('error string is ' .. myfilel err)
print ('error number is ' .. myfilel errnum)
end

-- open the 3 files again for reading
myfilel, myfilel err, myfilel errnum =
io.open('/usbl/myfile iol', 'r'")
myfile2, myfile2 err, myfile2 errnum =

io.open('/usbl/myfile io2', 'r')
myfile3, myfile3 err, myfile3 errnum
io.open('/usbl/myfile io3', 'r')

if (io.type(myfilel) == "file') then
if (io.type(myfile2) == 'file') then
if (io.type(myfile3) == 'file') then

-- make myfilel the default input file

io.input (myfilel)

-- read the default file

filecontents = io.read('*a')

print ('contents of myfilel are:')

print (filecontents)

print ()

-- make myfile2 the default input file

io.input (myfile2)

-- read the default file

filecontents = io.read('*a')

print ('contents of myfile2 are:')

print (filecontents)

print ()

-- read myfile3 using file descriptor instead of io
read

filecontents = myfile3:read('*a')

print ('contents of myfile3 are:')

print (filecontents)

print ()

-- use file descriptor close command rather than io
close

myfilel:close()

myfile2:close ()

myfile3:close ()

else
print ('myfile3 did not open for read')
print ('error string is ' .. myfile3 err)
print ('error number is ' .. myfile3 errnum)
end
else

print ('myfile2 did not open for read')

9-6 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 9: Files

print ('error string is ' .. myfile2 err)
print ('error number is ' .. myfile2 errnum)
end
else

print ('myfilel did not open for read')
print ('error string is ' myfilel err)
print ('error number is ' myfilel errnum)

end
endscript

After downloading the above script, type file io test () to execute the
script:

file io test()
The following output is returned after executing the file io test () script:

contents of myfilel are:
Using io write to myfilel to io output
11/27/07 07:57:23

file handle to write to myfilel
while myfile3 is output file for io

contents of myfile2 are:
file handle to write to myfile2
while myfilel is output file for io

Using io write to myfile2 to io output
11/27/07 07:57:23

contents of myfile3 are:

file handle to write to myfile3
while myfile2 is output file for io

Using io write to myfile3 to io output
11/27/07 07:57:23

The following script will open a file called myfiletest three times. The first
time it is opened is for writing. Note that opening an existing file for writing
deletes any existing information in the file. The second time it is opened is for
appending more data to the existing data in the file. Opening a file for append
will not delete any existing data; it only adds data to the end of the existing file
contents. The third time the file is opened is for reading the entire contents of the
file (existing data and appended data).

3700S-901-01 Rev. C / July 2008 9-7

Section 9: Files

Series 3700 System Switch/Multimeter Reference Manual

loadscript filetest

script to write 2 lines to a file
append 2 lines to the same file
read the entire file contents and print them

open the file for writing
myfile = io.open('/usbl/myfiletest', 'w')
if io.type(myfile) == 'file' then
myfile:write ('This is my first line WRITING\n')

myfile:write('This is my next line WRITING\n')
myfile:close ()

-- open the file for appending
myfile = io.open('/usbl/myfiletest', 'a')
if io.type(myfile) == 'file' then

myfile:write ('This is my first APPEND line\n')
myfile:write ('This is my next APPEND line\n')
myfile:close()

-- open the file for reading
myfile = io.open('/usbl/myfiletest', 'r'")
if io.type(myfile) == 'file' then

filecontents = myfile:read('*a')
print ('the file contains:')
print ()

print (filecontents)
myfile:close ()

else

print ('The file did not open correctly for reading')

end

else

print ('The file did not open correctly for appending')

end

el

se

print ('The file did not open correctly for writing')

en

d

endscript

After downloading the above script, type filetest () to execute the script.
Here are the output results:

the file contains:

This
This
This
This

is
is
is
is

my first line WRITING
my next line WRITING
my first APPEND line
my next APPEND line

9-8

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 9: Files

Command table entries

fs.chdir()
Function Sets the current working directory.
Usage fs.chdir (path)
path: The new working directory path (absolute or relative).
Remarks An error is logged to the error queue if the given path does not exist.
fs.cwd()
Function Returns the absolute path of the current working directory.
Usage path = fs.cwd()
path: The absolute path of the current working directory.
fs.is_dir()
Function Tests whether the specified path refers to a directory.
Usage status = fs.is dir(path)
status: True if the given path is a directory; otherwise, false.
path: The file system entry path (absolute or relative) to test.
Remarks An error is logged to the error queue if the given path does not exist.
fs.is_file()
Function Tests whether the specified path refers to a file (as opposed to a directory).
Usage status = fs.is file(path)
status: True if the given path is a file; otherwise, false.
path: The path of the file system entry to test. This path may be absolute or relative to
the current working directory.
Remarks An error is logged to the error queue if the given path does not exist.
fs.mkdir()
Function Creates a directory at the specified path.
Usage fs.mkdir (path)
path: The path of the new directory. This path may be absolute or relative to the
current working directory.
Remarks An error is logged to the error queue if the parent folder of the new directory does not

exist, or if a file system entry already exists at the given path.

3700S-901-01 Rev. C / July 2008

Section 9: Files

Series 3700 System Switch/Multimeter Reference Manual

fs.readdir()

Function

Returns a list of all the file system entries within a specified directory.

Usage

files = fs.readdir (path)

files: A list containing the names of all the file system entries that reside in the
specified directory.

path: The directory path. This path may be absolute or relative to the current working
directory.

Remarks

This command is non-recursive (that is, entries in subfolders are not returned). An
error is logged to the error queue if the given path does not exist, or does not
represent a directory.

fs.rmdir()

Function

Removes a directory from the file system.

Usage

fs.rmdir (path)

path: The path of the directory to remove. This path may be absolute or relative to the
current working directory.

Remarks

An error is logged to the error queue if the given path does not exist, does not
represent a directory, or if the directory is not empty.

file:close()

Function

Closes a file after flushing any data that was written to it with io.write () (on page
9-14)or file:write () (on page 9-11).

Usage

file:close()

file: The descriptor of the file to close.

Remarks

This command is equivalentto io.close (file). Itis not remotely accessible.

file:flush()

Function

Flush the buffered data for the specified file

Usage

file:flush ()

file: The descriptor of the file to flush

Remarks

Use this command to flush data writtento itby file:write () (on page 9-11) or
io.write () (on page 9-14). Using this function removes the need to close a file
after writing to it and allows it to be left open to write more data. Data may be lost if the
file is not closed or flushed before an application ends. To prevent the loss of data if
there is going to be a time delay before more data is written when you want to keep file
open and not close it, flush the file after writing to it.

9-10

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 9: Files

file:read()

Function

Reads data from a file.

Usage

data = file:read(format)

data: The data read from the file. The number of return values matches the number of
values in format.

file: The descriptor of the file to read.

format: A string or number indicating the type of data to be read. Any number of
format parameters may be passed to this command, each corresponding to a returned
data value. The format attribute is optional; the default is "*I".

Remarks

The format parameters may be any of the following:
"*n": Return a number.

"*a": Return the whole file, starting at the current position; return the empty string at
the end of the file.

"*": Return the next line, skipping the end of line; return ni1l at the end of file.

n: Return a string with up to n characters; return an empty string if n is zero; return
nil atthe end of file.

Any error encountered is logged to the error queue.

This command is not remotely accessible.

file:seek()

Function

Sets and gets a file's current position.

Usage

position = file:seek(whence, offset)
position: The new file position, measured in bytes from the beginning of the file.
file: The descriptor of the file.

whence: A string indicating the base against which offset is applied. The whence
attribute is optional; the default is "cur".

offset: The intended new position, measured in bytes from a base indicated by
whence. Optional, default is 0.

Remarks

The whence parameters may be any of the following:

set": Beginning of file.
"cur": Current position.
"end": End of file.

If an error is encountered, it is logged to the error queue, and the command returns
nil and the error string.

This command is not remotely accessible.

3700S-901-01 Rev. C / July 2008

9-11

Section 9: Files

Series 3700 System Switch/Multimeter Reference Manual

file:write()

Function

Buffer data until a flush (file:flush () (on page 9-10) or io.flush{()
(on page 9-12)) or close (file:close () (onpage 9-10) or io.close () (on
page 9-12)) operation is performed.

NOTE Data may be lost if the file is not flushed or closed before the application
ends. A write function buffers the data until a flush or close operation is
requested.

Usage

file:write (data)
file: The descriptor of the file.

data: The data to write to the file. An arbitrary number of data values may be passed
to this command. All parameters must be either strings or numbers.

Remarks

Any error encountered is logged to the error queue.

This command is not remotely accessible.

io.close()

Function

Closes the specified file.

Usage

io.close(file)

file: A file descriptor to flush and close

Remarks

This command is equivalent to file:close() (on page 9-10).

io.flush()

Function

Flush the buffered data for the current output file.

Usage

io.flush ()

Remarks

Use this command to flush data written to the current default file by file:write ()
(on page 9-11) or io.write () (on page 9-14). Using this command removes the
need to close a file after writing to it and allows it to be left open to write more data.
Data may be lost if the file is not closed or flushed before an application ends. To
prevent the loss of data if there is going to be a time delay before more data is written
when you want to keep file open and not close it, flush the file after writing to it.

io.input()

Function

Assigns a previously opened file, or opens a new file, as the default input file.

Usage

io.input (filein)
fileout = io.input()

filein: A file descriptor to assign or the path of a file to open as the default input file.
The path may be absolute or relative to the current working directory. This parameter
is optional; if absent, the command returns the absolute path to the current default
input file (fileout).

fileout: The absolute path to the default input file.

9-12

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 9: Files

io.input()

Remarks

Any error encountered is logged to the error queue.

The remotely-accessible version of this command does not accept a file descriptor
parameter.

io.open()

Function

Opens a file for later access.

Usage

file, err, errnum = io.open(path, mode)
file: The descriptor of the opened file.

err: A string with an error message an error occurred.
errnum: Number representing the error number.

path: The path of the file to open. This path may be absolute or relative to the current
working directory.

mode: A string representing the intended access mode. The mode attribute is
optional; the default is "r".

Remarks

The mode string can be any of the standard C language fopen modes, including:
"r": Read mode.

"w": Write mode.

"a": Append mode.

If an error is encountered, it is logged to the error queue, and the command returns
nil and the error string.

This command is not remotely accessible.

io.output()

Function

Assigns a previously opened file or opens a new file as the default output file.

Usage

io.output (filein)
fileout = io.output/()

filein: A file descriptor to assign, or the path of a file to open, as the default output file.
The path may be absolute or relative to the current working directory. This parameter
is optional; if absent, the command returns the absolute path to the current default
output file (fileout).

fileout: The absolute path to the default output file.

Remarks

Any error encountered is logged to the error queue.

The remotely-accessible version of this command does not accept a file descriptor
parameter.

3700S-901-01 Rev. C / July 2008

9-13

Section 9: Files

Series 3700 System Switch/Multimeter Reference Manual

io.read()

Function

Reads data from the default input file.

Usage

data = io.read(format)

data: The data read from the file. The number of return values matches the number of
values in format.

format: A string or number indicating the type of data to be read. Any number of
format parameters may be passed to this command, each corresponding to a returned
data value. Optional; default is "*I".

Remarks

The format parameters may be any of the following:
"*n": Return a number.

"*a": Return the whole file, starting at the current position; return an empty string at the
end of file.

"*": Return the next line, skipping the end of line; return ni1l at the end of file.

n: Return a string with up to n characters; return an empty string if n is zero; return
nil atthe end of file.

Any error encountered is logged to the error queue.

io.type()

Function

Checks whether ob7j is a valid file handle.

Usage

io.type (obj)

Remarks

Returns "file" if ob7j is an open file handle, "closed file" if ob] is a closed file handle,
and nil if ob7j is not a file handle.

io.write()

Function

Buffer data until a flush (file:flush () (on page 9-10) or io.flush{()
(on page 9-12)) or close (file:close () (on page 9-10) or io.close () (on
page 9-12)) operation is performed.

NOTE Data may be lost if the file is not flushed or closed before the application
ends. A write buffers the data until a flush or close operation is requested.

Usage

io.write (data)

data: The data to write to the file. An arbitrary number of data values may be passed
to this command. All parameters must be either strings or numbers.

Remarks

Any error encountered is logged to the error queue.

9-14

3700S-901-01 Rev. C/ July 2008

Section 10

TSP-Net

In this section:

OVEIVIEW ...ttt e 10-1
TSP-NetTM Capabilities..........cocvveiiiiiiiiicece e 10-1
Using TSP-NetTM with any Ethernet-enabled device 10-2
Using TSP-NetTM vs. TSP-LinkTM for communication with

TSP-enabled deviCes..........ceviiiiiiiiiaeieeee e 10-4
Instrument Control Library (ICL) - General device control10-5
Instrument Control Library - TSP-specific device control10-12

Overview

TSP-Net™ allows the Series 3700 to control Ethernet-enabled devices directly
through its LAN port. This enables the Series 3700 to communicate directly with
a non-TSP™-enabled device without the use of a controlling computer.

TSP-NetTM Capabilities

For both TSP™ and non-TSP devices, the TSP-Net library permits the Series
3700 to control a remote device through the LAN port. Using TSP-Net methods,
you can transfer string data to and from a remote device, transfer and format
data into Lua variables, and clear input buffers. TSP-Net is only accessible using
ICL commands from a remote command interface and is not available from the
front panel.

You can use TSP-Net to communicate with any Ethernet-enabled device.
However, specific TSP-Net commands exist for TSP-enabled devices to allow
for support of features unique to TSP. These features include script downloads,
reading buffer access, wait completion, and handling of TSP prompts.

Using TSP-Net with TSP-enabled instruments, a Series 3700 can download a
script to another TSP-enabled device and have both devices run scripts
independently. The Series 3700 can read the data from the remote device and
either manipulate the data or send the data to a different remote device on the
LAN. You can simultaneously connect to a maximum of 32 devices using
standard TCP/IP networking techniques through the LAN port of the Series
3700.

Section 10: TSP-Net Series 3700 System Switch/Multimeter Reference Manual

Using TSP-NetTM with any Ethernet-enabled device

NOTE Refer to the Instrument Control Library (ICL) (on page 12-1) for more
details on the commands presented in this section.

To communicate to a remote Ethernet-enabled device from the Series 3700,
perform the following steps:

1. Connect to the remote device through the LAN port.

Use an Ethernet crossover cable to connect directly from the Series 3700 to
an Ethernet-enabled device.

Use a straight-through Ethernet cable and a hub to connect the Series 3700
to any other device on the LAN.

2. Establish a new connection to a remote device at a specific IP address
using tspnet.connect () (on page 10-5). For non-TSP™-enabled
devices, you must also provide the port number, or the Series 3700
assumes the remote device to be TSP-capable and enables TSP prompts
and error handling.

If the Series 3700 is not able to make a connection to the remote device, it
generates a timeout error. Use tsp.timeout to set the timeout value. The
default timeout value is 20 seconds.

NOTE Set tspnet.tsp.abortonconnect (on page 10-14) to TRUE
to abort any script currently running on a remote TSP device.

3. Use tspnet.write () (on page 10-7) or tspnet.execute () (on page
10-6) to send strings to a remote device. Using tspnet.write () sends
strings to the device exactly as indicated, and you must supply any needed
termination characters or other lines. Use tspnet.termination () (on
page 10-11) to specify the termination character. If you use
tspnet.execute () (on page 10-6) instead, the Series 3700 appends
termination characters to all strings sent to the command.

4. Retrieve responses from the remote device using tspnet.read () (on
page 10-8). The Series 3700 suspends operation until data is available or a
timeout error is generated. You can check if data is available from the
remote device using tspnet.readavailable () (on page 10-9).

Disconnect from the remote device using tspnet.disconnect () (on page
10-10). Terminate all remote connections using tspnet.reset () (on page 10-
10).

10-2

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 10: TSP-Net

Example script

The following example demonstrates how to connect to a remote non-TSP™-
enabled device, and send and receive data from this device:

-- Disconnect all existing TSP-Net™ connections.
tspnet.reset ()

-- Set tspnet timeout to 5 seconds.
tspnet.timeout = 5

-— Establish connection to another device with IP address
192.168.1.51 at port 1394.

id instr = tspnet.connect("192.168.1.51",1394, "*rst\r\n")

-- Print the device ID from connect string.
print ("ID is: ", 1id instr)

-- Set termination character to CRLF. You must do this on a
per connection basis after connection has been made.

tspnet.termination(id instr, tspnet.TERM CRLF)

-- Send the command string to the connected device
tspnet.write(id instr,"*idn?" .. "\r\n")

-- Read the data available, then prints it.

print ("instrument write/read returns:: " ,
tspnet.read(id instr))

-—- Disconnect all existing TSP-Net sessions.
tspnet.reset ()

3700S-901-01 Rev. C / July 2008 10-3

Section 10: TSP-Net Series 3700 System Switch/Multimeter Reference Manual

Using TSP-NetTM vs. TSP-LinkTM for communication
with TSP-enabled devices

TSP-Link is the preferred communication method when communicating between
the Series 3700 and another TSP™-enabled instrument. Using TSP-Link has
certain advantages over using TSP-Net, including:

e Error checking: When connected to a TSP-enabled device, all errors that
occur on the remote device are transferred to the error queue of the Series
3700. The Series 3700 indicates errors from the remote device by prefacing
these errors with “Remote Error”.

For example, if the remote device generates error number 4909, the Series
3700 generates the error string “Remote Error: (4909) Reading buffer not
found within device.”

e Digital I/O Triggering: TSP-Link connections have three TSP
synchronization lines that are available to each device on the TSP-Link
network. You can use any one of the TSP synchronization lines to perform
hardware triggering between devices on the TSP-Link network. Refer to
Hardware trigger modes (on page 8-18) for more details.

These advantages make using TSP-Link to control another TSP-enabled device
the best choice for most applications. However, if the distance between the
Series 3700 and the TSP-enabled device is longer than 15 feet, use TSP-Net.

To establish a remote TSP-Net connection with a TSP-enabled device, use
tsp.connect () without specifying a port number. The Series 3700 enables
TSP prompt and error handling for the remote device, which allows you to
successfully use the tspnet. tsp set of commands to load and run scripts and
retrieve reading buffers.

Abort any operation on the remote TSP-enabled device using abort ().

10-4

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 10: TSP-Net

Instrument Control Library (ICL) - General device

control

tspnet.connect()

Function

Device connection.

Usage

To connect to any remote device on the LAN:

<connection id> = tspnet.connect ([<ip address>, [<port
number>, <initialize string>]1])

To connect to a TSP-enabled remote device on the LAN:

<connection id> = tspnet.connect ([<ip address>,
[<password>])

connection id: Integer value used as a handle for other t spnet commands
ip address: String variable for passing the IP address
port number: Optional integer value of the port number

initialize string: String type for the initialization string to send

Remarks

This command connects a device to another device by way of the LAN interface (using
the optionally-specified port number). The default port number is 5025. If the port
number is 23, the interface will use the Telnet protocol (and set appropriate
termination characters) to communicate with the device.

If a port number and initialization string are provided, the remote device is assumed to
be non-TSP-enabled. The Series 3700 does not perform any extra processing, prompt
handling, error handling, or sending of commands. Additionally, the tspnet.tsp
commands do not apply for use on this this remote device.

If no port number and initialization string is provided, the remote device is assumed to
be a Keithley Instruments TSP-enabled device. Depending on the state of
tspnet.tsp.abortonconnect (on page 10-14), the Series 3700 sends an
abort () to the remote device upon connection. The Series 3700 also enables TSP
prompts on the remote device and error management. The Series 3700 places remote
errors from the TSP-enabled device in its own error queue and prefaces these errors
with "Remote Error", followed by an error description. Do not manually change either
the prompt functionality (Localnode.prompts) or show errors functionality
(Localnode.showerrors) on the remote TSP-enabled device, or subsequent
tspnet.tsp.* commands using the connection may fail.

You can simultaneous connect to a maximum of 32 remote devices.
Errors:
e Connection Failed

e Connection Failed, Timeout
e Invalid IP Address or Port Number

3700S-901-01 Rev. C / July 2008

10-5

Section 10: TSP-Net

Series 3700 System Switch/Multimeter Reference Manual

tspnet.connect()

Example

To connect to a TSP-enabled device:

mytspdevice = tspnet.connect('10.80.64.216")

To connect to a non-TSP-enabled device:

mydevice = tspnet.connect("192.168.1.51",1394, "*rst\r\n")

tspnet.idn()

Function

Retrieves response of remote device to *IDN?'

Usage

<idn string> = tspnet.idn (<connection id>)
idn_string: Response as a string type

connection id: Integer value used as a handle for other t spnet commands

Remarks

Sends the '*idn? "' string to the remote device and retrieves its response.

Errors:

e Invalid Specified Connection
e Connection Not Available

e Connection Failed, Aborted
¢ \Write Failed, Timeout

o Write Failed

¢ Read Failed, Timeout

e Read Failed

¢ Read Failed, Aborted

Example

Retrieve and print response of 'IDN?* from the remote device:
print (tspnet.idn (mydevice))
KEITHLEY INSTRUMENTS INC.,MODEL 3706,34345656,01.02a

tspnet.execute()

Function

Executes a command string on the remote device.

Usage

[variable =] tspnet.execute (<connection id>, <command
string>, [<format string>])

connection id: Integer value used as a handle for other t spnet commands
command string: Command to send to instrument.

format string: Definition of format string for the input field using zeros (0), the decimal
point (.), the polarity sign (+), and 'E' for exponent.

10-6

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 10: TSP-Net

tspnet.execute()

Remarks This command sends the command string to the connection device. A termination is
added to the command string when it is sent to the device (see
tspnet.termination () (on page 10-11)). Optionally, when a format string is
specified, the command waits for a string from the device. The Series 3700 decodes
the output string according to the format specified in the format string and returns this
output string as arguments from the function (see tspnet.read () (on page 10-8)
for format specifiers).
When this command is sent to a TSP-enabled device, the Series 3700 suspends
operation until a timeout error is generated or until the device responds, even if no
format string is specified. The TSP prompt from the remote device is read and thrown
away. The Series 3700 places any remotely-generated errors into its error queue.
When the optional format string is not specified, this command is equivalent to
tspnet.write () (on page 10-7), except that a termination is automatically added
to the end of the line.
Errors:
e Invalid Specified Connection
e Write Failed, Timeout
e Write Failed
e Read Failed, Timeout
¢ Read Failed, Aborted
e Read Failed
e Remote Error, <remote error generated by command>

Example Command remote device to run script named ‘runmyscript()":

tspnet.execute (mydevice, 'runmyscript()')
Command remote device to execute a *idn?:
tspnet.termination (mydevice, tspnet.TERM CRLF)
tspnet.execute (mydevice, ‘*idn?’)

print ("instrument write/read returns:: " ,
tspnet.read(id _instr))

tspnet.write()

Function

Write strings to remote device.

Usage

tspnet.write (<connection id>, <input string>)
connection id: Integer value used as a handle for other t spnet commands

input string: String type used for writing to the remote instrument

3700S-901-01 Rev. C / July 2008

10-7

Section 10: TSP-Net Series 3700 System Switch/Multimeter Reference Manual

tspnet.write()

Remarks The tspnet.write() command sends the command string to the connection device. It
does not wait for command completion on the remote device.

The Series 3700 sends the input string to the remote device exactly as indicated. The
input string must contain any necessary new lines, termination, or other indicators.

Errors:

e Invalid Specified Connection
e Write Failed, Timeout

o Write Failed

Example Command remote device to run script named ' runmyscript':
tspnet.write (mydevice, 'runmyscript()\n')
Send a *idn? to a remote device:

tspnet.write(id instr,"*idn?" .. "\r\n")

or

tspnet.write(id instr,"*idn?\r\n")

tspnet.read()

Function Reads data from remote device.
Usage [variable =] tspnet.read(<connection id>, [<format
string>])

connection id: Integer value used as a handle for other t spnet commands

format string: Definition of format string for the input field using zeros (0), the decimal
point (.), the polarity sign (+), and 'E' for exponent.

10-8 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 10: TSP-Net

tspnet.read()

Remarks

This command reads available data from the device (as indicated by the format string)
and returns the number of arguments (as indicated by the format string).

The format string can contain the following identifiers:

% [width]s Read data until the specific length

% [max width]t Read data until the specific length or delimitated by
punctuation

% [max width]n Read data until a newline and/or carriage return

sd Read a number (delimitated by punctuation)

If no format is specified, the command returns a string containing the data until a new
line is reached. If no data is available, the Series 3700 will hold off operation until the
requested data is available or until a timeout error is generated. Use
tspnet.timeout to specify the timeout period.

A maximum of 10 specifiers are allowed in a format string.

When reading from a TSP-enabled remote device, the Series 3700 removes TSP
prompts and places any errors received from the remote device into its own error
gueue. The Series 3700 prefaces errors from the remote device with "Remote Error,"
and followed by with the error number and error description.

Errors:

e Invalid Specified Connection
¢ Read Failed, Timeout

e Read Failed, Aborted

e Read Failed

e Remote Error, <remote error generated by command>

Example

Send “*idn?” to remote device:
tspnet.write(id instr,"*idn?\r\n")

Read and print response from remote device:

print ("instrument write/read returns:: " ,

tspnet.read(id _instr))

tspnet.readavailable()

Function

Device read output available.

Usage

[<num bytes> =] tspnet.readavailable (<connection id>)

connection id: Integer value used as a handle for other t spnet commands

Remarks

This command checks to see if any output data is available from the device. No data is
read. It is intended to allow TSP™ scripts to continue to run without waiting on a
remote command to finish.

Errors:

e Invalid Specified Connection
e Read Failed

3700S-901-01 Rev. C / July 2008

10-9

Section 10: TSP-Net Series 3700 System Switch/Multimeter Reference Manual

tspnet.readavailable()

Example X = tspnet.readavailable (mydevice)

tspnet.clear()

Function Device read clear buffer.

Usage tspnet.clear (<connection id>)

connection id: Integer value used as a handle for other t spnet commands

Remarks This command clears any pending output data available from the device. No data is
returned to the caller. No data is processed.

Errors:

e Invalid Specified Connection

Example tspnet.write (mydevice, 'print([[hello]l])")
print (tspnet.readavailable (mydevice))
Output

6.00000000e+000

tspnet.clear (mydevice)

print (tspnet.readavailable (mydevice))

Output
0.00000000e+000

tspnet.disconnect()

Function Device disconnection.

Usage tspnet.disconnect (<connection id>)

connection id: Integer value used as a handle for other t spnet commands

Remarks This command disconnects the two devices by closing the connection.

For Keithley Instruments TSP™ devices, this results in any remotely running
commands or scripts being aborted (terminated).

Errors:

e Invalid Specified Connection

Example tspnet.disconnect (mydevice)

tspnet.reset()

Function Device all disconnection.

Usage tspnet.reset ()

10-10 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 10: TSP-Net

tspnet.reset()

Remarks

This command disconnects the all devices currently connected.

For Keithley Instruments TSP™ devices, this results in any remotely running
commands or scripts being terminated.

Errors:

e <none>

Example

tspnet.reset ()

tspnet.termination()

Function

Device line termination.

Usage

<termination type> = tspnet.termination (<connection id>,
[<termination type>])

connection id: Integer value used as a handle for other t spnet commands

termination type: tspnet.TERM LF, tspnet.TERM CR,
tspnet.TERM CRLF, or tspnet.TERM LFCR

Remarks

This setting sets and gets the termination characters used to determine the end of a
line for lines being received by a connection. It also is used to terminate lines being
sent to a connection. Pass the optional set value to set the termination. The current
value is always returned. There are four possible values: LF, CR, CRLF, or LFCR. For
TSP™ devices, the default is LF. For non-TSP devices, the default is CRLF. The
termination character resets to default when a connection is terminated.

Errors:

e Invalid Specified Connection
e Invalid Termination

Example

Set termination character:

tspnet.termination (mydevice, tspnet.TERM LF)

Gets termination character and evaluates if set to LF. Response of "1" means true, set
to <termination type>.Response of "0" means false, not set to
<termination type>:

print (tspnet.termination (mydevice) == tspnet.TERM LF)

Output:
1.0000000e+000

tspnet.timeout

Attribute

Sets timeout value for tspnet.connect (), tspnet.execute (), and
tspnet.read () commands.

Usage

tspnet.timeout [= <seconds value>]

seconds value: Value in seconds

3700S-901-01 Rev. C / July 2008

10-11

Section 10: TSP-Net

Series 3700 System Switch/Multimeter Reference Manual

tspnet.timeout

Remarks This setting sets the duration the tspnet.connnect, tspnet.read, and
tspnet.execute commands will wait for a response. The time is specified in
seconds. The default value is 5.0 seconds. The timeout may contain fractional
seconds but is only accurate to the nearest 10mS. The timeout may be between 0.0
and 30 seconds.

Errors:
e Invalid Timeout
Example tspnet.timeout = 10.0

Instrument Control Library - TSP-specific device control

tspnet.tsp.runscript()

Function Load and runs a script on a device.

Usage tspnet.tsp.runscript (<connection id>, [<name>,] <script>)
connection id: Integer value used as a handle for other t spnet commands
name: Optional parameter name from a listed group
script: The actual script itself as a string, enclosed in quotes

Remarks This convenience command downloads a script to a device and runs it. It automatically
adds the appropriate loadscript and endscript around the script, captures any errors,
and reads back any prompts. No additional substitutions are done on the text.

The script is automatically loaded, compiled, and run. If there are no runnable lines
(contains only functions), running has no effect.
To load only and run at a later time, simply make sure the script contains only
functions. Use tspnet .execute () to execute those functions at a later time.
This command is appropriate only for TSP™-enabled devices.
If no name is specified, one will be generated internally.
Errors:
e Invalid Specified Connection
e Write Failed, Timeout
o Write Failed
¢ Read Failed, Timeout
e Read Failed, Aborted
e Read Failed
e Remote Error, <remote error generated by command>
Example tspnet.tsp.runscript (mytspdevice, 'mytest',

'print ([[start]]) for d = 1,10 do print([[work]]) end
print[[end]]")

10-12

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 10: TSP-Net

tspnet.tsp.rbtablecopy()

Function

Copies a reading buffer synchronous table from a device.

Usage

<array> = tspnet.tsp.rbtablecopy (<connection id>, <name>,
[<start index>, <end index>])

connection id: Integer value used as a handle for other t spnet commands
name: Parameter name from a listed group
start index: Integer start value

end index: Integer end value

Remarks

This convenience command reads the data from a reading buffer on a remote device
and returns an array of numbers or a string representing the data. The name argument
identifies the reading buffer name and synchronous table to copy. The optional start
index and end index specify the portion of the reading buffer to read. If no index is
specified, the entire buffer will be copied.

This command is limited to transferring 50,000 readings at a time.
Errors:

e Invalid Specified Connection
e Write Failed, Timeout

o Write Failed

e Read Failed, Timeout

¢ Read Failed, Aborted

e Read Failed

e Invalid Reading Buffer Table
e Invalid Index Range

e Out of Memory

e Remote Error, <remote error generated by command>

Example

table = tspnet.tsp.rbtablecopy (mytspdevice,
'myremotebuffername.readings', 1, 3)

print (table[l], table[2], table[3])
Output:
4.5653423423e-1 4.5267523423e-1 4.5753543423e-1

times = tspnet.tsp.rbtablecopy (mytspdevice,
'myremotebuffername.timestamps', 1, 3)

print (times)
Output

01/01/2008 10:10:10.0000013,01/01/2008
10:10:10.0000233,01/01/2008 10:10:10.0000576

3700S-901-01 Rev. C / July 2008

10-13

Section 10: TSP-Net

Series 3700 System Switch/Multimeter Reference Manual

tspnet.tsp.abort()

Function

Aborts device execution.

Usage

tspnet.tsp.abort (<connection id>)

connection id: Integer value used as a handle for other t spnet commands

Remarks

This convenience command simply sends an "abort" string to a device.
Errors:

e Invalid Specified Connection
e Connection Not Available
e Write Failed

Example

tspnet.tsp.abort ()

tspnet.tsp.abortonconnect

Attribute

Abort on connect.

Usage

tspnet.tsp.abortonconnect [= <value>]

value: tspnet.TRUE or tspnet.FALSE

Remarks

This setting determines if the Series 3700 sends abort () when it attempts to
connect using tspnet.connect () (on page 10-5) to a TSP™-enabled device. The
default value is t spnet . TRUE (or non-zero).

Sending the abort () command on connection causes any other active interfaces

being used on that device to close to ensure you have obtained access to the remote
device.

Connecting to a TSP device without issuing an abort () command, or when
tspnet.tsp.abortonconnect (on page 10-14) is setto t spnet.FALSE, can

result in the Series 3700 suspending operation until it receives a response back from
the device or until a timeout error generates.

Errors:

e <none>

Example

tspnet.tsp.abortonconnect = tspnet.FALSE

10-14

3700S-901-01 Rev. C/ July 2008

Section 11

LXI Class B Triggering (IEEE-1588)

In this section:

Introduction to IEEE-1588 based triggering 11-1
IEEE-1588 implementation in the Series 3700................ 11-1
Correlating PTP to Coordinated Universal Time (UTC)... 11-2
Configuring and enabling IEEE-1588.................cccuvveeee.. 11-3

Monitoring alarms with LAN triggers and LXI event log... 11-6

Introduction to IEEE-1588 based triggering

The Series 3700 uses IEEE-1588 Precision Time Protocol (PTP) to implement
synchronized measurements and initiate time-triggered events over the LAN
(Ethernet) interface. IEEE-1588 is a requirement of the LXI B Functional Class.
Using IEEE-1588, you can schedule instrument-driven actions, such as
measurements, to occur at a specific date and time and synchronize timebases
between instruments on the same network. You can only access these
capabilities through the remote command interfaces.

NOTE You can find detailed information on the syntax and usage of each ICL
command presented in this section in Instrument Control Library (ICL)
(on page 12-1).

IEEE-1588 implementation in the Series 3700

When you enable IEEE-1588 on a Series 3700 on a local network, the Series
3700 communicates with other IEEE-1588 enabled devices on the network
through a dedicated network port called the PTP port. A predetermined
algorithm then automatically selects the network device with the most accurate
clock. This network device becomes the IEEE-1588 master. If multiple devices
have the same clock accuracy, the protocol arbitrarily chooses one device to be
the IEEE-1588 master.

When the protocol selects the Series 3700 as the master clock, the Series 3700
uses the time value stored in its battery-backed real-time clock and updates the
time in all slave devices. When the protocol selects another networked device as
the master clock, the Series 3700 is slave to the more accurate device and
adjusts its time to that of the master clock. Additionally, the Series 3700 updates
its battery-backed clock so that the time is ‘remembered’ if the master clock is
removed from the network.

Section 11: LXI Class B Triggering (IEEE-1588) Series 3700 System Switch/Multimeter Reference Manual

At periodic intervals, the master clock synchronizes to all slave clocks through
time-stamped messages over the PTP port. This allows IEEE-1588 to maintain
time synchronization between multiple devices on a network.

Program the synchronization interval in the Series 3700 using
ptp.syncinterval (on page 13-229). The default synchronization interval is
two seconds. Increasing the synchronization interval to values of more than two
seconds increases the amount of time that it takes devices on the LAN to
synchronize. If you change the synchronization interval, you must restart the
clock of the Series 3700 by cycling its power.

Read the current time delay and offset between any slave device and its master
on the LAN using ptp.ds.current (on page 13-223). Synchronization of time
stamps between IEEE-1588 enabled devices to within 150ns can take as long
as 2 minutes.

Correlating PTP to Coordinated Universal Time (UTC)

To ensure synchronization across networked devices, you must be aware of the
time protocol utilized by those other devices on the network.

The most widely accepted time scale is Coordinated Universal Time (UTC); in
many places, it is considered standard time. UTC is nearly the same time as
Greenwich Mean Time (GMT), another very familiar time scale, and for the
purposes of the Series 3700, UTC and GMT are the same. Local time is offset
from UTC according to time zones; additional offsets can occur due to Daylight
Savings Time adjustments.

UTC suffers from discontinuities because of non-periodic adjustments known as
“leap seconds”. These adjustments present problems because they can make
events that occurred at different periods of time appear to occur at the same
time. PTP is a time standard that does not have any discontinuities and has no
adjustments for local time (that is, it is not time-zone aware). PTP is presented
as the number of seconds since January 1, 1970.

The Series 3700 offers two versions of time for most IEEE-1588-related
commands, .seconds and .ptpseconds, representing UTC and PTP
respectively. IEEE-1588 requires that devices are synchronized using UTC or
PTP time, not local time. The Series 3700 does not distinguish UTC, PTP, and
local time; it is not time-zone aware. You must be aware of this when
synchronizing with devices that are time-zone aware.

When IEEE-1588 selects a time-zone aware device to be the master clock, the
Series 3700 accepts the time of that clock. This time may not agree with the
local time of the Series 3700, especially when a network spans multiple time
zones. If you schedule events on the Series 3700 to occur according to your
local time, events will not occur at the time you expect.

11-2 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 11: LXI Class B Triggering (IEEE-1588)

You can avoid confusion by setting the time on the Series 3700 to UTC time
instead of local time. Manage the conversion from UTC to local time in your
software application. For example, assume local time is Eastern Standard Time
in the United States (EST), which is equivalent to GMT-5 (hours). Therefore, if
the current local time is 3:00PM, the UTC time is 8:00PM. Set the time of the
Series 3700 clock to 8:00PM. If it is then synchronized with a time-zone aware
master clock, its time will not change significantly.

NOTE The Series 3700 does not differentiate UTC and PTP time.
ptp.utcoffset (on page 13-229) is zero unless a master clock that
is aware of the difference between UTC and PTP time populates this
value. This value is volatile and not remembered through a power
cycle.

Configuring and enabling IEEE-1588

To configure IEEE-1588, connect the Series 3700 to the LAN, along with any
other IEEE-1588 enabled devices that you want to synchronize to the Series
3700. Refer to Series 3700 Quick Start Guide for information on connecting the
Series 3700 to the LAN. If you want to synchronize multiple Series 3700
instruments on a LAN, each instrument must have the same PTP subdomain
name.

The default PTP subdomain name is DFLT for all Series 3700 devices. Use the
ptp.subdomain function to change the subdomain name for any Series 3700
on the LAN. After changing the subdomain name, you must power cycle the
Series 3700 to restart its clocks. If you have changed the subdomain name of
any third-party IEEE-1588 enabled device within that subdomain, you must also
restart its clock.

NOTE Cycling the power to the Series 3700 does not return the IEEE-1588-
related parameters to factory default state. To return these to factory
defaults, perform a LAN configuration reset. This can be done using
lan.status.reset () (on page 13-202) on the remote command
interface. You can also perform a reset through the front panel
interface by entering the Main menu, selecting LAN, and selecting
Reset.

3700S-901-01 Rev. C / July 2008 11-3

Section 11: LXI Class B Triggering (IEEE-1588) Series 3700 System Switch/Multimeter Reference Manual

Use ptp.enable () (on page 13-227) to enable IEEE-1588 on the Series 3700.
The IEEE-1588 protocol then determines the master clock. The IEEE-1588
indicator on the front panel of the Series 3700 updates to display the IEEE-1588
status.

e |f the indicator is off, then IEEE-1588 is disabled or the device is not
connected to a working network.

e If the network is not working, then the LAN indicator also blinks. If the
indicator is solidly on, the IEEE-1588 is successfully enabled and
synchronized, and the Series 3700 is a slave clock.

e If the network is not working, then the LAN indicator also blinks. If the
indicator is solidly on, the IEEE-1588 is successfully enabled and
synchronized, and the Series 3700 is a slave clock.

e If the indicator blinks once per second, then IEEE-1588 is successfully
enabled and synchronized, and the Series 3700 is the master clock.

e |f the indicator blinks once every two seconds, then IEEE-1588 is
successfully enabled and synchronized, and the Series 3700 is the
grandmaster clock.

You can also use ptp.synchronized (on page 13-228) to determine if the
Series 3700 is a master or slave on the LAN.

NOTE ptp.enable is a non-volatile setting. Therefore, if you power off a
Series 3700 with IEEE-1588 enabled and then re-power the Series
3700 on a different network, it attempts to synchronize with any other
IEEE-1588 enabled devices on that new network. You do not need to
re-enable IEEE-1588.

11-4

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 11: LXI Class B Triggering (IEEE-1588)

Scheduling alarms

You can schedule alarms to request the Series 3700 to perform actions at a
specific time and date or at a specific time interval. You can schedule alarms in
UTC or PTP time; however, it is important to be consistent in defining the alarms
using the same time format whether UTC or PTP. Otherwise, the alarms will fire
on the networked devices at different times, with a time difference equal to the
PTP UTC offset.

You can set a maximum of two alarms per Series 3700.

To schedule an alarm, first convert the desired alarm time to UTC seconds. You
can perform this conversion using os. time. If you are specifying alarms in UTC
time, then you can use this value with schedule.alarm[x] .seconds (0On
page 13-251) to schedule an alarm, where x represents the tag number of the
alarm that you configure.

NOTE os.time is a LUA function that can be used to return the current time
or convert a local date and time to UTC-based seconds elapsed since
January 1, 1970. When used without parameters, os. time returns

the current date and time. When used with parameters, the syntax is
os.time{year = <n>, month = <n>, day = <n>, hour =

<n>, sec = <n>, isdst = }.<n>is anumber and is a
Boolean where true is Daylight Savings Time. It is not necessary to
specify all parameters.

The following examples demonstrate how to use os. time:

-- retrieve current UTC time in seconds since 1/1/1970
print (os.time)

-— convert 3:00PM March 1, 2008 to UTC seconds since
1/1/1970:

local 1 start Time
1 start Time = os.time{year=2008, month=3, day=1, hour=15}

-— create start time to occur 60 seconds after current time
local 1 start Time

1 start Time = os.time() + 60

If you want to specify alarms in PTP format, convert UTC seconds to PTP
seconds by adding the value returned by ptp.utcoffset (on page 13-229) to
the UTC time. The Series 3700 alone does not differentiate PTP and UTC time.
The ptp.utcoffset is only non-zero if the Series 3700 communicates to a
master clock that is aware of the difference between PTP and UTC time. Use
the converted PTP time in setting values for

schedule.alarm[x] .ptpseconds (on page 13-251), where x represents the

tag number of the alarm you configure.

3700S-901-01 Rev. C / July 2008

11-5

Section 11: LXI Class B Triggering (IEEE-1588) Series 3700 System Switch/Multimeter Reference Manual

You can also schedule alarms to occur at a fractional second using either PTP
or UTC format with schedule.alarm[x].fractionalseconds (on page 13-
250).

After defining the alarm, configure the number of times you would like to repeat
this alarm using schedule.alarm[x] .repetition (on page 13-251). Use
schedule.alarm[x] .period (on page 13-251) to configure the amount of
time, in seconds, between adjacent firings of the alarm. If you want the alarm to
fire just once, set schedule.alarm[x] .period to zero. If you want the alarm
to repeat forever, set schedule.alarm[x] .period to a hon-zero value and
set schedule.alarm[x] .repetition to zero.

Enable the alarm by setting schedule.alarm[x] .enable (on page 13-250)
to 1. Disable an alarm by setting schedule.alarm[x] .enable to 0. Disable
all alarms using schedule.disable () (on page 13-252).

Monitoring alarms with LAN triggers and LXI event log

Use the LXI event log to monitor the firing of scheduled alarms. The LXI event
log in the Series 3700 only captures LAN triggers that occur within its defined
LXI domain. To monitor alarms, configure the alarm to generate a LAN trigger by
using schedule.alarm[x] .EVENT ID (on page 13-250) as the control
source for lan.trigger[N].stimulus (on page 13-208) in the trigger model.
You can define up to eight LAN triggers.

Use lan.lxidomain (on page 13-197) to specify the LXI domain. Additionally,
you can broadcast LAN triggers to all devices on a LXI domain, or you can
transmit LAN triggers between two individual devices. To configure the LAN
trigger broadcast, use lan.trigger [N] .protocol (on page 13-207).

The following example demonstrates how to generate a LAN trigger when a
scheduled alarm fires:

-- configure the LXI domain
lan.lxidomain=0

-- configure the LXI trigger to broadcast to all devices in
this LXI domain

lan.trigger[2] .protocol=2
lan.trigger[2] .connect ()

-- associate the firing of the alarm to the generation of a
LAN trigger

lan.trigger[2].stimulus = schedule.alarm[1].EVENT ID

11-6 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 11: LXI Class B Triggering (IEEE-1588)

LXI event log

The LXI event log of a Series 3700 monitors all LAN triggers that the instrument
receives or generates. The LXI event log has nine comma-delimited fields.
Below is an example entry to a LXI event log and a description of the log fields
in order of appearance.

"17:26:35.690 10 Oct 2007, LANO, 192.168.1.102, LXI, O,
1192037132, 1192037155.733269000, 0, 0OxOQO"

Field Field Value Field Description
#
1 “17:26:35.690 10 Oct 2007” Formatted UTC time in 24-hour format including

fractional seconds.

2 “LANO” Event identifier.

NOTE This event identifier is zero-based (LANO-
LAN7). When specifying the LAN trigger
using lan.trigger [N], the minimum
value for N is 1. Therefore LANO to LAN 7
correspondsto lan.trigger[1]
through lan.trigger [8], respectively.

3 “192.168.1.102” IP address of the device that issued the LAN trigger.

4 "LXI" LXI version identifier. Currently only LXI is defined.

5 “‘0” LXI Domain number.

6 “1192037132” Sequence number provided by the device that issued
the LAN trigger. This number is incremented after
generation of each LAN trigger.

7 "1192037155.733269000” PTP time formatted as a floating point number.

8 “0” The "overflow" from PTP seconds. Currently, this is “0”.
Also referred to as IEEE-1588 Epoch.

9 "0x0" Hex value of the flag field, which is the logical OR of

several conditions (error=1, retransmission=2,
hardware=4, acknowledgement==8).

Example applications of IEEE-1588 in Series 3700-based
systems

This section discusses examples of a few applications that are possible using
IEEE-1588.

3700S-901-01 Rev. C / July 2008 11-7

Section 11: LXI Class B Triggering (IEEE-1588) Series 3700 System Switch/Multimeter Reference Manual

Scheduling alarms on a stand-alone Series 3700

To configure a single Series 3700 to perform an event at a particular date and
time, you must schedule alarms, but you do not need to enable IEEE-1588.
Therefore, you can send these commands over any remote interface and not
just LAN.

To initiate a specific action at the firing of the alarm, you must use the event
identifier for the scheduled alarm, schedule.alarm[x] .EVENT ID (on page
13-250), as the stimulus of one of the control sources defined in the trigger
model. Refer to Scanning (on page 7-1) for more details on the trigger model.

The following example demonstrates how to configure a scan of five channels to
run once every hour starting at 3AM on September 1, 2008:

--— convert to UTC time
Start time = os.time({year=2008, month=9, day=1, hour=3})

-- convert to PTP time
Start time = Start time + ptp.utcoffset

-- configure the alarm

schedule.alarm[1l] .ptpseconds = Start time
schedule.alarm[1l].fractionalseconds = 0

-- configure the alarm repetition count
schedule.alarm[1l] .repetition = 5

—-- set alarm period to 1 hr = 60 secs x 60 mins
schedule.alarm[1l] .period = 60*60

-—-enable the alarm
schedule.alarm[1l] .enable =1

--associate a DMM configuration and configure a scan
dmm.setconfig("1001:1005", "dcvolts")
scan.create ("1001:1005")

-— 5 scans of 5 channels
buf = dmm.makebuffer (25)

-—command the scan to start when alarm 1 fires
scan.trigger.arm.stimulus = schedule.alarm[1].EVENT ID

--set scan count and initiate execution of background scan
scan.scancount = 5
scan.background (buf)

11-8 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 11: LXI Class B Triggering (IEEE-1588)

Synchronizing multiple Series 3700 instruments

NOTE Synchronization only occurs between instruments within the same
PTP subdomain. Use ptp. subdomain to set the subdomain name.
Refer to Configuring and enabling IEEE-1588 (on page 11-3) for
further details.

To execute synchronized actions on multiple Series 3700 instruments, you must
connect these instruments to a network using Ethernet and enable IEEE-1588
protocol. Refer to Configuring and enabling IEEE-1588 (on page 11-3) for details
on how to enable IEEE-1588 protocol.

The protocol aligns the timebases of each of these instruments. You need to
enter a delay in your software application to allow for this synchronization to
complete. Synchronization to within 150ns can take as long as two minutes for
system alignment. You can read the current time delay and offset between any
slave device and its master on the LAN using ptp.ds.current. Refer to
IEEE-1588 Implementation in the Series 3700 (on page 11-1) for information on
the time synchronization process.

After you enable IEEE-1588 and set up alarms, configure the action to occur at
the firing of the alarm. Use the event identifiers for the scheduled alarms,
schedule.alarm[x] .EVENT ID (on page 13-250), as the stimulus for the
control sources in the trigger model.

Coordinating the Series 3700 with a device that is not IEEE-
1588 enabled using scheduled alarms and digital 1/0

If you have a network where the Series 3700 is the only IEEE-1588 enabled
device, you can trigger actions on the other networked devices by means of
digital triggers if such devices can process digital triggers. In this way, you can
schedule alarms to execute switch-only or switch with DMM operations on the
Series 3700 and you can also output triggers to other devices at the firing of the
scheduled alarms.

3700S-901-01 Rev. C / July 2008 11-9

Section 11: LXI Class B Triggering (IEEE-1588) Series 3700 System Switch/Multimeter Reference Manual

The following is an example that demonstrates scheduling an alarm to execute a
scan on the Series 3700 and output a trigger from the Series 3700 to another
device:

-- configure a switch with DMM scan operation on a Series
3700

reset ()

scan.reset ()

buffer=dmm.makebuffer (100)

dmm.autodelay=dmm.OFF

dmm.range=10

dmm.autozero=dmm.OFF

dmm.nplc=.0005

dmm.measurecount=1

dmm.configure.set ('mydcvolts')

dmm.setconfig('1001:1010"', 'mydcvolts')

scan.create ('1001:1010")
scan.measurecount=1
scan.scancount = 10

-- configures falling-edge output trigger pulse as DIO line
1 when generated, this hardware trigger would effect an
action on the device that is not IEEE-1588 enabled

digio.trigger[l].mode = digio.TRIG FALLING
digio.trigger[l].pulsewidth = 0.010
digio.trigger[l].clear ()

-—- execute scan to start when alarm fires
scan.trigger.arm.stimulus = schedule.alarm[1].EVENT ID

-- generate output trigger when alarm fires
digio.trigger[l].stimulus = schedule.alarm[1l].EVENT ID

-- configure alarm to start 15 seconds after current PTP
time

sec,ns=ptp.time ()

schedule.alarm[1l] .ptpseconds=sec+15

schedule.alarm[l].fractionalseconds=0

-- configure alarm to fire 10 times at a period of 500ms

schedule.alarm[1l] .repetition=10
schedule.alarm[1l] .period=0.500

-— enable alarm
schedule.alarm[1l] .enable=1

-- initiate execution of foreground scan
scan.execute (buffer)

11-10 3700S-901-01 Rev. C/ July 2008

Section 12

Status Model

In this section:

Status regiSter SEtScuuviiiiiei e 12-1
Status byte and SRQcceeeiiiiiiii e 12-2
System summary and status byteccccceveeiiiiiinnnnn. 12-3
System summary regiSters........ccueeveeeiiiiiiiieeeee e 12-4
Standard event status register and enable..................... 12-5
Operation events regiStersccuueeeeeerirriiiieeee e 12-6
Questionable event registercccceeeiviiiiiieeiee e 12-7
Measurement event register (measurement) 12-8
Status function SUMMArY.........cceeeviiiiiiiiiie e 12-8
Clearing registers and qUEUEScccooiuveeeeieeseiineieeen 12-9
Programming enable and transition registers................ 12-10
Reading regiSterso 12-11
Status byte and service request (SRQ)......cccccvveeeeeinnns 12-12
Status register set SPecifiCsocevviiieriiiiiiiiiee e 12-16
QUEUES ..ottt 12-25

The Keithley Instruments Series 3700 System Switch/Multimeter provides a
number of status registers and queues that allow the operator to monitor and
manipulate various instrument events. The heart of the status model is the
status byte register. This register can be read by the user's test program to
determine if a service request (SRQ) has occurred, and what event caused the
SRQ.

Status register sets

A typical status register set is made up of a condition register, an event register,
and an event enable register (many also have negative and positive transition
registers). A condition register is a read-only register that constantly updates to
reflect the present operating conditions of the instrument. When an event
occurs, the appropriate event register bit sets to 1. The bit remains latched to 1
until the register is reset. When an event register bit is set and its corresponding
enable bit is set (as programmed by the user), the output (summary) of the
register will set to 1, which in turn sets another bit in a lower-level register, and
ultimately sets the summary bit of the status byte register.

Section 12: Status Model

Series 3700 System Switch/Multimeter Reference Manual

Negative and positive transition registers

e Negative-transition register (NTR): When a bit in an NTR is set by the
user, the corresponding bit in the event register will set when the
corresponding bit in the condition register transitions from 1 to 0.

e Positive-transition register (PTR): When a bit in a PTR is set by the user,
the corresponding bit in the event register will set when the corresponding
bit in the condition register transitions from O to 1.

Status byte and SRQ

The status byte register receives the summary bits of the five status register
sets, a master summary bit, and two queues. The register sets and queues

monitor the various instrument events. When an enabled event occurs, it sets a
summary bit in the status byte register. When a summary bit of the status byte is

set and its corresponding enable bit is set (as programmed by the user), the

RQS/MSS bit will set to indicate that an SRQ has occurred, and the GPIB SRQ

line will be asserted.

Figure 12-1: Status byte and queues

Error/Event Queue

;

Queue Not Empty

Measurement Summary Bit (MSB) —
System Summary Bit (SSB) —]
Error Available (EAV) —

GPIB Output Queue

;

Queue Not Empty

Questionable Summary Bit (QSB) —
Message Available (MAV) —
Event Summary Bit (ESB) —

Master Summary Status (MSS) —

Operation Summary Bit (OSB) —

Queues

Status Byte Service Request Enable
(status.condition/STB) (request_enable/SRE)
? rank
%)
()
2 & 2
3 3
4 ——® 4
5 NO) 5
6 X
7 & 7
status.condition status.request_enable
("STB?) (*SRE)

The Series 3700 uses an output queue and an error queue. The response
messages, such as requested readings, are placed in the output queue. As

various programming errors and status messages occur, they are placed in the
error queue. When a queue contains data, it sets the appropriate summary bit of

the status byte register (EAV for the error queue; MAV for the output queue).

12-2

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

System summary and status byte

The system summary bit (SSB) is received by the status byte (Bit 1) from the
system summary register (status.system) byte. The summary of system
summary register (status. system) receives its extension bit (Bit 0) from the
system summary register 2 (status. system?2).

Figure 12-2:; Status byte and system summary register

Status Byte Status Node Enable

(status.condition/STB) (node_enable)
Measurement Summary Bit (MSB) — :@4—
System Summary Bit (SSB) ——
Error Available (EAV) —
Questionable Summary Bit (QSB) —
Message Available (MAV) —
Event Summary Bit (ESB) —
Master Summary Status (MSS) —
Operation Summary Bit (OSB) —

The X in “Node X" refers
to the user-assigned
TSP-Link node number.

I\IU)LH#(DI\)XOI

I\lO‘JU‘I#O)I\)—‘Ol
Y
/P

status.node_enable

To Node X in System Summary Register (system), System
Summary Register 2 (system2), System Summary Register 3
(system3), System Summary Register 4 (system4), or

System Summary Register 5 (system5)

System Summary
Register (system)

Sysiet Sur(nsn;satreymR;e)glster 2 @—» Extension Bit——] 0

Node 1 — 1

Node2 — 2

Node 3 —{ 3

Node 4 — 4

Node5 ——{ 5

This register is Node 6 — 6
available on all Node 7 — 7 +

TSP-Link nodes. Node 8 — 8

Node 9 —{ 9

Node 10 ——10

Node 11 —11

Node 12 —{12
Node 13 —{13
Node 14 —{14
15

status.system

3700S-901-01 Rev. C/ July 2008 12-3

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

System summary registers

The system summary registers (system5 through system?2) provide summary
information through the specific register's extension bit (Bit 0). This in turn is
provided to the system summary register (system) extension bit (Bit 0).

Figure 12-3: System summary registers

System Summary System Summary
Register 3 (system3) Register 2 (system2)

To Extension Bit in

—»- Extension Bit —— 0 Extension Bt —— 0 System Summary
Node 20 —| 1 Node 15 —— 1 Register (system)
Node 30 —— 2 Node 16 — 2
Node 31 —— 3 Node 17 —— 3
Node 32 — 4 Node 18 —— 4
Node 33 —— 5 Node 19 —— 5
Node 34 —— 6 Node 20 — 6
Node 35 —— 7 Node 21 — 7
Node 36 —— 8 Node 22 — 8
Node 37 —— 9 Node 23 — 9
Node 38 ——10 Node 24 ——10
Node 39 ——11 Node 25 ——11
Node 40 ——12 These registers are | Nede26 ——12
Node 41 ——13 available on all Node 27 ——13
Node 42 ——14 TSP-link nodes., | Mese2® —14

15 15

status system3 status system?2
System Summary System Summary
Register 5 (system5) Register 4 (system4)

0 Extension Bit —— 0

Node 57 — 1 Node 43 — 1
Node 58 ——{ 2 Node 44 —— 2
Node 59 —— 3 Node 45 — 3
Node 60 — 4 Node 46 — 4
Node 61 —— 5 Node 47 —— 5
Node 62 —— 6 Node 48 ——{ 6
Node 63 —{ 7 + Node 49 — 7
Node 64 ——{ 8 Node 50 — 8
9 Node 51 —— 9

10 Node 52 ——10

11 Node 53 ——11
12 Node 54 —{12
13 Node 55 ——13
14 Node 56 —{14
15 15

status.system5 status.system4

12-4 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

Standard event status register and enable

The summary bit of the standard event status register and event status enable
provide summary information to Bit 5 of the status byte (Status byte and SRQ
(on page 12-2)).

Figure 12-4; Standard event registers and event status enable

Standard Event Status Event Status Enable
Register (standard/ESR) (standard/ESE)
Operation Complete (OPC) — o] .@4—?
1 1
Query Error (QYE) — 2 .@, 2
Device Dependent Error (DDE) ——{ 3 ,@\‘ 3
Execution Error (EXE) —— 4 ,@ 4
Command Error (CME) —— 5 ,@ 5
User Request (URQ) — 6 —{(&) 6
Power On (PON) — 7 & 7
status.standard.event status.standard.enable
(*ESR?) ("ESE)

To Event Summary Bit (ESB) in
Status Byte (status.condition/STB)

3700S-901-01 Rev. C / July 2008 12-5

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

Operation events registers

The summary bit of the operation status user register provides the user bit
(USER) (Bit 12) to the operation status register. The summary bit of the
operation status register provides the operation summary bit (OSB) (Bit 7) of the
status byte.

Figure 12-5: Operation event registers

Operation Status User Operation Status
Register Register (operation/OSR)

BITO — 0 Calibrating (CAL) —— 0
BIT1 —— 1 1 To Operation Summary
BIT2 —— 2 2 Bit (OSB) in Status
BIT3 — 3 3 Byte (status.condition)
BIT4 —{ 4 Measuring (MEAS) — 4
BIT5 — 5 5
BIT6 —— 6 6
BIT7 — 7 + 7
BIT8 —— 8 8
BIT9 — 9 9
BIT10 ——10 10
BIT11 —11 Prompts Enabled (PRMPT) ——11
BIT12 —12 L User (USER) —{12
BIT13 —13 13
BIT14 —{14 Program Running (PROG) ——14

15 15

status.operation.user status.operation

12-6 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 12: Status Model

Questionable event register

The questionable event register provides summary information to questionable
summary bit (QSB) (Bit 3) of the status byte.

Figure 12-6: Questionable event register

Questionable Status Register
(status.questionable.*)

Slot 1 interlock (Bit 1
Slot 2 interlock (Bit 2
Slot 3 interlock (Bit 3
Slot 4 interlock (Bit 4
Slot 5 interlock (Bit 5
Slot 6 interlock (Bit 6

Calibration (Bit 8
Slot 1 thermal (Bit 9
Slot 2 thermal (Bit 10
Slot 3 thermal (Bit 11
Slot 4 thermal (Bit 12
Slot 5 thermal (Bit 13
Slot 6 thermal (Bit 14

)
)
)
)
)
) —
Dmm Connection (Bit 7)
)
)
)
)
)
)
)

+

To Questionable
Summary Bit (QSB) in
Status Byte

wm-qcam-hwm—nol

10
11
12

13
14
15

status.questionable

3700S-901-01 Rev. C / July 2008

12-7

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

Measurement event register (measurement)

The measurement event register (measurement) provides summary information
to the status byte's measurement summary bit (MSB) (Bit 0).

Figure 12-7: Measurement event register

Measurement Event
Register (measurement)

Low Limit 1 (Bit0) —— 0
High Limit 1 (Bit 1) —— 1 To Measurement Summary
Low Limit 2 (Bit2) —— 2 Bit (MSB) in Status Byte
High Limit 2 (Bit3) —— 3
4
5
6 T
Reading Overflow (Bit 7) —— 7 +
Buffer Available (Bit 8) —— 8 —"'—/V
9
10
11
12
13
14
15

status.measurement

Status function summary

The following functions control and read the various registers.

NOTE * = .ntr, .ptr, .enable, .event, and .condition. The first three (.ntr, .ptr,
and .enable) are read/write, while the last two (.event and .condition)
are read only.

Type Function

System summary status.reset

status.node enable
status.request enable
status.node_ event
status.request event

status.condition

Measurement event status.measurement.*

Operation event status.operation.*

status.operation.user.*

12-8 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

Type Function

Questionable event status.questionable.*
Standard event status.standard.enable
System event status.system.enable

status.system2.enable
status.system3.enable
status.systemd.enable

status.systembS.enable

Clearing registers and queues

When the Series 3700 is turned on, various register status elements will be set
as follows:

e The power on (PON) bit in the status.operation.condition register is set.

e All enable registers are set to 0.

e All negative-transition registers (NTRs) are set to 0.

e All used positive transition register (PTR) bits are set to 1.

e The two queues are empty.

Commands to reset the status registers and the error queue are listed in the
following table. In addition to these commands, any programmable register can

be reset by sending the 0 parameter value with the individual command to
program the register.

To reset registers:

-— Reset bits of status registers to O.
status.reset ()

To clear the error queue:

—-— Clear all messages from the error queue.
errorqueue.clear ()

3700S-901-01 Rev. C / July 2008 12-9

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

Programming enable and transition registers

The only registers that can be programmed by the user are the enable and
transition registers. All other registers in the status structure are read-only
registers.

To determine the parameter values for the various commands used to program
enable registers, a command to program an event enable or transition register is
sent with a parameter value that determines the desired state (0 or 1) of each bit
in the appropriate register. The bit positions of the register (see the following
figure) indicate the binary parameter value and decimal equivalent. To program
one of the registers, send the decimal value for the bit(s) to be set.

Figure 12-8: 16-bit status register

Bit Position | B7 | B6 | B5 | B4 | B3 B2 | B1 BO
Binary Value | 0/1 | 0/1 | o/1 | oM | o1 | o1 | o1 | on
Decimal | 128 | 64 | 32 | 16 8 4 2 1
Weights | (27) | (26) | (25 | (24| (2% | (22| (2") | (29

A. Bits 0 through 7

Bit Position | B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8
Binary Value | 0/1 | 0/1 | o/1 | o/ [o/ | o/1 | o1 | on
Decimal 3276816384 | 8192 | 4096 | 2048 | 1024 | 512 | 256
Weights | (2'%) | (2'%) | (23) | 2"2) | (2") | (29| (2°) | (29

B. Bits 8 through 15

When using a numeric parameter, registers are programmed by including the
appropriate <mask> value, for example:

*ese <mask>
status.standard.enable = <mask>

To convert from decimal to binary, use the information shown in the figure
above.

For example, to set bits BO, B4, B7, and B10, a decimal value of 1169 would be
used for the mask parameter (1169 =1 + 16 + 128 + 1024).

12-10 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

Reading registers

Any register in the status structure can be read by either sending the common
command query (where applicable), or by including the script command for that
register in either the print () orprint (tostring()) command. The
print () command returns a numeric value, while the print (tostring())
command returns the string equivalent.

For example, the following commands request the Service Request Enable
register value:
*SRE?

print (tostring(status.request enable))
print (status.request enable)

The response message will be a decimal value that indicates which bits in the
register are set. That value can be converted to its binary equivalent. If the
response is a decimal value of 37 (binary value of 100101), bits B5, B2, and BO
are set.

3700S-901-01 Rev. C / July 2008 12-11

Section 12: Status Model

Series 3700 System Switch/Multimeter Reference Manual

Status byte and service request (SRQ)

Service request is controlled by two 8-bit registers; the status byte register, and
the service request enable register.

Figure 12-9: Status byte and service request (SRQ)

Status Summary Message

Service
Request
Generation

A

—{

||]]] [

sTE? |OSB ?;6? EsB [MAV |asB |EAv |ssB | MsB
(Serial Poll |(B7) |\, | (B9 | B4)|(83)| (B2)| (B1)| (BO)
+
¥
—®
A
) Y
or ®
-)
\ ¥
o |
: 6 |
©
*SRE or osB| — |EsB |[MAV |ase|EAv [ssE [MsB
status request_enable | (87)| (86) | (85) | (B4) | (83) | (B2) | B1) | (BO)

0SB = Operation Summary Bit
MSS = Master Summary Status
RQS = Request for Service
ESB = Event Summary Bit
MAV = Message Available

QSB = Questionable Summary Bit
EAV = Error Available

SSB = System Summary Bit

MSB = Measurement Summary Bit

& = Logical AND

OR = Logical OR

Status Byte
Register

<« Read by *STB?

or print(status.condition)

Service

Request Read by *SRE?

Enable or print(status.request_enable)
Register

12-12

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 12: Status Model

Status byte register

The summary messages from the status registers and queues are used to set or
clear the appropriate bits (BO, B1, B2, B3, B4, B5, and B7) of the status byte
register. These summary bits do not latch, and their states (0 or 1) are solely
dependent on the summary messages (0 or 1). For example, if the standard
event register is read, its register will clear. As a result, its summary message
will reset to 0, which in turn will reset the event summary bit (ESB) bit in the
status byte register.

The bits of the status byte register are described as follows:

Bit BO, measurement summary bit (MSB): Set summary bit indicates that
an enabled measurement event has occurred.

Bit B1, system summary bit (SSB): Set summary bit indicates that an
enabled system event has occurred.

Bit B2, error available (EAV): Set bit indicates that an error or status
message is present in the error queue.

Bit B3, questionable summary bit (QSB): Set summary bit indicates that
an enabled questionable event has occurred.

Bit B4, message available (MAV): Set bit indicates that a response
message is present in the output queue.

Bit B5, event summary bit (ESB): Set summary bit indicates that an
enabled standard event has occurred.

Bit B6, request service (RQS)/master summary status (MSS): Set bit
indicates that an enabled summary bit of the status byte register is set.

Depending on how it is used, Bit B6 of the status byte register is either the
request for service (RQS) bit or the master summary status (MSS) bit; when
using the GPIB serial poll sequence of the Series 3700 to obtain the status
byte (serial poll byte), B6 is the RQS bit. See Serial polling and SRQ (on
page 12-14) for details about using the serial poll sequence.

When using the *STB? common command or status.condition to read
the status byte, B6 is the MSS bit.

Bit B7, operation summary bit (OSB): Set summary bit indicates that an
enabled operation event has occurred.

3700S-901-01 Rev. C / July 2008

12-13

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

Serial polling and SRQ

Any enabled event summary bit that goes from O to 1 sets bit B6 and generates
an SRQ (service request). In your test program, you can periodically read the
status byte to check if an SRQ has occurred and what caused it. If an SRQ
occurs, the program can, for example, branch to an appropriate subroutine that
will service the request.

SRQs can be managed by the serial poll sequence of the Series 3700. If an
SRQ does not occur, bit B6 (RQS) of the status byte register will remain cleared,
and the program will simply proceed normally after the serial poll is performed. If
an SRQ does occur, bit B6 of the status byte register will set, and the program
can branch to a service subroutine when the SRQ is detected by the serial poll.

The serial poll automatically resets RQS of the status byte register. This allows
subsequent serial polls to monitor bit B6 for an SRQ occurrence generated by
other event types.

For common and script commands, B6 is the MSS (message summary status)
bit. The serial poll does not clear MSS. The MSS bit stays set until all status byte
summary bits are reset.

Service request enable register

The generation of a service request is controlled by the Service Request Enable
Register. You program this register and use it to enable or disable the setting of
bit B6 (RQS/MSS) by the status summary message bits (BO, B2, B3, B4, B5,
and B7) of the status byte register. The summary bits are logically ANDed (&)
with the corresponding enable bits of the service request enable register. When
a set (1) summary bit is ANDed with an enabled (1) bit of the enable register, the
logic "1" output is applied to the input of the OR gate and, therefore, sets the
MSS/RQS bit in the status byte register. The individual bits of the service
request enable register can be set or cleared by using the *SRE common
command or its script equivalent. To read the service request enable register,
use the *SRE? query or script equivalent. The service request enable register
clears when power is cycled or a parameter value of 0 is sent with the *SRE
command (for example, *SRE 0).

SPE, SPD (serial polling)

For the GPIB interface only, the SPE and SPD general bus command sequence
is used to serial poll the Series 3700. Serial polling obtains the serial poll byte
(status byte). Typically, serial polling is used by the controller to determine which
of several instruments has requested service with the SRQ line.

12-14 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 12: Status Model

Status byte and service request commands

The commands to program and read the status byte register and service request
enable register are listed below. Note that the table includes both common
commands and their script command equivalents. For details on programming
and reading registers, see Programming enable and transition registers (on
page 12-10) and Reading registers (on page 12-11).

To reset the bits of the service request enable register to 0, use 0 as the
parameter value for the command (for example, *SRE 0).

Commands

Description

*STB?
or

print (status.condition)

Read status byte register.

*SRE <mask>

or

<mask>

status.request enable =

Program the service request enable register:

<mask> = 0 to 255

*SRE?

or

)

print (status.request enable

Read the service request enable register.

Enable and transition registers

In general, there are three types of user-writable registers that are used to
configure which bits feed the register summary and when register summary
occurs. The registers are identified in the command table footnotes as follows:

e Enable register (identified as "enable" in the table footnotes): Allows
various associated events to be included in the summary bit for the register.

e Negative-transition register (NTR; identified as "ntr" in the table
footnotes): A particular bit in the event register will be set when the
corresponding bit in the NTR is set, and the corresponding bit in the
condition register transitions from 1 to 0.

e Positive-transition register (PTR; identified as "ptr" in the table footnotes):
A particular bit in the event register will be set when the corresponding bit in
the PTR is set, and the corresponding bit in the condition register transitions

from O to 1.

3700S-901-01 Rev. C / July 2008

12-15

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

Controlling node and SRQ enable registers

For the attributes to control system node and SRQ enable bits and read
associated registers, refer to:

e status.request enable (on page 13-276)

e status.request event (on page 13-278)

e status.node enable (on page 13-267)

e status.node event (on page 13-269)

Status register set specifics

There are five status register sets in the status structure of the Series 3700:

e System summary event status
e Standard event status

e Operation event status

e Questionable event status

e Measurement event status

System summary event registers

There are five register sets associated with system event status. These registers
summarize system status for various nodes connected to the TSP-Link™. Note
that all nodes on the TSP-Link share a copy of the system summary registers
once the TSP-Link has been initialized. This feature allows all nodes to access
the status models of other nodes, including SRQ. Commands are summarized
below.

For example, either of the following commands will set the extension (EXT)
enable bit:

status.system.enable = status.system.EXT
status.system.enable = 1

The following command will request the system enable register value:

print (status.system.enable)

12-16 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

The used bits of the system event registers are described as follows:

e EXT: Set bit indicates that an extension bit from a another system status
register is set.

e NODER: Indicates a bit on TSP-Link node n has been set (n = 1 to 64).

System summary event commands appear in the following table:

Commands Bit

To set register bits:

status.system.enable = status.system.EXTENSION BIT BO
status.system.enable = status.system.EXT BO
status.system.enable = status.system.NODEn Bn

To read registers:

print (status.system.enable)
print (status.system.condition)

print (status.system.event)

To set register bits:

status.system2.enable = status.system.EXTENSION BIT BO
status.system2.enable = status.system.EXT BO
status.system2.enable = status.system.NODEn Bn

To read registers:

print (status.system2.enable)
print (status.system2.condition)

print (status.system2.event)

To set register bits:

status.system3.enable = status.system.EXTENSION BIT BO
status.system3.enable = status.system.EXT BO
status.system3.enable = status.system.NODEn Bn

To read registers:

print (status.system3.enable)
print (status.system3.condition)

print (status.system3.event)

To set register bits:

status.systemd4.enable = status.system.EXTENSION BIT BO
status.system4.enable = status.system.EXT BO
status.systemd4.enable = status.system.NODEn Bn

3700S-901-01 Rev. C / July 2008 12-17

Section 12: Status Model

Series 3700 System Switch/Multimeter Reference Manual

Commands Bit
To read registers:

print (status.systemd4.enable)

print (status.systemd4.condition)

print (status.systemd.event)

To set register bits:

status.system5.enable = status.system.EXTENSION BIT BO
status.systemb.enable = status.system.EXT BO
status.systemb.enable = status.system.NODEn Bn

To read registers:

print (status.systemb.enable)
print (status.systemb5.condition)

print (status.systemb.event)

Refer to the following table for available n values:

Command n value
status.system 1to 14
status.system2 15to0 28
status.system3 29 t0 42
status.system4 43 to 56
status.systemb 57 to 64

12-18

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 12: Status Model

Standard event register

The bits used in the standard event register are described as follows:

Bit BO, operation complete: Set bit indicates that all pending selected
device operations are completed and the Series 3700 is ready to accept
new commands. The bit is set in response to an *OpC command. The ICL
function opc () (on page 13-220) can be used in place of the *opC
command.

Bit B1: Not used.

Bit B2, query error (QYE): Set bit indicates that you attempted to read data
from an empty output queue.

Bit B3, device-dependent error (DDE): Set bit indicates that an instrument
operation did not execute properly due to some internal condition.

Bit B4, execution error (EXE): Set bit indicates that the Series 3700
detected an error while trying to execute a command.

Bit B5, command error (CME): Set bit indicates that a command error has
occurred. Command errors include:

e |EEE-488.2 syntax error: Series 3700 received a message that does
not follow the defined syntax of the IEEE-488.2 standard.

e Semantic error: Series 3700 received a command that was misspelled
or received an optional IEEE-488.2 command that is not supported.

e Group execute trigger location error: The instrument received a
group execute trigger (GET) inside a program message.

Bit B6, user request (URQ): Set bit indicates that the LOCAL key on the
Series 3700 front panel was pressed.

Bit B7, Power ON (PON): Set bit indicates that the Series 3700 has been
turned off and turned back on since the last time this register was read.

3700S-901-01 Rev. C / July 2008

12-19

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

Figure 12-10: Standard event register

Standard Event Status Register

_ "ESR? — PON | URQ | CME | EXE | DDE | QYE | — |OPC
print(status.standard.event)| (B15-B8) | (B7) | (B6) | (B5) | (B4) | (B3) | (B2) | (B1) | (BO)

To Event %&
Summary Bit

(ESB) of Status < (&
Byte Register. 4

A
OR &

A
> (2

Y
>(2d)e

L @<

*ESE

*ESE?
PON | URQ | CME | EXE | DDE | QYE OPC

~ status.standard.enable | (g15_Bg) | (B7) | (B6) | (B5) | (B4) | (B3) | (B2) | (B1) | (BO)
print(status.standard.enable)

Standard Event Status Enable Register

PON = Power On QYE = Query Error

URQ = User Request OPC = Operation Complete
CME = Command Error & = Logical AND

EXE = Execution Error OR = Logical OR

DDE = Device-Dependent Error

Commands to program and read the register are summarized in the table below.
Refer to the status.standard ICL command for the attributes to control bits.

Commands Description
*ESR?

Read standard event status register.
or

print (status.standard.event)

*ESE <mask> Program the event status enable

register: <mask> = 0 to 255

or

status.standard.enable = <mask> Refer to the status.standard.*
(on page 13-278) ICL command

*ESE? Read event status enable register.

or

print (status.standard.enable)

12-20 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

Operation event registers

The Series 3700 has two register sets associated with operation event status.
Commands are summarized in the following table. For example, either of the
following commands will set the CAL enable bit:

status.operation.enable = status.operation.CAL

status.operation.enable 1

The bits used in the operation event registers are described as follows:

e CAL: Set bit indicates that the instrument is calibrating.

e MEAS: Bit will be set when taking an overlapped measurement, but it will
not set when taking a normal synchronous measurement.

e PRMPT: Set bit indicates that command prompts are enabled.

e USER: Set bit indicates that an enabled bit in the operation status user
register is set.

e PROG: Set bit indicates that a program is running.

Operation event commands appear in the following table:

Commands Bit

To set register bits:

status.operation.* = status.operation.CALor BO
status.operation.CALIBRATING

status.operation.* = status.operation.MEAS or B4
status.operation.MEASURING

status.operation.* = status.operation.PRMT or B11
status.operation.PROMPTS

status.operation.* = status.operation.USER B12
status.operation.* = status.operation.PROGor B14

status.operation.PROGRAM RUNNING

To read registers:

print (status.operation.*)

Where * = .ntr, .ptr, .enable, .event, and .condition

NOTE The first three (.ntr, .ptr, and .enable) are read/write, while the last two
(.event and .condition) are read only.

print (status.operation.condition)

print (status.operation.event)

To set register bits:

status.operation.user.* = status.operation.user.BITO BO

3700S-901-01 Rev. C / July 2008 12-21

Section 12: Status Model

Series 3700 System Switch/Multimeter Reference Manual

Commands Bit
status.operation.user.* = status.operation.user.BIT1 B1
status.operation.user.* = status.operation.user.BIT2 B2
status.operation.user.* = status.operation.user.BIT3 B3
status.operation.user.* = status.operation.user.BIT4 B4
status.operation.user.* = status.operation.user.BIT5 B5
status.operation.user.* = status.operation.user.BIT6 B6
status.operation.user.* = status.operation.user.BIT7 B7
status.operation.user.* = status.operation.user.BITS8 B8
status.operation.user.* = status.operation.user.BIT9 B9
status.operation.user.* = status.operation.user.BIT10 B10
status.operation.user.* = status.operation.user.BIT11 B11
status.operation.user.* = status.operation.user.BIT12 B12
status.operation.user.* = status.operation.user.BIT13 B13
status.operation.user.* = status.operation.user.BIT14 B14

To read registers:

print (status.operation.user.*)

Where * = .ntr, .ptr, .enable, .event, and .condition

NOTE The first three (.ntr, .ptr, and .enable) are read/write, while the last two

(.event and .condition) are read only.

print (status.operation.user.condi

print (status.operation.user.event

tion)

)

12-22

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

Questionable event registers

The Series 3700 has five registers associated with questionable event status.
For example, to set the CAL enable bit, use either of the following commands:

status.questionable.enable = status.questionable.CAL
status.questionable.enable = 256

The following command will request the questionable enable register value:
print (status.questionable.enable)

The bits used in the questionable event registers are described as follows:

e SxINL: Set bit indicates the interlock connection of a card in slot x is in

guestion, where x = 1 to 6.

e DMMCON: Set bit indicates the DMM connection is in question for a
measurement taken.

e CAL: Set bit indicates the calibration of the instrument is in question.
e SXTHR: Set bit indicates the thermal aspect of the card in slot x is in
guestion, where x = 1 to 6.

Questionable event commands appear in the following table:

Commands Bit
To set register bits:

SLOT1 INTERLOCK or SIINL B1
SLOT2 INTERLOCK oOr S2INL B2
SLOT3 INTERLOCK or S3INL B3
SLOT4 INTERLOCK or S4IN B4
SLOTS5 INTERLOCK or S5INL B5
SLOT6 INTERLOCK or S6INL B6
DMM CONNECTION or DMMCON B7
DMM CALIBRATION or CAL BS
SLOT1 THERMAL or S1THR B9
SLOT2 THERMAL or S2THR B10
SLOT3_ THERMAL or S3THR B11
SLOT4 THERMAL or S4THR B12
SLOTS5 THERMAL or SSTHR B13
SLOT6 THERMAL or S6THR B14

3700S-901-01 Rev. C / July 2008 12-23

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

Commands Bit

To read registers:

print (status.questionable.user.*)

Where * = .ntr, .ptr, .enable, .event, and .condition

NOTE The first three (.ntr, .ptr, and .enable) are read/write, while the last two
(.event and .condition) are read only.

print (status.questionable.user.condition)

print (status.questionable.user.event)

Measurement event registers

The Series 3700 has five registers associated with measurement event status.
For example, to set the buffer available bit, use either of the following
commands:

status.measurement.BAV
256

status.measurement.enable
status.measurement.enable

The bits used in the measurement event registers are described as follows:

e ROF: Set bit indicates that an overflow reading has been detected.

e BAV: Set bit indicates that there is at least one reading stored in a reading
buffer.

e ULMTL: Set bit indicates that a reading has exceeded the upper limit 1
value.

e LLMT1: Set bit indicates that a reading has exceeded the lower limit 1
value.

e ULMT2: Set hit indicates that a reading has exceeded the upper limit 2
value.

e LLMT2: Set bit indicates that a reading has exceeded the lower limit 2
value.

Measurement event commands appear in the following table:

Commands Bit
To set register bits:

LLMT1 or LOWER LIMITI1 BO
ULMT1 or UPPER LIMITI1 B1
LLMT2 or LOWER_LIMIT2 B2
ULMTZ2 or UPPER LIMITZ2 B3
ROF or READING OVERFLOW B7
BAV or BUFFER AVATILABLE BS

12-24 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 12: Status Model

Commands Bit

To read registers:

print (status.measurement. *)

Where * = .ntr, .ptr, .enable, .event, and .condition

NOTE The first three (.ntr, .ptr, and .enable) are read/write, while the last two
(.event and .condition) are read only.

print (status.measurement.condition)

print (status.measurement.event)

Queues

The Series 3700 uses two queues, which are first-in, first-out (FIFO) queues:
Output queue: Used to hold response messages.
Error queue: Used to hold error and status messages.

The Series 3700 status model shows how the two queues are structured with
the other registers.

Output queue

The output queue holds data that pertains to the normal operation of the
instrument. For example, when a print command is sent, the response message
is placed in the output queue and the message available (MAV) bit in the status
byte register sets. A response message is cleared from the output queue when it
is read. The output queue is considered cleared when it is empty. An empty
output queue clears the MAV bit in the status byte register. A message is read
from the output queue by addressing the Series 3700 to talk.

3700S-901-01 Rev. C / July 2008 12-25

Section 12: Status Model Series 3700 System Switch/Multimeter Reference Manual

Error queue

The error queue holds error and status messages. When an error or status
event occurs, a message that defines the error or status is placed in the error
gueue and the error available (EAV) bit in the status byte register is set. An error
or status message is cleared from the error queue when it is read. The error
gueue is considered cleared when it is empty. An empty error queue clears the
EAV bit in the status byte register.

The commands to control the error queue are listed in the following table. When
you read a single message in the error queue, the oldest message is read and
then removed from the queue. On power-up, the error queue is initially empty. If
there are problems detected during power-on, entries will be placed in the
gueue. When empty, the error number 0 and "No Error" are placed in the queue.
Messages in the error queue include a code number, message text, severity,
and TSP-Link™ node number.

Error queue command Description
errorqueue.clear () Clear error queue of all errors.
errorqueue.count Number of messages in the error/event
queue.
errorcode, message, severity, Request error code, text message,
node = errorqueue.next () severity, and TSP-Link node number.

12-26 3700S-901-01 Rev. C/ July 2008

Section 13

Instrument Control Library (ICL)

In this section:

Command programming NOtES..........cccoeviuvriereeeseiiirvnnenen 13-1
ICL command liStccooviiriiiieeeiiiiiiiiee e 13-11

Command programming notes

Wild characters

For the following command reference, it is necessary to understand the following
conventions. Many commands are expressed in a generic form using wild
characters. A wild character indicates a channel, function, or trigger line.
Remember that wild characters used in the generic form are NOT to be included
in the command sent to the instrument.

XandY

The X character is used for functions and attributes to indicate the slot (1
through 6) and Y is used to indicate the limit number (1 or 2). For example, the
attribute for the limit 2 number testing is generically expressed as follows:

dmm.limit[Y] .enable
To enable limit 2, send the following command statement to the instrument:
dmm.limit[2] .enable = dmm.ON

To query for idn information for the card in Slot 1, send the following command
statement to the instrument:

cardl idn = slot[l].idn

NOTE The wild characters X and/or Y are NEVER sent to the instrument.
They are used in this command reference for notational convenience
only.

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

[N]

The N character, enclosed by brackets ([]), is used in functions and attributes
for the digital I/O line (1 to 14). For example, the function to assert an output
trigger is generically expressed as follows:

digio.trigger[N].assert

To program the Series 3700 to assert an output trigger on trigger line 5, the
following command statement is sent to the instrument:

digio.trigger[5] .assert ()

NOTE The wild character N should NOT to be sent to the instrument.
However, the brackets ([]) must be included in the command. Also,
note that the above command requires that a set of open and closed
parenthesis (()) be appended to the function (see Functions (on page
13-2)).

Functions and attributes

Commands can be function-based or attribute-based.

Functions

Function-based commands are used to control actions or activities. For
example, performing a voltage measurement is a function (action). A function
based command is not always directly related to a Series 3700 operation. For
example, the bit.bitand function will logically AND two numbers.

Each function consists of a function name followed by a set of parenthesis (()).
If the function does not have a parameter, the parenthesis set is left empty.

Examples:
digio.writeport (15) ' Sets digital I1/0 lines 1, 2, 3, and 4
high.
digio.writebit (3, 0) ' Sets line 3 low (0).
dmm.reset ('all') ' Returns the DMM to its default
settings.
digio.readport () ' Reads the digital I/O port.

13-2 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

The results of a function call are used by assigning the return values to variables
and accessing those variables. The following code will measure voltage and
return the reading:

dmm. func = 'dcvolts'

reading = dmm.measure ()

print (reading)

Output: 2.360000e+00

The above output indicates that the voltage reading is 2.36V.

Attributes

An attribute is a characteristic of an instrument feature or operation. For
example, some characteristics of a digital multimeter (DMM) include the
measurement function and range.

Assigning a value to an attribute

An attribute-based command can be used to assign a new value to an attribute.
For many attributes, the value can be in the form of a discrete number or a
predefined identifier. For example, dmm. autorange is an attribute. The
autorange attribute is enabled by assigning the attribute to either of the following
values:

1 or dmm.ON

Either of the following command messages will configure the DMM for the
moving average filter:

0
dmm.FILTER MOVING AVG

dmm.filter.type
dmm.filter.type

3700S-901-01 Rev. C / July 2008 13-3

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

Reading an attribute

Reading an attribute is accomplished by passing it to a function call as a
parameter or by assigning it to another variable.

Parameter passing example:

The following command reads the filter type for the DMM by passing the
attribute to the print function, which outputs a value:

print (dmm.filter.type)

Output: 0.000000e+00

The above output indicates that the moving average filter is selected.
Variable assighment example:

The following command reads the filter type by assigning the attribute to a
variable named filtertype:

filtertype = dmm.filter.type

Syntax rules

e Commands for functions and attributes are case sensitive. As a general rule,
all function and attribute names must be in lower case, while parameters
use a combination of lower and upper case characters. Upper case
characters are required for attribute constants. Example:

dmm. func = dmm.DC VOLTS

In the above command, which selects the DC volts measurement function,
dmm.DC_VOLTS is the attribute constant and dmm.func is the attribute
command.

e White space in a function is not required. The function to set digital I/O line 3
low can be sent with or without white spaces as follows:

digio.writebit (3,0) Whitespaces NOT used in string.
digio.writebit (3, 0) Whitespaces used in string.

e Some commands require multiple parameters. Multiple parameters must be
separated by commas (,), as shown above for the digio.writebit
function.

13-4 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

TSP-LinkTM nodes

Each instrument or enclosure attached to the TSP-Link bus must be uniquely
identified. This identification is called a TSP-Link node number, and the
enclosures are called nodes. Each node must be assigned a unique node
number.

In relation to Test Script Processor (TSP™), nodes look like tables. There is one
global table named node that contains all the actual nodes that are themselves
tables. An individual node is accessed as node [N] where N is the node number
assigned to the node. Each node has certain attributes that can be accessed as
elements of its associated table. These are listed as follows:

id: The node number assigned to the node.

model: The product model number string of the node.
revision: The product revision string of the node.
serialno: The product serial number string of the node.

There is also an entry for each logical instrument on the node (see Logical
instruments (on page 13-5)).

It is not necessary to know the node number of the node running a script. The
variable 1ocalnode is an alias for the node entry the script is running on. For
example, if a script is running on Node 5, the global variable 1ocalnode will be
an alias for node [5].

Logical instruments

You would normally refer to all instrumentation within one enclosure or node as
a single instrument. In the context of TSP™ and instrument control libraries, it is
useful to think of individual DMMs as instruments. To avoid confusion, DMMs
and other subdivisions of the instrumentation within an enclosure will be referred
to as "logical instruments."

Each logical instrument is given a unique identifier in a system. These identifiers
are used as part of all ICL function calls that control a given logical instrument. A
Series 3700 has the following logical instruments per enclosure:

e beeper e display o format e slot e tsplink
e bit e dmm e gpib e status

e channel e eventlog e lan e timer

e digio e errorqueue e scan e trigger

3700S-901-01 Rev. C / July 2008 13-5

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

Logical instruments also look like TSP tables. In addition to the logical
instrument-specific attributes and the commands to which they respond, there
are a few attributes that provide information about the logical instrument. These
attributes are listed below:

name: A string that represents the logical instrument's name. For example,
dmm.

node: A reference to the TSP-Link™ node of which the logical instrument is a
part. Default value is 2.

Query commands

Channel response query commands can return a comma-delimited string (for
example, channel.getcount and other channel response query commands).

When a channel query command like channel .getcount or

channel .getstate is sent, the response is a comma-delimited list. The list
starts with the lowest channel through to the highest. After the channels are
listed, the analog backplane relays are listed, starting with Bank 1 followed by
each subsequent bank.

For example (Model 3720 card installed in Slot 4, returning 72 comma-
delimited values):

Send the following command:

print (channel.getclose('slot4d'))

The first 60 values returned are for Channels 1 to 60, starting with 1 and
increasing to 60. The next six values are for analog backplane relays in Bank 1
(starting at 1 and increasing to 6). The final 6 values are for analog backplane
relays in Bank 2 (again, starting at 1 and increasing to 6).

13-6 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

If the command was channel.getstate instead of channel.getcount,
then 72 zero (0) or one (1) values would be returned (a 0 would indicate that the
channel or backplane is open; a 1 would indicate that it is closed). The first 60
values are for Channels 1 to 60 (starting at 1 and increasing to 60). The last 12
values are the backplane relays (starting with Bank 1, Relay 1, increasing to
Bank 2, Relay 6).

NOTE If a channel is paired for 4-wire by its pole setting, then the paired
channel state is returned in parenthesis () after the primary channel.
For example, if the card in Slot 4 is a Model 3720 and has the 4-pole
attribute for all channels set, querying for the states of "slot4" will
return 72 zeros and ones, with the first 60 shown as the primary
channel state (paired channel state); the 12 backplane relays follow.

Sample code and output:
channel.setpole('slot4d', 4)

print (channel.getstate('slot4d'))

Output from above code:

The Model 3721 card has three additional backplane relays for common side
ohms functionality. Use "slotX' or 'allslots"' to query settings on this card
to return information for Channels 1 to 40, 911 to 916, 921 to 926, and then 917,
927, and 928 in the response message (the three additional common side ohms
backplane relays are listed last).

For example, to print out the channel images on this card when it is in Slot 2
after a reset, send the following:

reset ()
print (channel.getimage ('slot2"))

Output from above code:

2001;2002;2003;2004,;2005;2006;2007;2008;2009;2010;2011;2012
72013;2014;2015;2016;,2017;2018;2019;2020;2021;2022;2023;202
4;2025;2026;2027;2028;2029;2030;2031;2032;2033;2034;2035;20
36;2037;2038;2039;,2040;2041;2042;2911;2912;2913;2914;2915;2
916;2921;2922;2923;2924;2925;2926;2917;2927;2928

NOTE The common side ohm backplane relays (2917, 2927, and 2928) are
listed last.

3700S-901-01 Rev. C / July 2008 13-7

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

DMM configuration

When a DMM configuration is updated, the instrument will go through all switch
channels in the system to find ones that have the updated configuration
assigned as its DMM configuration attribute setting. For each one found, it will
verify that the new configuration attribute settings are still valid for that channel.
If the settings are still valid and needed, changes will be made to support the
new settings.

The Model 3721 card has three additional backplane relays for common side
ohms functionality. Using 'slotX' or 'allslots' to query settings on this
card returns information for Channels 1 to 40, 911 to 916, 921 to 926, then 917,
927, and 928 in the response message (the three additional common side ohms
backplane relays are listed last).

For example, to print the channel images on this card when it is in Slot 2 after a
reset, send the following:

reset ()

print (channel.getimage ('slot2"))

Output from above code:

2001;2002;2003;2004;2005;,2006;2007;2008;2009;2010;201
1;2012;2013;2014;2015;2016;2017,;2018;2019;,2020;2021;2
022;2023;2024;2025;2026;2027;2028;2029;2030;,2031;2032
;2033;2034;2035;2036;2037;2038;2039;2040;2041,;2042;29
11;2912;2913;2914;2915;2916,;2921;2922;2923;2924;2925;
2926;2917;2927;2928

NOTE The common side ohm backplane relays (2917, 2927, and 2928) are
listed last.

DMM new configuration example

For example, assume Slot 6 has a Model 3720 card installed and the following
ICL commands are sent:

reset ()
dmm.nplc = .1
dmm.range = 10

dmm.configure.set ('myconfig"')
dmm.setconfig('slot6', 'myconfig')
print (dmm.getconfig('slot6'))

13-8 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

The output will be 60 comma-delimited myconfig strings, as follows:

myconfig,myconfig, myconfig,myconfig,myconfig,myconfig, mycon
fig,myconfig,myconfig,myconfig,myconfig,myconfig, myconfi
g,myconfig,myconfig,myconfig,myconfig, myconfig,myconfig,
myconfig,myconfig, myconfig,myconfig,myconfig,myconfig, my
config,myconfig,myconfig,myconfig, myconfig,myconfig,myco
nfig,myconfig,myconfig,myconfig,myconfig,myconfig, myconf
ig,myconfig,myconfig,myconfig,myconfig,myconfig,myconfig
,myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,m
yconfig,myconfig,myconfig, myconfig,myconfig,myconfig, myc
onfig,myconfig,myconfig,myconfig

Next, the following ICL commands are sent:

dmm. func = 'fourwireohms'
dmm.nplc .5

dmm.range = 100000
dmm.configure.set ('myconfig"')
print (dmm.getconfig('slot6'))

The output will be 30 comma-delimited myconfig strings, as follows:

myconfig,myconfig,myconfig,myconfig, myconfig, myconfig,mycon
fig,myconfig,myconfig,myconfig,myconfig,myconfig, myconfi
g,myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,
myconfig,myconfig, myconfig,myconfig,myconfig,myconfig, my
config,myconfig,myconfig, myconfig, myconfig

As this example shows, 'myconfig' was first saved with a function setting of
DC volts, which was valid for all 60 channels on Slot 6. However, when
'myconfig' was associated with a function setting of 4-wire ohms, Channels
31 to 60 became unavailable because they are paired with Channels 1 to 30 in
4-wire measurement operation.

Next, the following ICL commands are sent:

dmm. func = 'temperature'
dmm.configure.set ('myconfig')
print (dmm.getconfig('slot6'))

The output will be 30 comma-delimited myconfig strings, followed by 30
comma-delimited nofunctions strings, as follows:

myconfig,myconfig, myconfig,myconfig,myconfig,myconfig, mycon
fig,myconfig,myconfig,myconfig,myconfig,myconfig, myconfi
g,myconfig,myconfig,myconfig,myconfig,myconfig,myconfig,
myconfig,myconfig, myconfig,myconfig,myconfig,myconfig, my
config,myconfig,myconfig, myconfig,myconfig,nofunction, no
function,nofunction, nofunction,nofunction, nofunction,nof
unction,nofunction,nofunction, nofunction,nofunction, nofu
nction,nofunction, nofunction,nofunction, nofunction,nofun
ction,nofunction,nofunction, nofunction,nofunction, nofunc
tion,nofunction, nofunction,nofunction, nofunction,nofunct
ion,nofunction, nofunction,nofunction

3700S-901-01 Rev. C / July 2008 13-9

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

If you now associate 'myconfig' with a 2-wire temperature function,
'myconfig' stays on Channels 1 to 30, but because Channels 31 to 60 are no
longer paired, they are set back to a default DMM configuration setting of
'nofunction' because the unit has no way of knowing what configuration is
desired on those channels.

Likewise, changing a DMM configuration to pertain to a function not supported
by a channel will cause the channel to be set back to the 'nofunction’
setting. Continuing the example, if 'myconfig’ is set to pertain to the DC
current function, then Channels 1 to 30, Slot 6, would be setto 'nofunction'
because these channels don't support the amp functionality.

Next, the following ICL commands are sent:

dmm. func = 'dccurrent'
dmm.configure.set ('myconfig')
print (dmm.getconfig('slot6'))

The output will be 60 comma-delimited nofunctions, as follows:

nofunction,nofunction,nofunction, nofunction, nofunction, nofu
nction,nofunction, nofunction,nofunction, nofunction,nofun
ction,nofunction,nofunction, nofunction, nofunction, nofunc
tion,nofunction, nofunction,nofunction, nofunction,nofunct
ion, nofunction,nofunction, nofunction,nofunction, nofuncti
on,nofunction,nofunction, nofunction,nofunction, nofunctio
n,nofunction,nofunction, nofunction,nofunction, nofunction
,nofunction, nofunction,nofunction, nofunction,nofunction,
nofunction,nofunction, nofunction, nofunction, nofunction,n
ofunction,nofunction,nofunction,nofunction, nofunction, no
function,nofunction, nofunction,nofunction, nofunction,nof
unction, nofunction, nofunction, nofunction

As this example demonstrates, it is important to be careful when updating the
attributes associated with a DMM configuration. Changing settings within the
same function (for example, NPLC or range) will usually not change the DMM
configuration, but you should still be cautious. For example, you should be
careful changing a setting like transducer for temperature to indicate 2-pole or 4-
pole measurement operation.

13-10 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

ICL command list

dataqueue.count (on page 3-10)
This section provides a listing of Instrument dataqueue.next () (on page 3-11)
Control Library commands and basic functional
group usage. delay functions
delay () (on page 13-86)

beeper functions and attributes digio functions and attributes
beeper.beep () (on page 13-16)

beeper.enable (on page 13-16) digio.readbit () (on page 13-87)
digio.readport () (on page 13-87)
digio.trigger[N].assert () (on page 13-

. . 88)
blthH1Ct|Of]S digio.trigger[N].clear () (on page 13-
bit.bitand() (on page 13-17) 88)

bit.bitor() (on page 13-18) digio.trigger[N].mode (on page 13-88)
bit.bitxor() (on page 13-18) digio.trigger[N].overrun (on page 13-
bit.clear() (on page 13-19) 89)

bit.get () (on page 13-19) digio.trigger[N].pulsewidth (on page

bit.getfield() (on page 13-20)
bit.set () (on page 13-21)

13-90)
digio.trigger[N].release((on page 13-

bit.setfield() (on page 13-21) 90))
bit.test () (on page 13-22) digio.trigger[N].stimulus (on page 13-
bit.toggle() (on page 13-23) 91)

digio.trigger[N].wait () (on page 13-92)
. . dégéo.wr;tebit() (on page 13-92)
channel functions and attributes digio.writeport() (on page 13-92)

. digio.writeprotect (on page 13-93)
channel.clearforbidden () (on page 13-
36)
channel.close() (on page 13-37)
channel.connectrule (on page 13-39)
channel.connectsequential (on page 13-

display functions and attributes
display.clear() (on page 13-93)

40) display.getannunciators () (on page 13-
channel.exclusiveclose () (on page 13- 94)

41) display.getcursor() (on page 13-95)
channel.exclusiveslotclose() (on page display.getlastkey () (on page 13-96)

13-43)
channel.getbackplane () (on page 13-45)
channel.getclose () (on page 13-46) display.loadmenu.add (on page 13-100)
channel.getcount () (on page 13-48) display.loadmenu.delete () (on page 13-
channel.getdelay () (on page 13-49) 101)
channel.getforbidden () (on page 13-50) display.locallockout (on page 13-102)
channel.getimage () (on page 13-51) display.menu() (on page 13-102)
channel.getlabel () (on page 13-52) display.prompt () (on page 13-102)
channel.getpole() (on page 13-55) display.screen (on page 13-104)
channel.getstate() (on page 13-56) display.sendkey () (on page 13-105)
channel.open() (on page 13-59) display.setcursor() (on page 13-105)

(

(

display.gettext () (on page 13-97)
display.inputvalue() (on page 13-98)

channel.pattern.catalog() (on page 13- display.settext () (on page 13-106)

61) display.waitkey () (on page 13-107)
channel.pattern.delete() (on page 13-
62) . .
ggfnnel.pattern.getimage () (on page 13- dmm functions and attributes
channel.pattern.setimage () (on page 13- dmm.adjustment.count (on page 13-109)
63) dmm.adjustment.date (on page 13-109)
channel.pattern.snapshot () (on page 13- dmm.aperture (on page 13-110)
66) dmm.appendbuffer () (on page 13-111)
channel.reset () (on page 13-68) dmm.autodelay (on page 13-112)
channel.setbackplane () (on page 13-70) dmm.autorange (on page 13-113)
channel.setdelay () (on page 13-72) dmm.autozero (on page 13-114)
channel.setforbidden() (on page 13-73) dmm.buffer.catalog() (on page 13-115)
channel.setlabel () (on page 13-74) dmm.buffer.info() (on page 13-116)
channel.setpole () (on page 13-79) dmm.buffer.maxcapac1ty (on page 13-117)
dmm.buffer.usedcapacity (on page 13-
118)

dmm.calibration.ac() (on page 13-118)

datagueue functions and attributes

dataqueue.add () (on page 3-10)
dataqueue.CAPACITY (on page 3-10)
dataqueue.clear () (on page 3-10)

dmm.calibration
dmm.calibration
dmm.calibration
122)

.dc() (on page 13-120)
.lock () (on page 13-121)
.password (on page 13-

3700S-901-01 Rev. C / July 2008

13-11

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.calibration.save () (on page 13-122)
dmm.calibration.unlock () (on page 13-
122)

dmm.calibration.verifydate (on page 13-
123)

dmm.close () (on page 13-123)
dmm.configure.catalog() (on page 13-
125)

dmm.configure.delete () (on page 13-125)
dmm.configure.query () (on page 13-126)
dmm.configure.recall () (on page 13-128)
dmm.configure.set () (on page 13-129)
dmm.connect (on page 13-130)
dmm.dbreference (on page 13-131)
dmm.detectorbandwidth (on page 13-132)
dmm.displaydigits (on page 13-132)
dmm.drycircuit (on page 13-133)

dmm. filter.count (on page 13-134)
dmm.filter.enable (on page 13-134)
dmm.filter.type (on page 13-135)
dmm.filter.window (on page 13-136)

dmm. fourrtd (on page 13-137)

dmm. func (on page 13-137)
dmm.getconfig() (on page 13-139)

dmm. inputdivider (on page 13-140)
dmm.limit[Y].autoclear (on page 13-141)
dmm.limit[Y].clear() (on page 13-141)
dmm.limit[Y].enable (on page 13-142)
dmm.limit[Y].high.fail (on page 13-142)
dmm.limit[Y].high.value (on page 13-
143)

dmm.limit[Y].low.fail (on page 13-143)
dmm.limit[Y].low.value (on page 13-144)
dmm.linesync (on page 13-144)
dmm.makebuffer () (on page 7-8)
dmm.math.enable (on page 13-147)
dmm.math.format (on page 13-147)
dmm.math.mxb.bfactor (on page 13-148)
dmm.math.mxb.mfactor (on page 13-149)
dmm.math.mxb.units (on page 13-149)
dmm.math.percent (on page 13-150)
dmm.measure () (on page 13-150)
dmm.measurecount (on page 13-151)
dmm.measurewithtime () (on page 13-151)
dmm.nplc (on page 13-152)
dmm.offsetcompensation (on page 13-153)
dmm.open () (on page 13-154)
dmm.opendetector (on page 13-155)
dmm.range (on page 13-156)
dmm.refjunction (on page 13-157)
dmm.rel.acquire() (on page 13-158)
dmm.rel.enable (on page 13-159)
dmm.rel.level (on page 13-160)
dmm.reset () (on page 13-161)
dmm.rtdalpha (on page 13-162)
dmm.rtdbeta (on page 13-163)
dmm.rtddelta (on page 13-164)
dmm.rtdzero (on page 13-165)
dmm.savebuffer () (on page 7-10)
dmm.setconfig() (on page 13-168)
dmm.simreftemperature (on page 13-169)
dmm.thermistor (on page 13-170)

dmm. thermocouple (on page 13-171)

dmm. threertd (on page 13-172)
dmm.threshold (on page 13-173)

dmm. transducer (on page 13-173)
dmm.units (on page 13-174)

errorqueue functions and attributes

errorqueue.clear() (on page 13-176)
errorqueue.count (on page 13-176)
errorqueue.next () (on page 13-176)

eventlog functions and attributes

even
even
even
even
even

tlog.all()

tlog.clear()

tlog.count
tlog.enable
tlog.next ()

exit functions
() (on page 13-180)

exit

file functions

file:
file:
file:
file:
file:

read()
seek ()

close()
flush()

write ()

(on page 13-178)

(on page 13-178)

(on page 13-179)
(on page 13-179)
(on page 13-180)

(on page 9-10)
(on page 9-10)

(on page 9-10)
(on page 9-11)

(on page 9-11)

format attributes

format.asciiprecision (on page 13-183)
format.byteorder

format.data

(on page 13-183)

(on page 13-184)

fs functions
fs.chdir()

fs.c
fs.1i

fs.is file()

s dir()

fs.mkdir ()

fs.readdir ()

fs.rmdir ()

(on page 9-9)
wd () (on page 9-9)
(on page 9-9)

(on page 9-9)

(on page 9-9)

(on page 9-9)

(on page 9-10)

gpib attributes

gpib.address

io functions

io.c

lose ()

io.flush()
io.input ()
io.open ()

io.o

io.read()
io.type()
io.write()

(
utput ()
(
(

(on page 13-187)

(on page 9-12)
(on page 9-12)
(on page 9-12)
on page 9-13)
(on page 9-13)
on page 9-13)
on page 9-14)
(on page 9-14)

LAN functions and attributes

lan.applysettings () (on page 13-190)
lan.config.autonegotiate (on page 13-

191)
lan.
13-1
lan.
lan.
lan.
193)
lan.
lan.
lan.
lan.
lan.
lan.

config.
91)

config.
config.
config.

config.
config.
config.
config.
config.
config.

dns.address[index] (on page

dns.domain (on page 13-192)
dns.dynamic (on page 13-193)
dns.hostname (on page 13-

dns.verify (on page 13-194)

duplex

(on page 13-194)

gateway (on page 13-195)
ipaddress (on page 13-195)

method
speed

(on page 13-196)
(on page 13-196)

13-12

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

lan.config.subnetmask (on page 13-197)
lan.lxidomain (on page 13-197)

lan.pingenable (on page 13-198) opcC functions
%ggistatus.dns.address[N] (on page 13- opc() (on page 13-220)
lan.status.dns.hostname (on page 13-

200) .

lan.status.duplex (on page 13-200) p”nthffer

lan.status.gateway (on page 13-200)
lan.status.ipaddress (on page 13-201)
lan.status.macaddress (on page 13-201)
lan.status.port.dst (on page 13-201)

printbuffer () (on page 13-221)
printnumber () (on page 13-222)

%ggistatus.port.rawsocket (on page 13 ptp ﬂJnctu)ns and aIUWbutes
lan.status.port.telnet (on page 13-202) ptp.burst.enable() (on page 13-223)
lan.status.port.vxill (on page 13-202) ptp.ds.current() (on page 13-223)
lan.status.reset () (on page 13-202) ptp.ds.default () (on page 13-224)
lan.status.speed (on page 13-203) ptp.ds.foreignmaster () (on page 13-224)
lan.status.subnetmask (on page 13-203) ptp.ds.globaltime () (on page 13-225)
lan.trigger|[N].assert () (on page 13- ptp.ds.parent () (on page 13-225)

203)) ptp.ds.portconfig() (on page 13-226)
lan.tr%gger[Nj.clear() (on page 13-204) ptp.enable () (on page 13-227)
lan.trigger|[N].connect () (on page 13- ptp.portstate (on page 13-227)

204) ptp.preferredmaster.enable () (on page
lan.trigger[N].connected (on page 13- 13-228)

204) ptp.subdomain (on page 13-228)
lan.trigger[N] .EVENT ID (on page 13- ptp.synchronized (on page 13-228)
204) . ptp.syncinterval (on page 13-229)
lan.trigger[N].ipaddress (on page 13- ptp.time (on page 13-229)

204) ptp.utcoffset (on page 13-229)

lan.trigger[N].mode (on page 13-205)
lan.trigger[N].overrun (on page 13-206)

lan.trigger[N].protocol (on page 13- reset functions

207)

lan.trigger[N].pseudostate (on page 13- reset () (on page 13-230)

207)

lan.trigger[N].stimulus (on page 13- . .

208) scan functions and attributes

lan.trigger[N].wait () (on page 13-209) scan.abort () (on page 13-230)

scan.add () (on page 13-230)

H : scan.background() (on page 13-232)
localnode functions and attributes coan.bypass (on page 13-333)
localnode.define.* (on page 13-210) scan.create () (on page 13-234)
localnode.description (on page 13-210) scan.execute () (on page 13-236)
localnode.execute () (on page 3-11) scan.list () (on page 13-237)
localnode.getglobal () (on page 3-11) scan.measurecount (on page 13-238)
localnode.linefreq (on page 13-211) scan.mode (on page 13-239)
localnode.model (on page 13-211) scan.nobufferbackground () (on page 13-
localnode.password (on page 13-212) 240)
localnode.passwordmode (on page 13-212) scan.nobufferexecute () (on page 13-241)
localnode.prompts (on page 13-212) scan.reset () (on page 13-242)
localnode.reset () (on page 13-213) scan.scancount (on page 13-242)
localnode.revision (on page 13-214) scan.state() (on page 13-243)
localnode.serialno (on page 13-214) scan.stepcount (on page 13-243)
localnode.setglobal () (on page 3-12) scan.trigger.arm.clear () (on page 13-
localnode.settime () (on page 13-215) 244))
localnode.setup.poweron (on page 13- scan.trigger.arm.set () (on page 13-244)
215) scan.trigger.arm.stimulus (on page 13-
localnode.setup.recall () (on page 13- 244)
216) scan.trigger.channel.clear() (on page
localnode.setup.save () (on page 13-216) 13-245)
localnode.showerrors (on page 13-217) ggg?.trlgger.channel.set() (on page 13-
scan.trigger.channel.stimulus (on page
i 13-246)
makegetter functions scan.trigger.clear () (on page 13-247)
makegetter () (on page 13-218) scan.trigger.measure.clear() (on page
makesetter () (on page 13-218) 13-247)
scan.trigger.measure.set () (on page 13-
. 247)
memory functions scan.trigger.measure.stimulus (on page

13-247)

memory.available() (on page 13-219) :
memory. used () (on page 13-219) fgfgégflgger.sequence.clear() (on page

scan.trigger.sequence.set () (on page

3700S-901-01 Rev. C / July 2008 13-13

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

13-248)
scan.trigger.sequence.stimulus (on page
13-249)

schedule functions and attributes

schedule.alarm[x].enable (on page 13-
250)

schedule.alarm[x].EVENT ID (on page 13-
250) B
schedule.alarm[x].fractionalseconds (on
page 13-250)

schedule.alarm[x].period (on page 13-
251)

schedule.alarm[x].ptpseconds (on page
13-251)

schedule.alarm[x].repetition (on page
13-251)

schedule.alarm[x].seconds (on page 13-
251)

schedule.disable() (on page 13-252)

setup functions and attributes

setup.cards () (on page 13-252)
setup.poweron (on page 13-253)
setup.recall () (on page 13-253)
setup.save () (on page 13-254)

slot[X] attributes

slot[X].commonsideohms (on page 13-255)
slot[X].digio (on page 13-255)
slot[X].endchannel.amps (on page 13-
255)

slot[X].endchannel.isolated (on page
13-250)

slot[X].endchannel.voltage (on page 13-
257)

slot[X].idn (on page 13-257)
slot[X].interlock.override (on page 13-
257)

slot[X].interlock.state (on page 13-
258)

slot[X].isolated (on page 13-259)
slot[X].matrix (on page 13-259)
slot[X].maxvoltage (on page 13-259)
slot[X].multiplexer (on page 13-259)
slot[X].poles.four (on page 13-260)
slot[X].poles.one (on page 13-260)
slot[X].poles.two (on page 13-260)
slot[X].pseudocard (on page 13-260)
slot[X].startchannel.amps (on page 13-
261)

slot[X].startchannel.isolated (on page
13-262)

slot[X].startchannel.voltage (on page
13-263)

slot[X].tempsensor (on page 13-263)
slot[X].thermal.state (on page 13-263)

status functions and attributes

status.condition (on page 13-264)
status.measurement.* (on page 13-265)
status.node enable (on page 13-267)
status.node event (on page 13-269)
status.operation.* (on page 13-270)
status.operation.user.* (on page 13-
271)

status.questionable.* (on page 13-273)
status.request enable (on page 13-276)

status.request event (on page 13-278)
status.reset ()" (on page 13-278)
status.standard.* (on page 13-278)
status.system.* (on page 13-280)
status.system2.* (on page 13-281)
status.system3.* (on page 13-282)
status.system4.* (on page 13-284)
status.system5.* (on page 13-285)

timer functions

timer.measure.t () (on page 13-286)
timer.reset () (on page 13-287)

trigger functions and attributes

trigger.blender[N].clear() (on page 13-
287)

trigger.blender[N].orenable (on page
13-287)

trigger.blender[N].overrun (on page 13-
288)

trigger.blender[N].stimulus[M] (on page
13-288)

trigger.blender[N].wait () (on page 13-
289)

trigger.clear () (on page 13-289)
trigger.wait () (on page 13-290)

trigger.timer functions and attributes

trigger.timer[N].clear (on page 13-290)
trigger.timer[N].count (on page 13-290)
trigger.timer [N].delay (on page 13-291)
trigger.timer[N].delaylist (on page 13-
291)

trigger.timer[N].overrun (on page 13-
292)

trigger.timer[N].passthrough (on page
13-292)
trigger.timer[N].triggerstimulus (on
page 13-292)

trigger.timer[N].wait () (on page 13-
293)

tsplink functions and attributes

tsplink.group (on page 3-12)
tsplink.master (on page 3-12)
tsplink.node (on page 13-294)
tsplink.reset () (on page 13-294)
tsplink.state (on page 13-295)

tsplink.trigger functions and
attributes

tsplink.trigger[N].assert () (on page 3-
12)

tsplink.trigger[N].clear () (on page 3-
13)

tsplink.trigger[N].mode (on page 3-13)
tsplink.trigger[N].overrun (on page 3-
15)

tsplink.trigger[N].release() (on page
3-15)

tsplink.trigger[N].stimulus (on page
13-298)

tsplink.trigger[N].wait () (on page 3-
15)

13-14

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 13: Instrument Control Library (ICL)

tspnet functions and attributes

tspnet.clear() (on page 10-10)
tspnet.connect () (on page 10-5)
tspnet.disconnect () (on page 10-10)
tspnet.execute () (on page 10-6)
tspnet.idn() (on page 10-6)
tspnet.read() (on page 10-8)

tspnet.readavailable () (on page 10-9)

tspnet.reset () (on page 10-10)
tspnet.termination() (on page 10-11)
tspnet.timeout (on page 10-11)
tspnet.tsp.abort () (on page 10-13)

tspnet.tsp.abortonconnect (on page 10-

14)

tspnet.tsp.rbtablecopy () (on page 10-

12)

tspnet.tsp.runscript() (on page 10-12)

tspnet.write() (on page 10-7)

upgrade functions

upgrade.previous () (on page 13-309)
upgrade.unit () (on page 13-309)

userstring functions
userstring.add() (on page 13-310)

userstring.catalog() (on page 13-310)

userstring.delete () (on page 13-311)
userstring.get () (on page 13-311)

waitcomplete functions
waitcomplete () (on page 3-16)

3700S-901-01 Rev. C / July 2008

13-15

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

beeper functions and attributes

The beeper generates a beep tone. It is typically used to announce the start
and/or completion of a test or operation.

beeper.beep()

Function Generates a beep tone.

Usage beeper.beep (duration, frequency)
duration: Set from 0.1 to 100 (seconds).
frequency: Set to 453, 621, 987, or 2400 (Hz).

Remarks There are four beeper frequencies: 453Hz, 621Hz, 987Hz, and 2400Hz. If you set
frequency to a different value, the closest supported frequency will be selected.
The beeper will not sound if it is disabled (see beeper.enable (on page 13-16)).
This function is an overlapped command. Script execution will continue and not wait
for the beep to finish. If another beep command is sent before the previous beep
finishes, the first beep is terminated. You can use the function waitcomplete() (on page
3-16) to pause script execution until the beep command finishes.

Also see beeper.enable (on page 13-16)

Example Enables the beeper and generates a two-second, 2400Hz beep:

beeper.enable = 1

beeper.beep (2, 2400)

beeper.enable

Attribute

Beeper control (on/off).

Usage

To read the state of the beeper:
beeperstate = beeper.enable

To write the state of the beeper:
beeper.enable = beeperstate

Set beeperstate to one of the following values:

e 0: Beeper disabled
e 1: Beeper enabled

Remarks

This attribute enables or disables the beeper. Disabling the beeper also disables front
panel key clicks.

Cycling power enables the beeper. The reset function does not affect the beeper state.

Also see

beeper.beep() (on page 13-16)

Example

Enables the beeper and generates a two-second, 2400Hz beep:
beeper.enable = 1

beeper.beep (2, 2400)

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

bit functions

Logic and bit operations

The bit functions are used to perform bitwise logic operations on two given
numbers, and bit operations on one given number. Logic and bit operations
truncate the fractional part of given numbers to make them integers.

NOTE The Test Script Processor (TSP™) stores all numbers internally as
single precision IEEE-754 floating point values. The internal number
representation only stores 24 bits of numeric data. The logic
operations will work correctly for all integer values between 0 and
4294967295. However, only the 24 most significant bits will be stored
for the return value.

Logic operations:

The bit.bitand, bit.bitor, and bit.bitxor functions in this group
perform logic operations on two numbers. The TSP will perform the indicated
logic operation on the binary equivalents of the two integers. Logic operations
are performed bitwise. That is, Bit 1 of the first number is AND'ed, OR'ed or
XOR'ed with Bit 1 of the second number. Bit 2 of the first number is AND'ed,
OR'ed or XOR'ed with Bit 2 of the second number. This bitwise logic operation is
performed on all corresponding bits of the two numbers. The result of a logic
operation will be returned as an integer.

Bit operations:

The rest of the functions in this group are used for operations on the bhits of a
given number. These functions can be used to clear a bit, toggle a bit, test a bit,
set a bit (or bit field), and retrieve the weighted value of a bit (or field value). All
of these functions use an index parameter to "point" to the bit position of the
given number. The least significant bit of a given number has an index of 1, and
the most significant bit has an index of 32.

bit.bitand()
Function Performs a bitwise logical AND operation on two numbers.
Usage value = bit.bitand(valuel, value2)
valuel: First number for the AND operation.
value2: Second number for the AND operation.
value: Returned result of the AND operation.
Remarks e This function performs a logical AND operation on two numbers.
e Any fractional parts of valuel and value?2 are truncated to make them
integers. The returned value is also an integer.

3700S-901-01 Rev. C / July 2008 13-17

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

bit.bitand()

Also see Logic and bit operations (on page 13-17)
bit.bitor() (on page 13-18)
bit.bitxor() (on page 13-18)

Example AND'ing decimal 10 (binary 1010) with decimal 9 (binary 1001) will return a value of
decimal 8 (binary 1000):

value = bit.bitand (10, 9)

print (value)

Output: 8.000000e+00

bit.bitor()

Function Performs a bitwise logical OR operation on two numbers.

Usage value = bit.bitor(valuel, value2)
valuel: First number for the OR operation.
value2: Second number for the OR operation.

value: Returned result of the OR operation.

Remarks e This function performs a logical OR operation on two numbers.

e Any fractional parts of valuel and value?2 are truncated to make them
integers. The returned value is also an integer.

Also see Logic and bit operations (on page 13-17)
bit.bitand() (on page 13-17)
bit.bitxor() (on page 13-18)

Example Performs a bitwise logical OR operation on decimal 10 (binary 1010) with decimal 9
(binary 1001); will return a value of decimal 11 (binary 1011):

value = bit.bitor (10, 9)

print (value)

Output: 1.100000e+01

bit.bitxor()

Function Performs a bitwise logical XOR (Exclusive OR) operation on two numbers.

Usage value = bit.xor (valuel, value?2)
valuel: First number for the XOR operation.
value2: Second number for the XOR operation.

value: Returned result of the XOR operation.

Remarks e This function performs a logical Exclusive OR operation on two numbers.

e Any fractional parts of valuel and value?2 are truncated to make them
integers. The returned value is also an integer.

13-18 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

bit.bitxor()

Details

Logic and bit operations (on page 13-17)
bit.bitor() (on page 13-18)

Example

Performs a bitwise logical exclusive OR operation on decimal 10 (binary 1010) with
decimal 9 (binary 1001); will return a value of decimal 3 (binary 0011):

value = bit.bitxor (10, 9)

print (value)

Output: 3.000000e+00

bit.clear()

Function

Clears a bit at a given index position.

Usage

value = bit.clear(valuel, index)
valuel: Given number.
index: Index position of the bit to be cleared (1 to 32).

value: Returns the result of the manipulation.

Remarks

e This function clears a bit at a given index position.

e Any fractional part of valuel is truncated to make it an integer. The returned
value is also an integer.

e The least significant bit of the given number is at index 1. The most significant bit is
at index 32.

Also see

Logic and bit operations (on page 13-17)
bit.get() (on page 13-19)

bit.getfield() (on page 13-20)

bit.set() (on page 13-21)

bit.setfield() (on page 13-21)

bit.toggle() (on page 13-23)

Example

The binary equivalent of decimal 15 is 1111. If you clear the bit at index position 2, the
returned decimal value would be 13 (binary 1101):

value = bit.clear (15, 2)

print (value)

Output: 1.300000e+01

bit.get()

Function

Retrieves the weighted value of a bit at a given index position.

Usage

value = bit.get(valuel, index)
valuel: Given number.
index: Index position of the bit to be retrieved (1 to 32).

value: Returned weighted value of the bit.

3700S-901-01 Rev. C / July 2008

13-19

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

bit.get()

Remarks

e This function returns the value of the bit in valuel at the given index. This is the
same as returning valuel with all other non-indexed bits set to zero.

e Prior to retrieving the indexed bit, any fractional part of the given number will be
truncated to make it an integer. The least significant bit of the given number has an
index of 1 and the most significant bit has an index of 32.

e |f the indexed bit for the number is set to 0, the result will be 0.

e See Logic and bit operations (on page 13-17) for more information.

Also see

bit.clear() (on page 13-19)
bit.set() (on page 13-21)
bit.setfield() (on page 13-21)
bit.test() (on page 13-22)
bit.toggle() (on page 13-23)

Example

The binary equivalent of decimal 10 is 1010. Getting the bit at index position 4 will
return decimal value 8:

value = bit.get (10, 4)
print (value)

Output: 8.000000e+00

bit.getfield()

Function

Returns a field of bits starting at a given index position.

Usage

value = bit.getfield(valuel, index, width)
valuel: Given number.

index: Index position of the first bit; 1 to (33 - width).

width: Field width - number of bits to be included in the field; 1 to 24.

value: Returned value of the bit field.

Remarks

o Afield of bits is a contiguous group of bits. This function retrieves a field of bits
from valuel, starting at the given index position. The index position is the least
significant bit of the retrieved field. The number of bits to return is given by width.

e Prior to retrieving the field of bits, any fractional part of the given number will be
truncated to make it an integer.

e The least significant bit of the given number has an index of 1 and the most
significant bit has an index of 32.

13-20

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

bit.getfield()

Also see

Logic and bit operations (on page 13-17)
bit.clear() (on page 13-19)

bit.get() (on page 13-19)

bit.set() (on page 13-21)

bit.setfield() (on page 13-21)

bit.test() (on page 13-22)

bit.toggle() (on page 13-23)

Example

The binary equivalent of decimal 13 is 1101. The field at index 2 and width 3 consists
of the binary bits 110. The returned value will be decimal 6 (binary 110):

value = bit.getfield (13, 2, 3)
Output: 6.000000e+00

bit.set()

Function

Sets a bit at a given index position.

Usage

value = bit.set (valuel, index)
valuel: Given number.
index: Index position of the bit to be set (1 to 32).

value: Returned value of the new number.

Remarks

e This function returns value, which is valuel with the indexed bit set. The index
must be a value between 1 and 32. The least significant bit of the given number
has an index of 1 and the most significant bit has an index of 32.

e Any fractional part of valuel will be truncated to make it an integer.

Also see

Logic and bit operations (on page 13-17)
bit.clear() (on page 13-19)

bit.get() (on page 13-19)

bit.getfield() (on page 13-20)
bit.setfield() (on page 13-21)

bit.test() (on page 13-22)

bit.toggle() (on page 13-23)

Example

The binary equivalent of decimal 8 is 1000. If the bit at index 3 is set to 1, the returned
value will be decimal 12 (binary 1100):

value = bit.set (8, 3)
Output: 1.200000e+01

3700S-901-01 Rev. C / July 2008

13-21

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

bit.setfield()

Function

Overwrites a bit field at a given index position.

Usage

value = bit.setfield(valuel, index, width, fieldvalue)
valuel: Given number.

index: Index position of the least significant bit of the field; 1 to (33 - width).
width: Field width number of bits in the field; 1 to 24.

fieldvalue: Value to write to the field.

value: Returned value of the new number.

Remarks

e This function returns value, which is valuel with a field of bits overwritten,
starting at the given index position. The index specifies the position of the least
significant bit of the given field. The width bits starting at the given index will be set
to the value given by fieldvalue. The least significant bit in valuel has an
index of 1 and the most significant bit has an index of 32.

e Prior to setting the field of bits, any fractional parts of valuel and fieldvalue will be
truncated to make them integers.

o Ifthe fieldvalue is wider than the width, the extra most significant bits of the
fieldvalue will be truncated. For example, assume the width is 4 bits, and the
binary value for fieldwidth is 11110 (5 bits). The most significant bit of
fieldwidth will be truncated, and a binary value of 1110 will be used as the
fieldvalue.

Also see

Logic and bit operations (on page 13-17)
bit.clear() (on page 13-19)

bit.getfield() (on page 13-20)

bit.set() (on page 13-21)

bit.test() (on page 13-22)

bit.toggle() (on page 13-23)

Example

The binary equivalent of decimal 15 is 1111. After overwriting it with a decimal 5
(binary 101) at index position 2, the returned value will be decimal 11 (binary 1011):

value = bit.setfield (15, 2, 3, 5)

print (value)

Output: 1.100000e+01

bit.test()

Function

Returns the Boolean value (true or false) of a bit at a given index position.

Usage

value = bit.test(valuel, index)
valuel: Given number.
index: Index position of the bit to be tested (1 to 32).

value: Returned decimal value of the bit.

13-22

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

bit.test()

Remarks

e This function returns value, which is the result of the tested bit. The least
significant bit of the given number is at index 1. The most significant bit is at index
32.

e Any fractional part of valuel will be truncated to make it an integer. If the
indexed bit for valuel is set to 0, the returned value will be false. If the indexed bit
for valuel is set to 1, the returned value will be true.

e If the index is bigger than the number of bits in valuel, the result will be false.

Also see

Logic and bit operations (on page 13-17)
bit.clear() (on page 13-19)

bit.get() (on page 13-19)

bit.getfield() (on page 13-20)

bit.set() (on page 13-21)

bit.setfield() (on page 13-21)

bit.toggle() (on page 13-23)

Example

The binary equivalent of decimal 10 is 1010. Testing the bit at index position 4 will
return a Boolean value of true:

value = bit.test (10, 4)

print (value)

Output: true

bit.toggle()

Function

Toggles the value of a bit at a given index position.

Usage

value = bit.toggle(valuel, index)
valuel: Given number.
index: Index position of the bit to be toggled (1 to 32).

value: Returned value of the new number.

Remarks

e This function returns value, which is the result of toggling a bit in valuel.

e Any fractional part of valuel is truncated to make it an integer. The returned
decimal value is also an integer. The least significant bit of the given number is
index 1. The most significant bit is index 32.

e The indexed bit for valuel is toggled from0to 1, or 1 to O.

3700S-901-01 Rev. C / July 2008

13-23

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

bit.toggle()

Also see Logic and bit operations (on page 13-17)
bit.clear() (on page 13-19)

bit.get() (on page 13-19)

bit.getfield() (on page 13-20)

bit.set() (on page 13-21)

bit.setfield() (on page 13-21)

bit.test() (on page 13-22)

return a decimal value of 14 (binary 1110).
value = bit.toggle (10, 3)

print (value)

Output: 1.400000e+01

Example The binary equivalent of decimal 10 is 1010. Toggling the bit at index position 3 will

channel functions and attributes

Use the functions and attributes in this group to control and query switching
channels. Unless specifically noted, <ch 1ist> specifies the channels,
backplane relays, and channel patterns in a comma-delimited format on which
the function is to be performed. The following figure shows this format:

Figure 13-1: ch_list legend
Slot # Channel pattern MyList

Channel #

ch list = (F[o03f 2003, 3001

3004, (MyList)")

Second quote closes list
Colon designates range

Comma separates items

First quote starts list

13-24 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 13: Instrument Control Library (ICL)

There are three different notations used to control relays: Backplane relay
notation, MUX (multiplexer) channel notation, and Matrix card notation.

To control analog backplane relays for slots with analog backplane relay
channels, use S9BX, where:

S: Slot number

9: Backplane notation designation (always 9 when referencing a backplane

relay)

B: Bank number

X: Analog backplane relay number

Analog backplane relays (Bank 2 of Slot 1) examples:

Reference

Analog backplane relay

1921

analog backplane relay 1

1922

analog backplane relay 2

1923

analog backplane relay 3

1924

analog backplane relay 4

1925

analog backplane relay 5

1926

analog backplane relay 6

To control channels using MUX channel notation, use sccc, where:

S: Slot number

CCC: Channel number (always use 3 digits)

Multiplexer examples:

Reference Slot Channel
1004 1 004
1020 1 020
2100 2 100
3003 3 003

3700S-901-01 Rev. C / July 2008

13-25

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

Figure 13-2: Multiplexer card display

Multiplexer card
Slot Channel Pole
1 004 2 = Two-pole
4 = Four-pole
Status
OPN = Open
CLS = Closed

o DI:&Y = {]
(e rar) (Cswrson) (owm jur) (CRL | ATER) (e

CONFIG LOCAL

Cowo | rn) (o joeee) (re jwew) (Ceor | ENER) v

&
RESET

13-26 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 13: Instrument Control Library (ICL)

To control channels using matrix card notation, use SRCC, where:
S: Slot number

R: Row number

CC: Column number (always use 2 digits)

Matrix channel examples:

Reference Slot Row Column
1104 1 1 04
1203 1 2 03
2305 2 3 05
3112 3 1 12
6101 6 1 01

Figure 13-3: Matrix card display

Matrix card

Slot Row Column
6 1 01
Status
OPN = Open
CLS = Closed

+ AR+]

OF
T OLT ORY

.o @0 QS S0 00 °©

D‘E’:L)A\’ Com o) Caojsa) (Quijwr) (g |am) -

CONFIG LOCAL

[Como | rn) (nserrjoere) (Cmo jwew) (Cear | enier) V.

RESET

P owrsR |>

3700S-901-01 Rev. C / July 2008

13-27

Section 13: Instrument Control Library (ICL)

Using channel.*() ICL commands

Unless otherwise noted, channel. * () Instrument Control Library (ICL)
commands use the channel list and return the value syntax described below.

e The channel list is specified according to the syntax presented in the
channel list legend. Not all ICL commands support the fully described
syntax. Any exclusions are noted in a specific command's documentation.

e There are five different types of channels available on the supported Model
3706 cards. These include switch (or relay), backplane, totalizer, DAC, and
digital /0. Even though the channels are specified in an identical manner,
not all ICL commands act on all channel types. The descriptions of each ICL
command provide more information.

e When acting on a range of channels is necessary or more convenient, use
the "' notation. For example, to specify Channels 1 through 20 on Slot 4, use
4001:4020.

print (channel.getlabel ("4001:4020"))

e When acting on an entire slot is necessary or more convenient, use the
slotX notation. For example, to specify all channels on Slot 4, use slot4.
print (channel.getlabel ("slot4d"))

e When acting on an entire instrument is necessary or more convenient, use

the allslots notation. For example, to specify channels 1 through 20 on
Slot 4, use allslots.

print (channel.getlabel ("allslots"))
e When arange (including slotX and allslots notation) includes mixed

channel types, the invalid channel types are ignored. If an invalid channel
type is individually specified, then an error is generated.

The following errors can occur because of invalid channel list syntax or
specification.

Error Message Description
invalid specified channel The channel is specified with the correct
syntax, but does not exist on the card.
invalid character in The channel list contains an invalid
channel list character or syntax sequence.
invalid slot in channel The slot specified in the channel list is
list empty
invalid channel type in The channel is specified with the correct
channel list syntax, but the channel type is not
supported by the specified ICL
command.
no valid channels in After processing, no valid channels
channel list remain in the command to act upon.

13-28

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Series 3700 System Switch/Multimeter Reference Manual

Section 13: Instrument Control Library (ICL)

Error Message

Description

invalid label or pattern
name

A string was found in the channel list
that does not specify any known label or
pattern name.

no patterns accepted

A pattern was specified for an ICL
command that does not support patterns
as input.

no multiple channels
accepted

Multiple channels were specified for an
ICL command that acts only on a single
channel.

no range specifier accepted

A range was specified for an ICL
command that does not support a range
as input.

no slot specifier accepted

An entire slot was specified using
slotX (for example, slot1) for an ICL
command that does not support slotX
as input.

no all slots specifier
accepted

All slots were specified using
allslots for an ICL command that
does not support allslots as input.

no labels accepted

A label was specified for an ICL
command that does not support labels
as input.

no paired channels accepted

A channel was specified for an ICL
command that does not act on paired
channels.

no single channels accepted

A single channel was specified for an
ICL command that only supports acting
on groups of channels.

no multiple specifiers
accepted

Multiple descriptions were specified for
an ICL command that does not support
multiple descriptions in a list.

channels all must be of
same type

The provided channel list contains
channels or various channel types, but
the ICL command supports only channel
lists that contain a single, consistent
channel type.

forbidden channel

The channel specified is forbidden to be
closed.

3700S-901-01 Rev. C / July 2008

13-29

Section 13: Instrument Control Library (ICL)

Return value

The return value is a string containing a list of comma-delimited individual return
items. The channel list argument of the ICL command determines the number
and order of these returned items.

When the channel list parameter for this function is 'slotX', the response first
lists the channels starting from lowest to highest. After the channels, backplane
relays are listed starting with the lowest bank first and increasing to the highest.
More specifically, the channels are returned in numerical order.

When the channel list parameter for this functionis 'allslots"', the response
starts with Slot 1 and increases to Slot 6. Each slot is processed completely
before going to the next. Therefore, all Slot 1 channels and backplane relays are
listed before Slot 2 channels.

When the response is humerical, but in string format, use the tonumber ()
function to convert a number string to a variable. For example,

TSP> x = tonumber ("34.3")
TSP> print (x)
3.43e+001

When the response is a comma-delimited string, the individual numbers can be
identified by iterating through the list using the comma delimiters. For example,
the Lua code below will start at the beginning of a string and use the comma as
a signal to break the string into small chunks. The tonumber () function is used
on each chunk to isolate and convert the individual number.

sl =1

s2 =1

e = string.len (text)

while s2 ~= e do
s2 = string.find(text, ",", sl)
if not s2 then s2 = e end

print (tonumber (string.sub (text, sl, s2-1)))
sl = s2 + 1

end

channel.calibration.adjustcount()

Function Gets the number of times that a card has been calibrated.

Series 3700 System Switch/Multimeter Reference Manual

Usage <mycount> = channel.calibration.adjustcount ([ch list])

mycount: Return value representing the number of times unit has been adjusted.

ch_list: A string representing the slot holding the card to query.

Remarks

You can use this command with the instrument/channels either locked or unlocked. If
no channel list is provided, the currently unlocked channels are assumed.

There is only one adjustment count per card. Therefore, with no channel unlocked, the
only acceptable values for channel list are slotl, slot2, and so on. Otherwise, an
error is generated.

13-30

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.calibration.adjustcount()

Example

To query for the adjustment count:

CalCount = channel.calibration.adjustcount ("1010")

channel.calibration.adjustdate()

Function

Sets or gets the adjustment date in UTC format (number of seconds since January 1,
1970) on the unlocked channel.

Usage

mydate = channel.calibration.adjustdate([ch 1list],
[<date>])

mydate: Return value representing the number of seconds since January 1, 1970.
ch_list: A string representing the slot holding the card to query.

date: Represents the number of seconds since January 1, 1970.

Remarks

This command can get the adjust date whether calibration is currently locked or
unlocked. If the channel list is not specified, it uses the currently unlocked card.

This command can only set the adjust date on a previously unlocked card. The date is
not permanently saved until channel.calibration.save () (on page 13-32) is
issued.

There is only one adjustment date per card. Therefore, with no channel unlocked, the
only acceptable values for channel list are slotl, slot2, and so on. Otherwise, an
error is generated.

Also see

channel.calibration.save() (on page 13-32)

Example

To get the number of seconds since January 1, 1970:

date = channel.calibration.adjustdate ()

To set the calibration adjustment date on the currently unlocked slot based on the
current date of the system:

channel.calibration.adjustdate (os.time())

To set the calibration adjustment date on Slot 1 to July 4, 2006:

channel.calibration.adjustdate (os.time (year=2006, month=7,
day = 4))

See Lua documentation for formatting options with os.date () and additional
informationon os.time ().

NOTE: The following example assumes the set date is July 4, 2006.

To query calibration adjustment date and format the response as mm/dd/yyyy:

TSP> print (os.date ("%m/%d/%Y",
channel.calibration.adjustdate()))

07/04/2006

channel.calibration.lock()

Function

Locks calibration on the card being calibrated.

Usage

channel.calibration.lock ()

3700S-901-01 Rev. C / July 2008

13-31

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.calibration.lock()

Remarks This command locks calibration on the card being calibrated, but does not save
calibration data (which is lost if it is not saved before locking). Once locked, you must
unlock calibration to perform it again.

Only one card can be calibrated at a time. Therefore, the 1ock function works only on
the currently unlocked card.
An error is generated if this command is issued when calibration is already locked.
Also see channel.calibration.save() (on page 13-32)
Example To lock calibration:

channel.calibration.lock ()

channel.calibration.password()

Function

Sets the password needed to unlock the calibration of a card.

Usage

channel.calibration.password (<password>)

password: A string of characters that protects the command.

Remarks

There is only one password per card. Therefore, the password function works only
on the currently unlocked card.

Make note of the password, because there is no command to query for the password
once it has been set on the system.

This command generates an error if calibration is locked or if the password string
length is greater than six characters. Passwords are alphanumeric and case-sensitive.

The default password from the factory is KI3706. The first two characters in the
password are capital K capital | (for Keithley Instruments).

Also see

channel.calibration.unlock() (on page 13-34)

Example

To set the password to "MyUnlock" after unlocking calibration with the saved
password:

channel.calibration.password = "MyUnlock"

channel.calibration.save()

Function

Saves calibration data after performing a calibration.

Usage

channel.calibration.save ()

13-32

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.calibration.save()

Remarks Only one card can be calibrated at a time. Therefore, the save function works only on
the currently unlocked card. An error is generated if this command is issued when
calibration is already locked.

The system must receive this command before the
channel.calibration.lock () (on page 13-31) command or the data will be
lost.

This command saves the present values of the calibration constants and calibration
date, and increases the calibration count by 1, regardless of errors in the data. You
should not issue a save command unless the calibration procedure was performed
with no errors. If no calibration date was specified (using
channel.calibration. *date), then the date is auto-generated based on the
system date.

Also see channel.calibration.lock() (on page 13-31)
channel.calibration.adjustdate() (on page 13-31)

channel.calibration.verifydate() (on page 13-35)

Example To save calibration data:

channel.calibration.save ()

channel.calibration.step()

Function Sends a calibrate command to the card.

Usage channel.calibration.step(<single channel>, <step>,
[<value>])

single_channel: Channel to be calibrated.
step: Number corresponding to the specified step.

value: Measurement value for the particular step.

3700S-901-01 Rev. C / July 2008 13-33

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.calibration.step()

Remarks

The specified channel must be on the unlocked slot. Only DAC and totalizer channels
can be calibrated. It is best to calibrate a single channel sequentially to completion
before changing channels.

The card assumes that the given voltage or current value is exactly what it is sourcing
for the given step. This command generates an error if the step is out of sequence,
does not exist, or the calibration is locked. Also, an error is generated if the calibration
step does not complete successfully, if the value passed is invalid or out of range for
the step, or not needed.

For DAC channels, a calibration sequence includes these steps:

1. Set Voltage, -12 to +12 range, generate Negative Point 1.
2. Send reading.

3. Set Voltage, -12 to +12 range, generate Negative Point 2.
4. Send reading.

5. Set Voltage, -12 to +12 range, generate Positive Point 1.
6. Send reading.

7. SetVoltage, -12 to +12 range, generate Positive Point 2.
8. Send reading.

9. Set Current, 0 mA to +20 mA range, generate Point 1.
10. Send reading.

11. Set Current, 0 mA to +20 mA range, generate Point 2.
12. Send reading.

13. Set Current, +4 mA to +20 mA range, generate Point 1.
14. Send reading.

15. Set Current, +4 mA to +20 mA range, generate Point 2.

16. Send reading.
For totalizer channels, a calibration sequence includes these steps:

1. Calibrate 0 V Totalizer Threshold
2. Calibrate 1.5V Totalizer Threshold

channel.calibration.unlock()

Function

Unlocks calibration.

Usage

channel.calibration.unlock(<ch list>, <password>)
ch_list: A string representing the slot holding the card to query.

password: A string of characters that protects the command.

13-34

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.calibration.unlock()

Remarks

There is only one password per card. Therefore, the only acceptable values for
channel list are slotl, slot2, and so on. Otherwise, an error is generated.

An error is generated if the password that is entered does not match the one that was
saved with channel.calibration.password () (on page 13-32).

The password can only contain six case-sensitive, alphanumeric characters.

The default password from the factory is KI3706. The first two characters in the
password are capital K capital | (for Keithley Instruments).

Also see

channel.calibration.password() (on page 13-32)

Example

To unlock calibration for first DAC using the default password:
channel.calibration.unlock ("1010", "KI3706")

channel.calibration.verifydate()

Function

Sets or gets the calibration verification date in UTC format (number of seconds since
January 1, 1970).

Usage

<mydate> = channel.calibration.verifydate([ch list],
[<date>])

mydate: Return value representing the number of seconds since January 1, 1970.
ch_list: A string representing the slot holding the card to set or query.

date: Represents the number of seconds since January 1, 1970.

Remarks

This command can get the verification date whether calibration is currently locked or
unlocked. If the channel list is not specified, it uses the currently unlocked card.

This command can only set the verification date on a previously unlocked card. The
date is not permanently saved until channel.calibration.save () (on page
13-32) is issued.

There is only one verification date per card. Therefore, with no channel unlocked, the
only acceptable values for channel list are slot1l, slot2, and so on. Otherwise, an
error is generated.

Also see

channel.calibration.save() (on page 13-32)

3700S-901-01 Rev. C / July 2008

13-35

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.calibration.verifydate()

Example

To query the number of seconds since January 1, 1970:

CalDate = channel.calibration.verifydate ()

To set the calibration verification date on Slot 1 based on the current date of the
system:

channel.calibration.verifydate(os.time())
To set the calibration verification date on Slot 1 as July 4, 2006:

channel.calibration.verifydate (os.time (year=2006, month=7,
day = 4))

See Lua documentation for formatting options with os . date () and additional
information on os.time ().

NOTE: Example assumes the set date is July 4, 2006.

To query calibration verification date and format the response as mm/dd/yyyy:

TSP> print (os.date ("$m/%d/%Y",
channel.calibration.verifydate ("slotl")))

07/04/2006

channel.clearfor

bidden()

Function

Clears the list of channels specified from being forbidden to close.

Usage

channel.clearforbidden (<ch list>)

ch_list: A string listing the items to no longer be forbidden to close.

Remarks

The ch 1ist parameter indicates the scope of channels affected and may include:
e allslots orslotX (where X equals 1 to 6).

e Channel ranges or individual channels.

e Analog backplane relays.

This function allows all items contained in the channel list parameter to be closed
(removes the "forbidden to close" attribute that can be applied to a channel using
channel.setforbidden() (on page 13-73)).

An error will be generated if:

e The specified channel or analog backplane relay does not exist for card installed in
a slot.

e The specified channel or analog backplane relay is for an empty slot.
e There is a parameter syntax error in the channel specified.

Command processing will stop as soon as an error is detected. If an error is found, the
channels are not cleared from being forbidden to close. With no errors, the channels in
the channel list parameter are cleared from being forbidden to close.

Also see

channel.getforbidden() (on page 13-50)
channel.setforbidden() (on page 13-73)

13-36

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.clearforbidden()

Example

To clear Channels 2, 4, 6, and 8 of Slot 2 from being forbidden to close:
channel.clearforbidden ('2002,2004,2006,2008")

To clear all channels from being forbidden to close:

channel.clearforbidden('allslots"')

channel.close()

Function

Closes specified items in channel list parameter without opening any channels.

Usage

channel.close(<ch_ list>)

ch_list: A string listing the channels and channel patterns to close.

Remarks

This function closes channels and channel patterns (specified by ch 1ist). These
closures are appended to the already closed channels (no previously closed
channels are opened by this command).

The ch 1ist parameter can include analog backplane relay items.

For items specified in ch_1ist, this function closes the associated channels along
with any associated analog backplane relays. For channel patterns, the analog
backplane relays that get closed are the ones that were specified when the pattern
was created (see channel .pattern.setimage () (on page 13-63) and
channel.pattern.snapshot () (on page 13-66)). However, for channels,
they are the ones specified with the channel.setbackplane () (on page 13-
70) function. Another option for closing analog backplane relays with this command is
to include theminthe ch 1ist parameter.

This command has no effect on how the DMM is configured.

3700S-901-01 Rev. C / July 2008

13-37

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

channel.close()

Actions associated with this function include:
e Parse the parameter.

e Close the specified itemsinch list.
e Incur the settling time and user delay.

e Command completes.

An error is generated if:

e Syntax error exists in parameter string.

e An empty parameter string is specified, or a parameter string containing only
spaces exists.

e The parameter string contains 'slotX',where X=1to6,0r 'allslots"'.
e A specified channel or channel pattern is invalid.

e Channel number does not exist for slot specified.

e Slotis empty.

e Channel pattern does not exist.

e A forbidden item is specified.

e Does not support being closed like a digital /0O channel.

e Channel is paired with another bank for a multi-wire application.

e Internal errors related to communication, power consumption, and so on.

Once an error is detected, the command stops processing and no channels are
closed. Channels close only if no syntax errors exist in parameters and all channels
are valid for closing.

For digital I/O, DAC, and totalizer channels, there is no valid behavior. Calling on a
specific channel generates an error. If the digital /0, DAC, or totalizer channel is in
the range of channels, then the channel is ignored.

Details e For delay time, see channel.setdelay() (on page 13-72).
e For analog backplane relays with channels, see channel.setbackplane() (on page
13-70).
e For channels associated with a channel, see channel.getimage() (on page 13-51).
e For channels associated with a channel pattern, see
channel.pattern.getimage() (on page 13-62).
e For channel states (open/close), see channel.getstate() (on page 13-56).
e For closed channels, see channel.getclose() (on page 13-46).
Also see channel.exclusiveclose() (on page 13-41)

channel.exclusiveslotclose() (on page 13-43)
channel.open() (on page 13-59)
dmm.close() (on page 13-123)

13-38

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.close()

Example

To close Channels 1 to 5 on Slot 1, Channel 3 on Slot 3, and mychans:
channel.close('1001:1005, 3003, mychans')

To close Channel 1 on Slot 2 and analog backplane relay 3 in Bank 1 on Slot 2:
channel.close ('2001, 2913")

channel.connectrule

Attribute

Indicates the connection rule for closing and opening channels in the system.

Usage

To read the connect rule:

rule = channel.connectrule
To write the connect rule:
channel.connectrule = rule
Set rule to:

channel.BREAK_BEFORE_MAKE or 1
to have BBM connections for relays in system

channel. MAKE_BEFORE_BREAK or 2
to have MBB connections for relays in system

channel.OFF or 0
to not guarantee a connection rule. The system will close relays as it is able to without
adhering to a rule.

Remarks

The connection rule describes the order in which switch channels are opened and
closed when using channel .exclusiveclose () (on page 13-41),
channel.exclusiveslotclose () (on page 13-43), dmm.close () (on page
13-123), and scanning commands like scan.execute () (on page 13-236) and
scan.background () (on page 13-232). These commands may both open and
close switch channels in a single command. The connection rule dictates the algorithm
used by the instrument to order the opening and closing of switches.

When the connection rule is set to channel.BREAK BEFORE MAKE, the
instrument ensures that all switch channels open before any switch channels close.
This behavior covers the most common applications and is considered the safest
connection rule because the tested device is completely decoupled from the
instrument. This is the default behavior. When switch channels are both opened and
closed, this command executes not less then the addition of both the open and close
settle times of the indicated switch channels.

When the connection rule is setto channel .MAKE BEFORE BREAK, the
instrument ensures that all switch channels close before any switch channels open.
This behavior should be applied with caution because it will connect two test devices
together for the duration of the switch close settle time. When switch channels are
both opened and closed, the command executes not less then the addition of both the
open and close settle times of the indicated switch channels.

3700S-901-01 Rev. C / July 2008

13-39

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

channel.connectrule

Remarks,
continued

With no connection rule (set to channel . OFF), the instrument attempts to
simultaneously open and close switch channels in order to minimize the command
execution time. This results in faster performance at the expense of guaranteed switch
position. During the operation, multiple switch channels may simultaneously be in the
close position. Make sure your device under test can withstand this possible condition.
Cold switching is highly recommended. When switch channels are both opened and
closed, the command executes not less then the greater of either the open or close
settle times of the indicated switch channels.

In general, the settle time of single commands which open and close switch channels
depend on a number of factors, such as card type and channel numbers. However, the
opening and closing of two sequential channels including no others, can be
guaranteed as follows:

channel .BREAK BEFORE MAKE open settle time + close settle time
channel.MAKE BEFORE BREAK open settle time + close settle time
channel.OFF maximum of open settle time and close settle time

This behavior is also affected by connect.connectsequential (on page 13-
40).

Example

Sets the connect rule in the system to chanel. BREAK_BEFORE_MAKE:
channel.connectrule =

channel.BREAK BEFORE MAKE

channel.connectsequential

Attribute

Indicates if the connection rule is sequential or not.

Usage

To read the connect sequential value:

sequential = channel.connectsequential

To write the connect sequential value:

channel.connectsequential = sequential
Set sequential to:
channel.OFF or 0 to disable sequential connecting

channel.ON or 1 to enable sequential connection

Remarks

If sequential connecting is enabled, the list of channels or analog backplane relays
close sequentially. This allows for a deterministic time for the command to be
executed. For example, if each channel takes 4ms to close, closing 3 channels takes
12ms. However, if connectsequential was OFF, it may take 4, 8, or 12ms
depending on if the card can close multiple relays at once.

This attribute applies to switch cards like EMR and reed relay cards.
Default setting and channel . reset sequential connection is channel .OFF.

Changing this attributes settings causes an existing scan list to be rebuilt based on the
new setting.

13-40

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.connectsequential

Example

Set connect sequential to ON:

channel.connectsequential = channel.ON

channel.exclusiveclose()

Function

Closes the specified items so they are exclusively closed.

Usage

channel.exclusiveclose (<ch list>)

ch_list: A string listing the channels and channel patterns to exclusively close.

Remarks

This function manipulates the channels and analog backplane relays for switching
aspects so that only those specified by ch_1ist are closed.

Actions associated with this function include:

e Opens previously closed channels and analog backplane relays if they are no
longer being specified for closure, then closes the desired channels and analog
backplane relays as indicated by the items in ch _1ist.

e Settling times are incurred before command processing is complete. The function
has no effect on how the DMM is configured and does not use analog backplane
relays associated with DMM configuration.

e You can specify analog backplane relays in the parameter list.

For channel patterns, the analog backplane relays that get manipulated (closed or
opened) are the ones that were specified when the pattern was created (see
channel.pattern.setimage () (on page 13-63) or
channel.pattern.snapshot () (on page 13-66)). However, for channels, they
are the ones specified with the channel.setbackplane () (on page 13-70)
function. Another option for getting analog backplane relays closed by the command is
to include them in the ch 1ist parameter.

If the channel list parameter is an empty string or a string of spaces, all channels and
analog backplane relays that are closed are opened. Therefore, when channels or
backplane relays are closed, sending channel.exclusiveclose('") is
equivalentto channel.open (channel.getclose('allslots')).

However, sending the equivalent commands when nothing is closed generates an
error because nil (the response of channel.getclose('allslots'))is
being sent to the open command.

For digital I/O, DAC, and totalizer channels, there is no valid behavior. Calling on a
specific channel generates an error. If the digital /0, DAC, or totalizer channel is in the
range of channels, then the channel is ignored.

3700S-901-01 Rev. C / July 2008

13-41

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

channel.exclusiveclose()

Remarks,
continued

An error is generated if

e Syntax error in parameter string.

e The parameter string contains 'slotX', where X=1to6,0r 'allslots’.
e A specified channel or channel pattern is invalid.

e Channel number does not exist for slot specified.

e Slot is empty.

e Channel pattern does not exist.

e Aforbidden item is specified.

e Does not support being closed like a digital /0O channel.

e Channel is paired with another bank for a multi-wire application.

Once an error is detected, the command stops processing. Channels open or close
only if no errors are found and remain unchanged with any parsing or syntax error.

This command allows you to bundle the closing of channels with opening because any
currently closed channel or analog backplane relay open if not specified for closure in
the parameter. It guarantees that only the specified items are closed on the slots
specified in the parameters list.

Details

e For delay time, see channel.setdelay () (on page 13-72).

e For connection options, see channel.connectrule (on page 13-39) and
channel.connectsequential (on page 13-40).

e For forbidden channels, see channel .clearforbidden () (on page 13-36),
channel.getforbidden () (on page 13-50), and
channel.setforbidden () (on page 13-73).

e For analog backplane relays with channels, see channel . setbackplane ()
(on page 13-70).

e For channels associated with a channel, see channel.getimage () (on page
13-51).

e For channels associated with a channel pattern, see
channel.pattern.getimage () (on page 13-62).

e For channel states (open/close), see channel.getstate () (on page 13-56).

e For closed channels, see channel.getclose () (on page 13-46).

Also see

channel.close() (on page 13-37)
channel.exclusiveslotclose() (on page 13-43)
channel.open() (on page 13-59)
dmm.close() (on page 13-123)

13-42

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.exclusiveclose()

Example

To only have Channel 3 on Slot 3 closed along with its associated analog backplane
relay 3 in Bank 1 on Slot 3:

channel.setbackplane ('3003"', '3913")

channel.exclusiveclose ('3003")

To eliminate the need for channel . setbackplane:

channel.exclusiveclose ('3003, 3913")

channel.exclusiveslotclose()

Function

Closes the specified items so they are exclusively closed on slots associated with
items in parameter list.

Usage

channel.exclusiveslotclose (<ch list>)

ch_list: A string listing the channels and channel patterns to exclusively close on a
slot basis.

Remarks

This function manipulates the channels and analog backplane relays for switching
aspects so only those specified by ch _1ist are closed on the slots specified on the
items in the parameter list.

The actions associated with this function include:

e Previously closed channels and analog backplane relays are opened if they are no
longer being specified for closure on the slots specified with the parameter list
items.

¢ Channels and analog backplane relays specified by the itemsin ch list are
closed.

e Settling times are incurred before command processing is complete.
e This function has no effect on how the DMM is configured.
e You can specify analog backplane relays in the parameter list.

For example, if Channel 1 is closed on each of the six slots, specifying a channel list
parameter of '2002, 4004 "' with this command opens Channel 1 on Slot 2 and 4
only. Then, Channel 2 on Slot 2 and Channel 4 on Slot 4 close. Channel 1 remains
closed on Slots 1, 3, 5, and 6.

For channel patterns, the analog backplane relays that get manipulated (closed or
opened) are the ones that were specified when the pattern was created (see
channel.pattern.setimage () (on page 13-63) or
channel.pattern.snapshot () (on page 13-66)). However, for channels, they
are the ones specified with the channel.setbackplane () (on page 13-70)
function. Another option for getting analog backplane relays closed by the command is
to include them in the ch 1ist parameter.

For digital I/0, DAC, and totalizer channels, there is no valid behavior. Calling on a
specific channel generates an error. If the digital /0O, DAC, or totalizer channel is in the
range of channels, then the channel is ignored.

3700S-901-01 Rev. C / July 2008

13-43

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.exclusiveslotclose()

Remarks, An error is generated if:
continued e Syntax error in parameter string exists.

e An empty parameter string is specified, or parameter string with just spaces or a
channel pattern that emulates an openall scenario exists.

e The parameter string contains 'slotX', where X=1to6,0r 'allslots".

e A specified channel or channel pattern is invalid.

e Channel number does not exist for slot specified.

e Slotis empty.

e Channel pattern does not exist.

e Aforbidden item is specified.

e Does not support being closed like a digital /0O channel.

e Channel is paired with another bank for a multi-wire application.

Once an error is detected, the command stops processing. Channels open or close

only if no errors are found and remain unchanged with any parsing or syntax error.

This command allows you to bundle the closing of channels with opening because any

currently closed channel or analog backplane relay opens if not specified for closure in

the parameter. It guarantees that only the specified items are closed on the slots
included in parameters list.
Details e For delay time, see channel.setdelay () (on page 13-72).

e For connection options, see channel.connectrule (on page 13-39) and
channel.connectsequential (on page 13-40).

e For forbidden channels, see channel .clearforbidden (on page 13-36),
channel.getforbidden () (on page 13-50), and
channel.setforbidden () (on page 13-73).

e For analog backplane relays with channels, see channel . setbackplane ()
(on page 13-70).

e For channels associated with a channel, see channel.getimage () (on page
13-51).

e For channels associated with a channel pattern, see
channel.pattern.getimage () (on page 13-62).

e For channel states (open/close), see channel.getstate () (on page 13-56).

e For closed channels, see channel.getclose () (on page 13-46).

Also see channel.close() (on page 13-37)

channel.exclusiveclose() (on page 13-41)
channel.open() (on page 13-59)
dmm.close() (on page 13-123)

13-44

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.exclusiveslotclose()

Example

To have Channel 3 only closed on Slot 3 without affecting any other slot:

channel.exclusiveslotclose ('3003")

To only have Channel 5 closed on Slots 1 and 2 without affecting any other slot:
channel.exclusiveslotclose('1005, 2005")

To only open channels on slots of channels in channel pattern MyRoute:

channel.exclusiveslotclose ('MyRoute')

channel.getbackplane()

Function

Returns a string listing the analog backplane relays controlled when the specified
channels are used with commands in a switching aspect.

Usage

abuslist = channel.getbackplane (<ch list>)
ch_list: A string listing the channels being queried.

abuslist: A string listing analog backplane relays associated with items in ch_1ist.

Remarks

The response indicates the analog backplane relays that are used or affected by:
e channel.close () (on page 13-37), used during processing of command.

e channel.exclusiveclose () (on page 13-41), used during processing of
command.

e channel.open () (on page 13-59), used during processing of command.

e channel.setbackplane () (on page 13-70) replaces the analog backplane
relays with those specified.

e channel.setpole () (on page 13-79) clears the analog backplane relays.

e scan.execute () (onpage 13-236) or scan.background () (on page 13-
232), used if channel is configured for switching.

e The analog backplane relays indicated by this response are not used or affected
by dmm.close () (on page 13-123) or dmm. open () (on page 13-154).

e scan.execute () (onpage 13-236) or scan.background () (on page 13-
232) are not used if channel is configured for measuring.

e The parameter string can contain 'slotX', where X equals 1 to 6, or
'allslots'.

3700S-901-01 Rev. C / July 2008

13-45

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.getbackplane()

Remarks,
continued

An error is generated if:

e An empty parameter string is specified.

e An empty slot is specified.

e A specified channel does not exist for the card installed in a slot.
e A channel pattern is specified in parameter list.

e A syntax error exists in the parameter list.

e A specified channel does not have analog backplane relays associated with it like
digital I/0.

e An analog backplane relay is specified in parameter list.

When ch 1ist contains multiple items, the string returned has the analog backplane
relay channels of a single channel separated by a comma. A semicolon is used to
delineate channels.

For channel patterns, the analog backplane relays must be specified when creating
the pattern in the channel list parameter (see channel .pattern.setimage ()
(on page 13-63) or channel .pattern.snapshot () (on page 13-66)).
Therefore, to see the channels and analog backplane relays associated with a channel
pattern, use the channel .pattern.getimage () (on page 13-62) function.

Command processing stops as soon as an error is detected and a nil response is
then returned. No partial list is returned.

For digital I/O, DAC, and totalizer channels, nothing is returned.

Also see

channel.close() (on page 13-37)
channel.exclusiveclose() (on page 13-41)
channel.open() (on page 13-59)
channel.setbackplane() (on page 13-70)
channel.setpole() (on page 13-79)

Query commands (on page 13-6)

Example

To query analog backplane relay(s) specified on Channel 2 of Slot 2 for switching
aspects:

abuslist = channel.getbackplane ("2002")

channel.getclose()

Function

Queries for the closed channels indicated by the scope of the channel list parameter.

Usage

closed = channel.getclose(<ch list>)

ch_list: A string representing the scope of closed items being queried. Items can
include channels, backplane relays, and channel patterns.

closed: A string listing the channels that are currently closed.

13-46

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.getclose()

Remarks

The returned string lists the closed channels. If more than one channel is closed, they
are comma delimited in the string. If ch _1ist equals 'slotX' where Xis 1to 6,
the response indicates the channels that are closed on that specific slot, along with
any backplane relays. Likewise, if ch list equals 'allslots', the response
indicates all channels and analog backplane relays that are closed within the system.
For channels, the format is SCCC (MUX channels) or SRCC (matrix channels). When
the channel list contains a channel pattern, only the channels in that image which are
closed are returned.

If a single slot is being queried and that slot is empty or does not support the close
channel concept, the response is an empty string, meaning no channels are closed on
that slot. This allows youtouse 'allslots' to query for all channels closed and
not worry about an error if one of the slots is empty or does not support close
channels.

The ch_1ist parameter indicates the scope of channels affected and can include:
e allslotsorslotX (where X equals 1 to 6).

e Channel ranges, individual channels, or channel patterns.

e Analog backplane relays.

If nothing is closed within the specified scope, a nil response is returned.

An error is generated if:

e There is a syntax error in a parameter string.

e An empty parameter string is specified.

e A non-existent channel or analog backplane relay is specified.
e A non-existent channel pattern is specified.

Channels of type DAC, totalizer, and digital /0O are omitted from the list.

Also see

channel.close() (on page 13-37)
channel.exclusiveclose() (on page 13-41)
channel.getstate() (on page 13-56)
channel.open() (on page 13-59)

channel functions and attributes (on page 13-24)

Query commands (on page 13-6)

3700S-901-01 Rev. C / July 2008

13-47

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.getclose()

Example

To see the channels and analog backplane relays that are closed on Slot 5:
ClosedSlot5 = channel.getclose('slot5")
To see all channels and analog backplane relays that are closed in a system:
AllClosed = channel.getclose('allslots"')
To see all channels closed within a pattern called 'mychans':
ClosedMyChans = channel.getclose ('mychans')
To see all channels closed from Channel 1 to 20 on Slot 3:
ClosedRange = channel.getclose('3001:3020")
To see Channels 1, 2, 3, 5 and analog backplane relay 1 and 2 in Bank 1 on Slot 3:
ClosedOnes = channel.getclose('3001, 3002,

3003, 3005, 3911, 3912")

channel.getcount()

Function Returns a string with the close counts for specified items.

Usage counts = channel.getcount (<ch list>)
ch_list: string listing the items to query. Iltems can include channels, backplane relays,
and channel patterns.
counts: comma-delimited string listing the channel close counts.

Remarks This function returns a comma-delimited string of numbers representing the close

counts for each channel specified in parameter list. The count values are returned in
the same order as the channels were specified. The close counts for an analog
backplane relay might be included in the ch 1ist parameter.

The parameter string can contain 'slotX"', where X equals 1 to 6, or
'allslots'. It can also contain a pattern which gets translated into the channels
and analog backplane relays. Use the channel pattern get command (see
channel.pattern.getimage () (on page 13-62)) with the pattern name to see
the channels that the close counts pertain to, along with the channel order.

An error is generated if:

e Syntax error in parameter string exists.

e An empty parameter string is specified or a parameter string with just spaces
exists.

e A specified channel is invalid.

e The channel number does not exist for slot specified.
e Slot is empty.

e Does not have a count closure associated with it.

13-48

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.getcount()

Remarks,
continued

If an error is detected, a nil value is returned. No partial list of close counts is
returned.

When the channel list parameter for this functionis 'slotX', the response first lists
the channels starting from lowest to highest. After the channels, backplane relays are
listed starting with lowest bank first and increasing to the highest.

When the channel list parameter for this functionis 'allslots', the response
starts with Slot 1 and increases to Slot 6. Each slot is processed completely before
going to the next. Therefore, all Slot 1 channels and backplane relays are listed before
Slot 2 channels.

For digital I/O, DAC, and totalizer channels, zero is always returned.

Also see

Query commands (on page 13-6)

Example

To see the close counts for Channels 1 to 5 on Slot 2:
counts = channel.getcount ('2001:2005")
To see the close counts for all channels and analog backplane relays on Slot 3:

counts = channel.getcount('slot3")

To see the close counts for channels and analog backplane relays in channel pattern
called 'mypath':

MyPathList = channel.pattern.getimage ('mypath')
print (MyPathList)

print (channel.getcount (MyPathList))

or

print (channel.getcount ("'mypath'))

channel.getdelay()

Function

Queries for the additional delay time for the specified items.

Usage

stime = channel.getdelay(<ch list>)
ch_list: A string listing the channels to query for their delay time.

stime: Returns a comma-delimited string consisting of the delay times (in seconds) for
items specified in ch_list.

3700S-901-01 Rev. C / July 2008

13-49

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.getdelay()

Remarks The parameter string may contain 'slotX"', where X equals 1 to 6, or
'allslots'.
An error message will be generated for the following reasons:
e An empty parameter string is specified.
e The specified channel does not exist.
e Slot is empty.
e The specified channel does not exist for card installed in slot.
e Parameter syntax error such as incorrect format for ch _list.
e An analog backplane relay is specified.
e The specified channels does not support a delay time like digital 1/0.
e A channel pattern is specified.
Command processing will stop as soon as an error is detected and a nil response will
be generated. No partial list of delay times will be returned.
The delay times will be comma delimited in the same order as the items were specified
inthe ch _1ist parameter. A value of 0 indicates that no additional delay time is
being incurred before a close or open command completes. A command, after
updating the state of channels based on the command, will incur the delay time
indicated in the response for a channel before completing. However, the internal
settling time needs to elapse before the user delay is incurred. Therefore, open/close
command processed — settling time incurred — user delay incurred — command
completes.

Also see channel.setdelay() (on page 13-72)
Query commands (on page 13-6)

Example To query Channels 1 and 3 on Slot 5 for their delay time:

mydelaytime = channel.getdelay('5001, 5003")
To see the delay of the channels comprising a channel pattern call mychans:
PatternChannels = channel.pattern.get ('mychans')
MyDelayPatternTimes =

channel.getdelay (PatternChannels)

channel.getforbi

dden()

Function Returns a string listing the items contained in the channel list parameter that are
forbidden to close.
Usage forbid list = channel.getforbidden(<ch list>)

ch_list: string listing the items to check if they are forbidden to close. Items can
include channels, backplane relays, and channel patterns.

forbid_list: Comma-separated string listing channels that are forbidden to close in the
scope of the channel list.

13-50

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.getforbidden()

Remarks The ch_1ist parameter indicates the scope of channels to check and may include:
e 'allslots' or'slotX' (where Xequals 1 to 6).

e Channel ranges or individual channels.

e Analog backplane relays.

e Channel pattern(s).

If there are no channels in the scope of the channel list that are on the forbidden list,
the string returned will be empty or nil. The format of the channels will be SCCC or
SRCC in the response string.

Also see channel.clearforbidden() (on page 13-36)

channel.setforbidden() (on page 13-73)

Example To query for the channels that are "forbidden to close" channels in the system:
MyForbidden = channel.getforbidden('allslots')

To query for channels only on slot3:
MyForbidden = channel.getforbidden('slot3"'")
To query for channels in specified list:

MyForbidden =
channel.getforbidden('1911:1916,2004,2008,2012")

channel.getimage()

Function Query a channel for items associated with that channel when used with a switching
aspect command.

Usage channels = channel.getimage (<ch list>)
ch_list: A string representing the channels to query.

channels: A string listing the channels and analog backplane relays associated with
the specified item(s).

Remarks An error is generated if:

e A channel pattern is specified

e The specified channel is invalid.

e Channel does not exist on the specified slot.

e An empty parameter string is specified.

The parameter string can contain 'slotX"', where X equals 1 to 6, or
'allslots'.

The returned string lists the channels in the SCCC or SRCC format. A request for
multiple channels is delimited by a semicolon. However, commas delineate the
specific channels and analog backplane relays for an individual channel in the string.

If an error is detected or the slot is empty, the response is nil.

For digital I/O, DAC, and totalizer channels, the channel number itself is returned with
no backplanes, pairings, and so on.

3700S-901-01 Rev. C / July 2008 13-51

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

channel.getimage()

Details To just query for the analog backplane relays associated with a channel, use
channel.getbackplane () (on page 13-45).

Also see channel.pattern.getimage() (on page 13-62)
Query commands (on page 13-6)

channel functions and attributes (on page 13-24)

Example Assume Channel 3 on Slot 2 is configured for a 4-wire application and Channel 5 on
Slot 2 is configured for a 2-wire application on a 50-channel card.

To query Channel 5 on Slot 2:

channels = channel.getimage('2005")
print (channels) — 2005
To query Channel 3 on Slot 2:

channels = channel.getimage ('2003")
print (channels) — 2003 (2028)

To query for Channels 2003 and 2005 in a single call:
channels = channel.getimage ('2003, 2005")

print (channels) — 2003(2028) ;2005
To query Channel 2028:

channels = channels.getimage ('2028")

print (channels) —nil

-- (error - 2028 is paired for 4-wire operation)
channel.getlabel()
Function Queries for the label associated with one or more channels.
Usage label = channel.getlabel (<ch list>)

ch_list: A string listing the channels to query for the label associated with them.

label: String listing the comma-delimited labels for items in ch 1list.

13-52 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.getlabel()

Remarks The parameter ch _1ist can contain more than one channel. If it does, a comma is
used to delineate the labels for the channels. The return string lists the labels in the
same order that the channels were specified.

The parameter string can contain 'slotX"', where X equals 1 to 6, or
'allslots'. It can also contain a label. However, if the label exists, it is in the
returned response and not the numerical channel number. For example, if Channel
1001 has a label of "start", then sending:

print (channel.getlabel ('start'))
prints 'start' and not the numeric of '1001"'.

An error is generated if:

e An empty parameter string is specified.

e A specified channel does not exist.

e Slotis empty.

e Channel not on card.

e A channel pattern is specified.

e The channel does not support a label setting.
e An analog backplane relay is specified.

Command processing stops as soon as an error is detected and a nil response is
then generated. No partial list of labels is returned.

Labels are also supported for digital I/O, DAC, and totalizer channels.

Also see channel.setlabel() (on page 13-74)

Query commands (on page 13-6)

Example To query for the label of Channel 1 on Slot 1:
MyLabel = channel.getlabel ("1001")

channel.getmatch()

Function Gets the match value.

Usage <match value> = channel.getmatch (<ch list>)

match_value: Return string listing the comma-delimited states for channels in
ch list.

ch_list: String specifying digital 1/O or totalizer channels to query, using normal
channel list syntax.

Remarks If a width greater than 1 was specified with the match value, then the value returned
contains the additional channel width specified by the width. For example, the value of
65535 with a width of 2 returns 65535. If the width is 1, then 255 is returned.

DAC, backplane, and switch channels are not supported. If included in a range, they
are ignored; otherwise, an error is generated.

Also see channel.setmatch() (on page 13-76)

3700S-901-01 Rev. C / July 2008 13-53

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

channel.getmatch()

Example Query the match value set to digital I/O Channel 1, Slot 1:
print (channel.getmatch ("1001"))

channel.getmatchtype()

Function Gets the match type.

Usage <match type> = channel.getmatchtype (<ch list>)

match_type: Return string listing the comma-delimited states for channels in
ch list.

ch_list: String specifying digital 1/O or totalizer channels to query, using normal
channel list syntax.

Remarks DAC, backplane, and switch channels are not supported. If included in a range, they
are ignored; otherwise, an error is generated.

Also see channel.setmatchtype() (on page 13-76)

Example Query the match type for digital I/O Channel 1, Slot 1:

print (channel.getmatchtype ("1001"))

channel.getmode()

Function Gets the current mode attribute for a channel.

Usage <mode> = channel.getmode (<ch list>)
mode: Return string of a comma-delimited list of modes.

ch_list: String specifying digital 1/0, DAC, or totalizer channels to query, using normal
channel list syntax.

Remarks Switch and backplane channels do not have modes. If included in a range, they are
ignored; otherwise, an error is generated.

Also see channel.setmode() (on page 13-77)

Example Query the configuration of the first totalizer channel (Channel 6) in Slot 1:

print (channel.getmode ("1006"))

channel.getoutputenable()

Function Gets the current output enable attribute for a channel.

Usage <relay state> = channel.getoutputenable (<ch list>)
state: Return string of a comma-delimited list of relay states.

ch_list: String specifying DAC channels to query, using normal channel list syntax.

Remarks Switch and backplane channels do not have modes. If included in a range, they are
ignored; otherwise, an error is generated.

Also see channel.setoutputenable() (on page 13-78)

13-54 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.getoutputenable()

Example

Query the state of the first DAC channel on a card in Slot 1:

print (channel.getoutputenable ("1010"))

channel.getpole()

Function

Queries the pole settings for the specified channels.

Usage

poles = channel.getpole(<ch list>)
ch_list: A string listing the channels to query for their pole setting.

poles: Returns a string consisting of the poles, comma separated, for ch_list.

Remarks

The parameter string can contain 'slotX"', where X equals 1 to 6, or
'allslots’'.

An error message is generated if:

e An empty parameter string is specified.

e The specified channel does not exist for card installed in slot.

e Parameter syntax error such as incorrect format for ch_ 1ist.

e A channel pattern was specified.

e An analog backplane relay was specified.

e Channel does not support pole setting like a digital 1/O.

Command processing stops as soon as an error is detected. No partial list is returned.
The response is the numerical value representing the pole selection and not the text.
For example, 4-pole selection is 4 and not channel.POLES FOUR.

For channels, manipulate the analog backplane relay channels for the desired pole
setting (see channel.setbackplane () (on page 13-70)). Recall channel
patterns do not have a pole setting associated with them and have their analog
backplane relay channels specified when created (see
channel.pattern.getimage () (on page 13-62) and
channel.pattern.snapshot () (on page 13-66)).

When the channel list parameter for this function is 's1lotX', the response first lists
the channels starting from lowest to highest.

When the channel list parameter for this functionis 'allslots"', the response
starts with Slot 1 and increases to Slot 6. Each slot is processed completely before
going to the next. Keeping this in mind, all Slot 1 channels are listed before Slot 2
channels.

If an error is detected or the slot is empty, the response is nil.

Digital /0, DAC, backplane, and totalizer channels are not supported.

Also see

channel.setpole() (on page 13-79)

Query commands (on page 13-6)

Example

To query Channels 1 and 3 on Slot 5 for pole setting:
mypoles = channel.getpole('5001, 5003")

3700S-901-01 Rev. C / July 2008

13-55

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

channel.getpowerstate()

Function Gets the current power state attribute for a channel.

Usage <state(s)> = channel.getpowerstate (<ch list>)
state: Return string of a comma-delimited list of power states.

ch_list: String specifying the channels to query, using normal channel list syntax.

Remarks See card-specific documentation for important potential implications (warmup times,
effective coverage, use cases, and so on) when disabling power to a channel.

Not all channels can be disabled. If included in a range, they are ignored; otherwise,
an error is generated.

Also see channel.setpowerstate() (on page 13-80)

Example To get the current power state attribute for a channel:

print (channel.getpowerstate ("1006"))

channel.getstate()

Function Queries the state indicators of a channel.

Usage <state> = channel.getstate(<ch list>, [<indicator mask>])
state: Return string listing the comma-delimited states for channels in ch_1ist.
ch_list: String specifying the channels to query, using normal channel list syntax.

indicator_mask: Value to specify only certain indicators. If omitted, all indicators are
returned.

13-56 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.getstate()

Remarks

Use this command to query for the state of channels in the system. Each bit in the

state represents a different indicator. Therefore, multiple indicators can be present
(there values are OR’ed bitwise). Any state or state latch commands behave in this
manner.

Different channel types support different state information (indicators). The optional
state indicator mask can be used to only return certain indicators. If there is no
indicator mask, then all indicators are returned.

The following status indicators are defined:
e channel.IND CLOSED

e channel.IND OVERLOAD

e channel.IND MATCH

e channel.IND OVERFLOW

Indicators can be latched or unlatched depending on other system settings. Latched
indicators indicate that the condition has occurred since the last reset (or power cycle).
Unlatched indicators indicate that the condition has occurred when the
channel.getstate () command was issued. The Overflow and Overload indicators
default to latched.

For switch channels, the only state information is an indicator of relay state
(channel.IND CLOSED).

For digital I/O channels, the state information includes an indicator for the state of auto
protection and whether the match value has been matched
(channel.IND OVERLOAD and channel.IND MATCH).

For totalizer channels, the state information includes an indicator for overflow and
whether the match value has been matched (channel.IND OVERFLOW and
channel.IND MATCH).

For DAC channels, the state information includes an indicator for the state of auto
protection (channel.IND OVERLOAD).

For more specific information on the overload and overflow indicators, refer to the
documentation for the specific card on which the specified channel resides.

Also see

channel.getclose() (on page 13-46)
channel.setmatch() (on page 13-76)
channel.setstatelatch() (on page 13-81)

3700S-901-01 Rev. C / July 2008

13-57

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.getstate()

Example

To query the state of the first 20 channels on Slot 4:
MyState = channel.getstate('4001:4020")

To see the state of channels and analog backplane relays in channel pattern called
'mypath':

MyPathList = channel.pattern.getimage ('mypath')
print (MyPathList)

print (channel.getstate (MyPathList))

or

MyPathState = channel.getstate('mypath')

Although the channel.getstate () command returns a string representing a
number, this can be easily changed to a number and then compared to one of
the provide Lua constants. For example, use the following command to check
for an overload on a DAC channel:

TSP> if bit.bitand(channel.IND OVERLOAD,
tonumber (channel.getstate ("4009"))) == 1 then
print ("OVERLOAD") end

In the previous example, channel.getstate () returns a string that is
converted to a number using the Lua tonumber () command.

channel.IND OVERLOAD equates to the number 2. Because the state is a bit-
oriented value, the state must be ANDed to the overload constant to isolate it
from other indicators.

The tonumber () command only works with a single channel. When multiple
channels are returned (for example, channel.getstate ("slot4™)), this string
must be parsed by the comma delimiter to find each value.

channel.getstatelatch()

Function Gets the mask representing the states which would be latched if they occurred.
Usage channel.getstatelatch(<ch 1list>)

ch_list: String specifying the channels to query, using normal channel list syntax.
Also see channel.setstatelatch() (on page 13-81)
Example To query the state event latch on digital I/O Channel 1:

channel.getstatelatch ("1001")

channel.gettype()

Function

Returns the type associated with a channel.

Usage

<type> = channel.gettype (<ch list>)
type: Return string listing the comma-delimited states for channels in ch_1ist.

ch_list: String specifying the channels to query, using normal channel list syntax.

13-58

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.gettype()

Remarks The channel type is defined by the physical hardware of the card where the channel
resides. The following are valid channel types:

e channel.TYPE SWITCH

e channel.TYPE BACKPLANE
e channel.TYPE DAC

e channel.TYPE DIGITAL

e channel.TYPE TOTALIZER

Consult the card-specific documentation for more information on the channel types
available for a given card.

Example Query the channel type of Channel 1 in Slot 1:
print (channel.gettype ("1001"))

channel.open()

Function Opens specified items in channel list parameter.

Usage channel.open(<ch list>)

ch_list: string listing the items to open. Items can include channels, backplane relays,
and channel patterns.

3700S-901-01 Rev. C / July 2008 13-59

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.open()

Remarks

This function opens the specified channels for switching aspects. The items specified
inch 1ist caninclude analog backplane relays. For the items specified to open, the
channels associated with them open along with the associated analog backplane
relays for each. For channel patterns, the analog backplane relays that get opened are
the ones that were specified when the pattern was created (see
channel.pattern.setimage () (on page 13-63) and
channel.pattern.snapshot () (on page 13-66)). However, for channels, they
are the ones specified with the channel.setbackplane () (on page 13-70)
function. Another option for getting analog backplane relays to be opened by this
command is to include them in the ch _1ist parameter.

This command has no effect on how the DMM is configured.

To open all channels on a specific slot, use 'slotX"', where X =110 6 in the
parameter string. To open all channels on all slots, use 'allslots' inthe
parameter string. Using 'allslots' has no effect on empty slots or slots that do
not support the open command. The 'allslots' only applies to slots with
channels that support being opened and ignores the ones that do not. This allows you
touse 'allslots' to open all channels and not worry about an error if one of the
slots is empty or does not support open channels.

The settling time and user delay associated with a channel needs to elapse before the
command completes (see channel.getdelay () (on page 13-49)).

The parameter string can contain 'slotX"', where X equals 1 to 6, or
'allslots'.

An error is generated if:

e Syntax error in parameter string.

e An empty parameter string is specified.

e A specified channel or channel pattern is invalid

e Channel number does not exist for slot specified.

e Slot is empty.

e Channel pattern does not exist.

e Does not support being opened like a digital I/O channel.

e Channel is paired with another bank for a multi-wire application.

e The slotX specified does not support open like a digital I/O card.

Once a parsing error is detected, the command stops processing and no channels are
opened. Channels open only if no syntax errors exist in parameter and all channels
are valid for opening.

For digital I/O, DAC, and totalizer channels, there is no valid behavior. Calling on a
specific channel generates an error. If the digital I/O, DAC, or totalizer channel is in the
range of channels, then the channel is ignored.

13-60

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.open()

Details For delay time, see channel.setdelay() (on page 13-72)
For forbidden channels, see channel.setforbidden() (on page 13-73)
For analog backplane relays with channels, see channel.setbackplane() (on page 13-
70)
For channels associated with a channel, see channel.getimage() (on page 13-51)
For channels associated with a channel pattern, see channel.pattern.getimage() (on
page 13-62)
For channel states (open/close), see channel.getstate() (on page 13-56)
For closed channels, see channel.getclose() (on page 13-46)
Also see channel.exclusiveclose() (on page 13-41)
dmm.close() (on page 13-123)
dmm.open() (on page 13-154)
channel.exclusiveslotclose() (on page 13-43)
channel.close() (on page 13-37)
Example To open Channels 1 to 5 on Slot 1, Channel 3 on Slot 3, and mychans:

channel.open('1001:1005, 3003, mychans')
To open all channels on Slot 3 and 5:
channel.open('slot3, slot5'")

To open all channels on all slots:

channel.open('allslots')

channel.pattern.

catalog()

Function Creates an iterator for the user created channel patterns.

Usage for name in channel.pattern.catalog() do
end

Remarks Accessing the catalog for user channel patterns allows the user to print or delete all
patterns in volatile memory. The entries will be enumerated in no particular order. This
will only list user created channel patterns. It does not list channels which are created
at power up.

Also see channel.pattern.setimage() (on page 13-63)

channel.pattern.delete() (on page 13-62)
channel.pattern.getimage() (on page 13-62)

channel.pattern.snapshot() (on page 13-66)

3700S-901-01 Rev. C / July 2008

13-61

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

channel.pattern.catalog()

Example To delete all user created channel patterns:
for name in channel.pattern.catalog() do
channel.pattern.delete (name)
end
To print all user created channel patterns:
for name in channel.pattern.catalog() do
print (name)
end
To print the names and items associated with all user created channel patterns:
for name in channel.pattern.catalog() do
print (name .. " = " .. channel.pattern.getimage (name))

end

channel.pattern.delete()

Function Deletes a channel pattern.

Usage channel.pattern.delete (name)

name: A string representing the name of the channel pattern to delete.

Remarks An error will be generated if the name does not exist.

Also see channel.pattern.catalog() (on page 13-61)
channel.pattern.getimage() (on page 13-62)
channel.pattern.setimage() (on page 13-63)

channel.pattern.snapshot() (on page 13-66)

Example To delete a channel pattern called mychans:

channel.pattern.delete ("mychans")

channel.pattern.getimage()

Function Query a channel pattern for associated channels and analog backplane relays.

Usage channels = channel.pattern.getimage (name)
name: A string representing the name of the channel pattern to query.

channels: A string listing channels & analog backplane relays represented by name.

13-62 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.pattern.getimage()

Remarks A nil response will be generated if:

e The channel pattern does not exist.

e A channel is specified.

¢ An analog backplane relay is specified.

The returned string lists the channels in the SCCC or SRCC format (even if a channel
pattern was used to create it). Requests for multiple channel patterns will be delimited
by a semicolon, however, commas will delineate the specific channels for a single
channel pattern in the string.

Also see channel.pattern.catalog() (on page 13-61)
channel.pattern.delete() (on page 13-62)
channel.pattern.snapshot() (on page 13-66)

channel functions and attributes (on page 13-24)

Example Assume mychans is comprised of Channels 1 through 5 on Slot 4 and myroute is
comprised of Channels 1, 3, and 5 on Slot 2:

To query the channel pattern called mychans:

channels = channel.pattern.getimage ('mychans')

print (channels) — 4001,4002,4003,4004,4005

To query the channel pattern called myroute:

channels = channel.pattern.getimage ('myroute')

print (channels) — 2001,2003,2005

To query channel patterns called myroute and mychans in a single call:

channels = channel.pattern.getimage ('myroute,
mychans')

print (channels) — 2001,2003,2005;4001,
4002,4003,4004,4005

channel.pattern.setimage()

Function Creates a channel pattern and associates it with the specified name.

Usage channel.pattern.setimage (<ch list>, name)

ch_list: A string listing the channels, channel patterns, or analog backplane relays to
use when creating the new channel pattern.

Name: A string representing the name to associate with the new channel pattern.

3700S-901-01 Rev. C / July 2008 13-63

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.pattern.setimage()

Remarks

If the name specified is being used for an existing channel pattern, that pattern is
overwritten with the new pattern channel image if no errors occur. The previous image
associated with the name is lost. The DMM configuration associated with the pattern
remains unchanged in this scenario.

An error is generated if

e The name parameter already exists as a label.

e Aninvalid channel is specified in the channel list parameter.

e Slotis empty.

e Channel does not exist on slot specified.

e Channel is forbidden to close.

e A non-existent channel pattern is specified in channel list parameter.
e A syntax error exists in either parameter.

¢ Insufficient memory exists to create the channel pattern.

e The parameter string contains 'slotX"', where Xequals1to6,0or 'allslots"'.
e The name parameter contains a space character.

e Pattern name exceeds 20 characters.

The channel pattern is not created if an error is detected. You can create a channel
pattern with an empty ch 1ist parameter (this would be equivalent to an open
all).

A channel pattern must include the analog backplane relays as well as desired
channels. Once a channel pattern is created, the only way to add a channel or analog
backplane relay to an existing pattern is to delete the old and recreate with the new
desired items. Or, include the additional channel(s) or analog backplane relay(s) in the
channel parameter list with the channel pattern when using.

Issuing this function on an existing pattern invalidates the existing scan list (the pattern
might or might not be used in the current scan list). Creating a new pattern is okay.

Including any channels of type digital I/O, DAC, and totalizer generates an error.

13-64

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.pattern.setimage()

Details

Channel patterns are not persistent through a power cycle and are stored when a
setup.save () (on page 13-254) command is executed. Use setup.recall ()
(on page 13-253) to restore them.

The following restrictions exist when naming a channel pattern:
¢ The name must contain only letters, numbers, or underscore.
e The name must start with a letter.

e The name is case sensitive.

Examples of valid names:

mychans, MyChans, Mychans — three different channel patterns, not one
(names are case sensitive)

Pathl

Path20

my chans

path 3

Examples of invalid names:

lpath —invalid due to starting with a number
my chans —invalid due to space

My, chans —invalid due to comma

Pathl:10 —invalid due to colon

Also see

channel.pattern.catalog() (on page 13-61)
channel.pattern.delete() (on page 13-62)
channel.pattern.getimage() (on page 13-62)
channel.pattern.snapshot() (on page 13-66)

3700S-901-01 Rev. C / July 2008

13-65

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.pattern.setimage()

Example

To create a channel pattern called mychans using Channels 1 to 10 on Slot 3:

channel .pattern.setimage ('3001:3010', 'mychans')

To add analog backplane relay 1 of Bank 1 on Slot 3 to mychans:
OldList = channel.pattern.getimage ('mychans')
NewList = OldList .. ',3911"'
channel.pattern.delete ('mychans"')

channel .pattern.setimage (NewList, 'mychans')
To include 3911 without deleting and creating again:

—- closes mychans and 3911

channel.close ('mychans, 3911")

The above works for channels as well. Just replace the ', 3911"' with the
appropriate channel(s). For example, to add Channels 11 and 12 of Slot 3 to
'mychans’'.

OldList = channel.pattern.getimage ('mychans')
NewList = 0OldList .. ',3011, 3012°'
channel.pattern.delete('mychans')
channel.pattern.setimage (NewList, 'mychans')

To include 3011 and 3012 without deleting and creating again:
channel.close ("mychans, 3011,3012")

To rename MyList to MyPattern:

MyListItems = channel.pattern.getimage ('MyList"')
channel .pattern.setimage (MyListItems, 'MyPattern')
channel.pattern.delete ('MyList"')

or

channel .pattern.setimage (channel.pattern.getimage ('MyList'
), 'MyPattern')

channel.pattern.delete ('MyList"')

channel.pattern.snapshot()

Function Creates a channel pattern that uses the present state of each channel and analog
backplane relay.
Usage channel.pattern.snapshot (name)

name: A string representing the name to associate with the present state of channels.

13-66

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.pattern.snapshot()

Remarks

This command stores the image of closed and opened channels, along with analog
backplane relays in the system, and associates them with the name parameter in
persistent memory.

If the name specified is being used for an existing channel pattern, that pattern is
overwritten with the new pattern channel image if no errors occur. The previous image
associated with the name is lost. The DMM configuration associated with the pattern
remains unchanged in this scenario.

An error is generated if:

e The name parameter already exists as a label.

¢ Insufficient memory exists to save the channel pattern and name in persistent
memory.

e Pattern name exceeds 20 characters or contains a space.

Issuing this function on an existing pattern invalidates the existing scan list (the pattern
might or might not be used in the current scan list). Creating a new pattern is okay.

Channels of type DAC, totalizer, and digital I/O are ignored.

Details

Not persistent through a power cycle. Channel patterns are stored when a
setup.save () (on page 13-254) command is executed. Use setup.recall ()
(on page 13-253) to restore them.

NOTE See channel.pattern.setimage () (on page 13-63) for valid name
examples.

Also see

channel.pattern.catalog() (on page 13-61)
channel.pattern.delete() (on page 13-62)

channel.pattern.setimage() (on page 13-63)

Example

To take a snapshot of the current state and name it mysnapshot:

channel.pattern.snapshot ("mysnapshot")

channel.read()

Function

Reads a value from a channel.

Usage

<value> = channel.read(<ch list>, [<width>], [<rbuffer>])
value: Return string listing the comma-delimited states for channelsinch 1ist.
ch_list: String specifying channels to read using normal channel list syntax.

width: Optional value that specifies reading over multiple consecutive channels.

rbuffer: Optional reading buffer to store values read from the channel list.

3700S-901-01 Rev. C / July 2008

13-67

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

channel.read()

Remarks The width parameter is optional and defaults to 1. The reading buffer parameter is
optional. A width does not have to be specified in order to specify a reading buffer.
However, if both are specified, the width must be first in the argument list.

For digital I/O channels, only a width of 1, 2, 3, or 4 is supported. Any information (bits)
greater than the specified width is returned as zero. For example, if Channels 1 and 2
are both 255, a reading with a width of 1 returns 255 and a width of 2 returns 65535.
Values read from outputs reflect their current setting. If the read channel is in the
overload state, the read value is indeterminate.

Totalizer and DAC channels do not support a width other than 1 and result in an error
if specified.

Switch and backplane channels are not supported.

For widths greater than 1, the specified channel occupies the least significant byte. For
example, reading the value of 0xff0OffO0 from Channel 1 with a width of 4 indicates
Channel 1 is 0x00, Channel 2 is 0xff, Channel 3 is 0x00, and Channel 4 is Oxff.
Reading the value of 0x00000000 from Channel 1 with a width of 1 indicates Channel
1 is 0x00 and other channels are not included.

For a channel with a power state of OFF, the returned value is DISABLED. The value
into the reading buffer is indeterminate.

Example Reading the count from the first totalizer channel (Channel 6) in Slot 1:

count = channel.read("1006™)

channel.reset()

Function Resets the channel aspects of the system to factory default settings.

Usage channel.reset (<ch list>)

ch_list: A string list items to reset. Items can include channels, backplane relays, and
channel patterns.

13-68 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.reset()

Remarks

This command resets only the channel aspects for the items specified to factory
default settings. For the items specified in the parameter list (ch _11ist) the following
actions occur:

e For closed channels or analog backplane relays, they open.

e For channels, the poles reset to 2 and paired channels are changed to match.
e Additional user delay is set to 0.

e Labels go back to default of SCCC or SRCC.

e Analog backplane relays specified by channel . setbackplane function are
cleared.

o If channel is forbidden to close, it is cleared from being forbidden to close.

e Channels in a channel pattern list are deleted. This means that specifying a
channel pattern to reset, resets the items within the pattern and delete that pattern.

e Channels have their DMM configurations setto 'nofunction'

e The parameter string can contain 'allslots', 'slotX"' where X =110 6,
channel pattern(s), and channel(s), including a range of channels.

e The rest of the settings are unaffected. To reset the entire system to factory default
settings, use the reset() (on page 13-230) command.

e An error message is generated if the parameter string is empty or just spaces.

Using this function to reset a channel or backplane relay involved in scanning
invalidates the existing scan list. The list has to be recreated before scanning again.

Doing a selective channel reset on some channels can take some time to process,
depending on how many patterns exist and how many contain channels being reset.
Resetting a channel removes any channel patterns with that channel in its image.
Examples of select channel resets:

channel.reset ('3003")
channel.reset ('3001:3015")

channel.reset ('slot3"')

However, doing a channel reset on for all slots is fast because this needs to remove all
patterns since all channels are being reset. For example:

channel.reset('allslots"')

or

channel.reset ('slotl, slot2, slot3, slot4, slotb5, sloto6')
For all channels, any trigger settings are removed.

For digital I/O channels, the mode is set to input. The match is set to zero (0) and
auto-protect is turned on.

For totalizer channels, mode is set to falling edge and TTL level.

For DAC channels, output is turned off and auto-protect is turned on. Mode is set to -
12 to + 12 voltage.

3700S-901-01 Rev. C / July 2008

13-69

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

channel.reset()

Also see dmm.reset() (on page 13-161)
reset() (on page 13-230)
scan.reset() (on page 13-242)

channel functions and attributes (on page 13-24)

Example To perform a reset on all channels in the system:
channel.reset('allslots"')

To reset channels on Slot 1 only:

channel.reset ('slotl")

To reset only Channels 1 to 5 on Slot 3:

channel.reset ('3001:3005")

To reset only Channel 5 and analog backplane relay 5 in Bank 1 on Slot 5:
channel.reset ('5005, 5915'")

channel.resetstatelatch()

Function Resets the channel state.

Usage channel.resetstatelatch(<ch list>, <state>)
ch_list: String specifying the channels to query, using normal channel list syntax.

state: String listing the comma-delimited states for channels in ch 1list.

Remarks If the state is reset and the condition still exists, the indicator is reset, but a second
event is generated through the channel trigger module.

Multiple states can be set by ORing the values together.
Use channel .ALL to reset all indicators.

Indicators can be latched or unlatched, depending on other system settings. Latched
indicators indicate that the condition occurred since the last reset (or power cycle).
Unlatched indicators indicate that the condition has occurred when the
channel.getstate () (on page 13-56) command was issued. The Overflow and
Overload indicators default to latched.

Also see channel.getstate() (on page 13-56)
channel.setstatelatch() (on page 13-81)
channel.getstatelatch() (on page 13-58)

Example To clear out a match indicator that was latched on digital I/O Channel 1:
channel.resetstatelatch("1001", channel.IND MATCH)

channel.setbackplane()

Function Specify list of analog backplane relays (abuslist) to use with channels specified in
ch_1ist when they are used in a switching aspect.

13-70 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.setbackplane()

Usage

channel.setbackplane (<ch list>, abuslist)
ch_list: A string listing the channels to change.

abuslist: A string listing analog backplane relays to set for channelsin ch_list.

Remarks

The abus1ist parameter must specify the entire list of analog backplane relays
needed.

The analog backplane relays specified in the abus1ist parameter are used or
affected by:

e channel.close () (on page 13-37), used during processing of command

e channel.exclusiveclose () (on page 13-41), used during processing of
command

e channel.open () (on page 13-59), used during processing of command
e channel.setpole () (on page 13-79) clears the analog backplane relays

e scan.execute () (on page 13-236) or scan.background () (on page 13-
232), if channel or channel pattern are configured for switching

The analog backplane relays specified in the abus1ist parameter are not used or
affected by:

e dmm.close () (on page 13-123)
e dmm.open () (on page 13-154)

e scan.execute () (onpage 13-236) or scan.background () (on page 13-
232) if channel or channel pattern are configured for measuring

The parameter string (ch_1ist) can contain 'slotX"', where X equals 1 to 6, or
'allslots'.

3700S-901-01 Rev. C / July 2008

13-71

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.setbackplane()

Remarks,
continued

An error is generated if:
e An empty slot is specified.

e A specified channel or analog backplane relay does not exist for the card installed
in a slot.

e A syntax error exists in either of the parameters.

e An empty parameter string is received for ch _1ist. An empty string is okay for
abuslist. A parameter string of just spaces is treated like an empty string.

e A specified channel does not have analog backplane relays associated with it like
digital 1/0.

¢ An analog backplane relay is specified inch list.
e A channelis specified in abuslist.
e A channel pattern is specified.

For channel patterns, the analog backplane relays are specified when the pattern is
created (see channel .pattern.setimage () (on page 13-63)).

Command processing stops as soon as a parsing or syntax error is detected and no
changes are made. Only with no errors are the analog backplane relays updated for
the specified channels. When updated, the previous list is replaced with the new
specified analog backplane relays in the abus1ist parameter.

For channels, as their poles setting changes, the list of analog backplane relays gets
cleared. Therefore, after changing the poles settings, send this command with the
appropriate analog backplane relay channels. (Channel patterns do not have a poles
setting associated with them.) When clearing the backplane channels, this can involve
clearing the paired channel, whether pairing or un-pairing channels. For example, on a
40-channel card, Channels 1 and 21 are paired when the poles for Channel 1 is set to
4. Therefore, setting the poles setting on Channel 1 to 4 clears the backplane
channels for Channels 1 and 21. Likewise, they are both cleared when the poles
setting is set back to 2 on Channel 1.

Calling this function on an existing channel involved in scanning invalidates the
existing scan list.

For digital I/O, DAC, and totalizer channels, there is no valid behavior. Calling on a
specific channel generates an error. If the digital /0, DAC, or totalizer channel is in the
range of channels, then the channel is ignored.

Also see

channel.close() (on page 13-37)
channel.exclusiveclose() (on page 13-41)
channel.getbackplane() (on page 13-45)
channel.open() (on page 13-59)
channel.setpole() (on page 13-79)

Example

To use analog backplane relay 3 and 4 of Slot 2 for switching aspects on Channel 2 of
Slot 2:

channel.setbackplane ('2002', '2913, 2914")

13-72

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.setdelay()

Function

Sets additional delay time for channels specified in ch _1ist.

Usage

channel.setdelay(<ch list>, value)
ch_list: A string listing channels to modify their delay time.

Value: Desired delay time for items in ch_1ist. Minimum is O seconds.

Remarks

An error message will be generated for the following reasons:

e An empty parameter string is specified.

e The value is an invalid setting for the specified channel.

e The specified channel doesn’t exist for the card installed in the specified slot.
e A channel pattern is specified.

e The channel is for an empty slot.

e The value is invalid for command — parameter out of range error.

e Parameter syntax error such as incorrect format for ch_ 1ist.

e An analog backplane relay is specified.

The parameter string may contain 'slotX"', where X equals 1 to 6, or
'allslots'.

Command processing will stop as soon as an error is detected and no delay times will
be modified. Only with no errors, do the specified channels get their delay time
changed.

Setting the value to 0 indicates to incur no additional delay when closing or opening
the specified channels. With a setting of 0, only the needed settling time for a channel
to close or open will be incurred. If additional delay is desired then use this command
to indicate the amount needed. Channel patterns get their delay from the channels
comprising the pattern. Therefore, specify the delay for a pattern through the channels.
A pattern will incur the longest delay of all channels comprising that pattern.

Calling this function on an existing channel involved in scanning has no affect on the
existing scan list.

Details

Setting a delay only applies to switch channels. An error will occur for a read/write
channel like digital input/output. The delay being specified by value may be updated
based on a card's resolution for delay. To see if the delay value was modified after
setting, use the channel.getdelay command to query.

Also see

channel.getdelay() (on page 13-49)

Example

Set Channels 1 and 3 on Slot 5 for a delay time of 50 microseconds:
channel.setdelay ("5001, 5003" , 50e-6)

To set the channels on Slot 3 for 0 delay time:
channel.setdelay ("slot3", 0)

3700S-901-01 Rev. C / July 2008

13-73

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

channel.setforbidden()

Function Prevents the closing of specified channels.

Usage channel.setforbidden (<ch list>)

ch_list: A string listing the channels to make forbidden to close.

Remarks The ch_1ist parameter indicates the scope of channels affected and may include:
e allslots or 'slotX' (where X equals 1 to 6).

e Channel ranges or individual channels

e Analog backplane relays.

This function prevents all items contained in the channel list parameter from closing
(applies the "forbidden to close" attribute to channels specified). To remove the
"forbidden to close" attribute, use channel.clearforbidden (on page 13-36).

An error will be generated if:

e The specified channel or analog backplane relay does not exist for card installed in
a slot.

e The specified channel or analog backplane relay is for an empty slot.
e There is a parameter syntax error in the channel specified.
e An empty channel list is parsed.

Command processing will stop as soon as an error is detected. If an error is found, the
forbidden setting is not updated. With no errors, items in the list are marked as being
forbidden to close. The previous ones are not lost.

After the forbidden list is updated, the existing channel patterns are reviewed. Any of
the patterns that contain an item (channel or analog backplane relay) that is now
forbidden to close will be deleted. A channel pattern may be specified in the channel
list parameter. However, doing this will cause the pattern to be deleted because it
contains items that are forbidden to close.

Making a channel or backplane forbidden that is involved in scanning invalidates the
existing scan list.

Also see channel.clearforbidden() (on page 13-36)

channel.getforbidden() (on page 13-50)

Example To mark Channels 2, 4, 6, and 8 of Slot 2 as forbidden to close:
channel.setforbidden ('2002,2004,2006,2008")

To mark Slot 3 as forbidden to close:
channel.setforbidden('slot3"'")

channel.setlabel()

Function Sets the label associated with a channel.

Usage channel.setlabel (<ch list>, label)

ch_list: A string listing the channel to set the label associated with it.

Label: A string representing the label for items in ch 1list.

13-74 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.setlabel()

Remarks This command sets the label of the specified channel in ch_1ist to the value
specified in the label parameter. To clear label use the command with the label
parameter equaling an empty string ™ or a string with a space as the first character.

If the name specified is being used for an existing channel label, that label reverts to
the default label and the new channel is updated to use the new label if no errors
occur. The previous association with that label is lost. The channel attributes
associated with each channel remain unchanged except for their labels. For example,
channel one on Slot 4 has a label of 'start'. Sending

channel.setlabel ('5001"', 'start') causes Channel 4001 to lose the
label of 'start' and gobackto '4001"', while Channel 5001's label is set to
'start'.Using 'start' in commands then refers to 5001 and not 4001.

An error is generated if:

e An empty parameter string is specified for ch 1ist.

e Exceeds max length, which is 20 characters.

e A specified channel does not exist.

e The channel is for an empty slot.

e A channel pattern is specified.

¢ The channel does not support a label setting.

e An analog backplane relay is specified.

e More than one channel is specified in ch 1ist.

e ch listcontains 'slotX' where X=1to6or 'allslots"'.

e The label contains a space. However, if the first character is a space, the label is
cleared.

e The label is already being used to represent a channel pattern.

Command processing stops as soon as an error is detected and no channel label is
updated. To clear a label back to its factory default, SCCC or SRCC, send an empty
string for the label parameter. The label is not persistent through a power-cycle.
However, a label is part of data saved with a setup.

Labels are also supported for digital I/O, DAC, and totalizer channels.

Details ¢ Not persistent through a power cycle.

e You can use labels with commands. Labels and patterns are unique, meaning a
channel label cannot be used for a channel pattern. Whichever one is created or
specified first is the one used. If you try to use one for the other, an error is
generated.

Also see channel functions and attributes (on page 13-24)

3700S-901-01 Rev. C / July 2008 13-75

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

channel.setlabel()

Example To set the label for Channel 1 on Slot 1 to "start":
channel.setlabel ('1001', 'start')

To clear the label for Channel 1 on Slot 1 back to '1001'
channel.setlabel ('1001', '")
or

channel.setlabel ('1001', " ")

channel.setmatch()

Function Sets the match value on a channel.

Usage channel.setmatch(<ch list>, <match value>, [<mask>,
[<width>]1)

ch_list: String specifying the channels to query, using normal channel list syntax.
match_value: Channel value to compare on the specified channel.
mask: Optional value to specify bits used to mask <match value>.

width: Optional value that specifies matches over multiple consecutive channels.

Remarks The mask is AND’ed bitwise to the match value to determine the final match value
used on the channel.

The mask and width arguments are optional. A mask must be specified in order to
specify a width. The default width is 1. The default mask is channel .ALL (all bits).

For digital I/O channels, a width of 1, 2, 3, or 4 channels is supported. Any information
(bits) greater than the specified width are ignored. If a width crosses channels, the
match status indicator is only on the channel specified in the match value. For
example, setting a value with a 2 width on Channel 3 drives the indicator on Channel
3, not Channel 4. Match values for output channels are ignored.

Totalizer and DAC channels only support a width of 1.

Switch and backplane channels are not supported.

Also see channel.getmatch() (on page 13-53)

Example To generate a match state event on Bit 6 of Digital I/O Channel 1:
channel.setmatchtype ("1001", channel.MATCH EXACT)
channel.setmatch ("1001", 32)

channel.setmatchtype()

Function Sets the match type on a channel.

Usage channel.setmatchtype (<ch list>, <type>)
ch_list: String specifying the channels to set, using normal channel list syntax.

type: A value for setting the match operation used on this specific channel.

13-76 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.setmatchtype()

Remarks There are four types of match values:
e channel.MATCH EXACT

e channel .MATCH ANY

e channel. MATCH NOT EXACT
e channel.MATCH NONE

For an EXACT match, the state match indicator only becomes TRUE when the match
value AND match mask value EQUAL the channel read value.

For an ANY match, the state match indicator only becomes TRUE when the match
value OR match mask value EQUAL the channel read value.

For a NOT_EXACT match, the state match indicator only becomes TRUE when the
match value AND match mask value AND channel read value are NOT EQUAL to the
match value AND match mask value AND last channel read value. In other words, the
match value should be the current value, and if the value changes at all away from the
original value, then a match is declared.

For NONE, matching is effectively disabled. This is the default.
For totalizer channels, only MATCH_EXACT and MATCH_NONE are supported.

DAC, backplane, and switch channels are not supported.

Also see channel.getmatchtype() (on page 13-54)

Example To define the match type for digital I/O Channel 1 to be a MATCH_EXACT type:
channel.setmatchtype ("1001", channel.MATCH EXACT)

channel.setmode()

Function Sets the mode attribute on a channel.

Usage channel.setmode (<ch list>, <mode>)
ch_list: String specifying the channels to set, using normal channel list syntax.

mode: The value that sets the mode of a channel’s operation.

3700S-901-01 Rev. C / July 2008 13-77

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.setmode()

Remarks

Different channel types contain additional configurable settings. These settings are
grouped together by channel type as described in the following paragraphs.

For digital I/O channels, the mode indicates the direction of the channel (input or
output). The following modes are supported:

e channel.MODE INPUT (default)
e channel.MODE OUTPUT
e channel.MODE PROTECT OUTPUT

For totalizer channels, the mode indicates the configuration of the channel (edge and
reset). The following modes are supported:

e channel.MODE RISING EDGE

e channel.MODE FALLING EDGE

e channel.MODE RISING TTL EDGE (default)

e channel.MODE FALLING TTL EDGE

e channel.MODE RISING EDGE READ RESET

e channel.MODE_FALLING EDGE READ RESET

e channel.MODE RISING TTL EDGE READ RESET
e channel.MODE FALLING TTL EDGE READ RESET

For DAC channels, the mode indicates the output of the channel (function and range).
The output is switched off before any mode change is made, and remains off after the
mode has changed. The following modes are supported:

e channel.MODE VOLTAGE 1

e channel.MODE CURRENT 1

e channel.MODE CURRENT 2

e channel.MODE PROTECT VOLTAGE_1 (default)
e channel.MODE PROTECT CURRENT 2

e channel .MODE PROTECT CURRENT 2

Changing the mode setting can impact the power consumption of the card. The
instrument verifies that power is available before changing the mode. If an insufficient
power capability exists, the command generates an error.

Consult the card-specific documentation for more detailed information on mode
settings and functionality.

For digital I/O channels, changing the mode from input to output or from output to input
adds an additional channel delay (see channel.setdelay () (on page 13-72)).

For switch and backplane channels, there is no valid mode setting. Setting a mode on
a specific channel generates an error. If the switch channel is in the range of channels,
the mode is ignored.

The specified channel list must use only one channel type. For example, channel list
“1001:1004” is only valid if Channels 1, 2, 3, and 4 are of the same type. If Channel 3
is a DAC channel, the channel list is invalid and an error is generated.

13-78

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.setoutputenable()

Function Sets the output enable attribute on a channel.

Usage channel.setoutputenable (<ch list>, <state>)
ch_list: String specifying the channels to set, using normal channel list syntax.

state: A value representing the desired state of the channel’s output.

Remarks Channels with output OFF consume less power.

For DAC channels, output enable is used to indicate the whether or not the DAC is
driving the output. The following possible states are supported:

e channel.ON
e channel.OFF (default)

For DAC channels, changing the output state adds an additional channel delay (see
channel.setdelay () (on page 13-72)).

Channels with output OFF consume less power. Changing the output setting impacts
the power consumption of the card. The instrument verifies that power is available
before changing the mode. If an insufficient power capability exists, the command
generates an error. Consult the specific card documentation for more detailed
information on a channel’s output characteristics.

For switch, backplane, digital I/0, and totalizer channels, there is no valid output
enable attribute. Setting output enable on a specific channel generates an error. If the
switch or totalizer channel is in the range of channels, the mode is ignored.

Also see channel.getoutputenable() (on page 13-54)

Example To turn the output off on the first DAC channel (Channel 10) in Slot 1:
channel.setoutputenable ("1010", channel.OFF)

channel.setpole()

Function Specifies the pole setting for a list of channels.

Usage channel.setpole(<ch list>, value)

ch_list: A string listing the channels to assign their pole setting
value: Desired pole setting for items in ch _1ist. Use the following:
e Forone-pole: channel.POLES ONE or 1.

e Fortwo-pole: channel.POLES TWO or 2.

e For four-pole: channel.POLES FOUR or 4.

3700S-901-01 Rev. C / July 2008 13-79

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.setpole()

Remarks

An error message is generated for the following reasons:

e An empty parameter string is specified.

e The value parameter is an invalid setting for the specified channel.

e The specified channel does not exist for the card installed in a slot.

e The channel is for an empty slot.

e The value parameter is invalid for command — parameter out of range error.
e Parameter syntax error such as incorrect format for ch_ 1ist.

e A channel pattern or analog backplane relay was specified.

The parameter string can contain 'slotX"', where X equals 1 to 6, or
'allslots"'.

Command processing stops as soon as an error is detected and no pole settings are
modified. Only with no errors are the poles setting changed on the specified channels.

Recall channel patterns do not have a pole setting associated with them. For channel
patterns, the analog backplane relays must be specified when creating the pattern
(see channel.pattern.setimage () (on page 13-63) and
channel.pattern.snapshot () (on page 13-66)).

You manipulate the analog backplane relays for the desired pole setting by using the
channel.setbackplane () (on page 13-70) function for channels. For channels,
as the pole setting changes, their analog backplane relays, specified by
channel.setbackplane () (on page 13-70), get cleared. Therefore, after a pole
setting change, you need to add the desired analog backplane relays for desired pole
setting by using channel.setbackplane () (on page 13-70).

The analog backplane relays get manipulated based on the DMM configuration
assigned to a channel when the channel used with the dmm.close () (on page 13-
123) command. When clearing the backplane channels, this involves clearing the
paired channel whether pairing or unpairing channels. For example, on a 40-channel
card, Channels 1 and 21 are paired when the poles for Channel 1 is set to 4.
Therefore, when changing the poles setting on Channel 1 to 4, the backplane
channels for Channels 1 and 21 are cleared. Likewise, they both are cleared when the
poles setting is set back to 2 on Channel 1.

Calling this function on an existing channel involved in scanning invalidates the
existing scan list.

For digital I/O, DAC, and totalizer channels, only a value of 1 is accepted.

Also see

channel.getbackplane() (on page 13-45)
channel.getpole() (on page 13-55)
channel.setbackplane() (on page 13-70)

Example

Set Channels 1 and 3 on Slot 5 to four-pole:
channel.setpole ("5001, 5003", channel.POLES FOUR)

13-80

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.setpowerstate()

Function

Sets the power state attribute on a channel.

Usage

channel.setpowerstate (<ch list>, <state>)
ch_list: String specifying the channels to query, using normal channel list syntax.

state: A value representing the desired channel’s power state.

Remarks

Channels with an OFF power state consume less power. When a channel previously
OFF is turned ON, the channel attributes are reset to their default values (except the
power state attribute).

The default value is dependent on the installed card. The following possible values are
supported:

e channel.ON
e channel.OFF
Changing the output setting impacts the power consumption of the card. The

instrument verifies that power is available before changing the mode. If an insufficient
power capability exists, the command generates an error.

Consult the specific card documentation for more detailed information on a channel’s
power usage characteristics, including default state, possible warmup issues, and
effects on other channels.

When a channel with an OFF power state is used in a scan, results are undefined. No
error notification is issued.

For switch, backplane, and digital I/O channels, there is no valid power state attribute.
Setting the power state on a specific channel generates an error.

NOTE: On some cards for DAC channels, there can be a warmup time for
the DAC to reach full accuracy (see card-specific documentation).

On some cards for totalizer channels, setting the power state of a
single channel can affect the power state of other channels. If a
single totalizer channel is turned ON, then all totalizer channels are
reset to their defaults.

Also see

channel.getpowerstate() (on page 13-55)

Example

channel.setpowerstate ("1010", channel.ON)

channel.setstatelatch()

Function

Sets the state indicators to either latching or non-latching.

Usage

channel.setstatelatch(<ch list>, <state latch mask>)
ch_list: String specifying the channels to set, using normal channel list syntax.

state latch mask: A value specifying the indicators to latch.

3700S-901-01 Rev. C / July 2008

13-81

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

channel.setstatelatch()

Remarks

Each indicator is represented by a bit in the mask.

For non-latching applications, the state indicator clears automatically when the causing
condition clears itself. For latching applications, the condition is cleared using the
channel.resetstate () command.

When using the trigger module, events are always non-latching (or pulse oriented).
However, in latching mode, the event is only generated once at the beginning. In non-
latching mode, the event is generated anytime the condition begins.

Set multiple states by ORing the values together.

Also see

channel.getstate() (on page 13-56)
channel.getstatelatch() (on page 13-58)

Example

To generate a match state event on digital /O Channel 1:
channel.setstatelatch("1001", channel.IND MATCH)

channel.trigger[N]

.clear()

Function Clears any pending events.

Usage channel.trigger[N].clear ()

Also see channel.trigger[N].set() (on page 13-82)

Example To clear any pending events on channel trigger 1:

channel.trigger[l].clear ()

channel.trigger[N]

.EVENT_ID

Function Defined constant that indicates the event ID in the event system.
Usage channel.trigger[N] .EVENT ID

Also see channel.trigger[N].set() (on page 13-82)

Example To use a channel trigger event to start a scan:

scan.trigger.chan.stimulus = channel.trigger[1].EVENT ID

channel.trigger[N]

-get()

Function Gets trigger information associated with a given trigger.

Usage <ch list>, <state match> = channel.trigger[<n>].get ()
ch_list: Return string specifying the channels watched by this trigger.
state_match: Return value specifying the state to match when triggering an event.

Also see channel.trigger[N].set() (on page 13-82)

Example chan list, state match = channel.trigger[1l].get()

print (chan list, state match)

13-82

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

channel.trigger[N].set()

Function

Sets the channel status trigger module to watch the state of a specific channel.

Usage

channel.trigger[N].set (<ch list>, <state match>)
ch_list: String specifying the channels to query, using normal channel list syntax.

state_match: Value of the state indicators which are to be matched.

Remarks

If the channel list contains more than one channel, then the trigger acts as a logical
OR. When any one of the channels in the list matches the desired state, a trigger
event is generated. Therefore, if an indicator is present in both the match and the
actual state, then an event is triggered. If the match contains more than one state
indicator, only one of those indicators needs be present to trigger the event. There are
a total of eight channel trigger events per Model 3706, defined by [N]. Using this
mechanism, a trigger can be generated when a pattern is matched on an /O, a
totalizer matches a defined count, or an I/O has an over-current condition.

Latching functionality is not supported.
Switch channels are currently not supported.

To clear a trigger that is no longer needed, pass an empty channel list (**).

Also see

channel.trigger[N].get() (on page 13-82)

Example

To define channel trigger event 1 to occur when digital I/O Channel 1 matches its
defined match value:

channel.trigger[1l].set("1001", channel.IND MATCH)

channel.trigger[N].wait()

Function

Waits for the desired trigger or timeout period, whichever comes first.

Usage

<triggered> = channel.trigger[N].wait (<timeout>)
triggered: Returns an indication that a trigger occurred.

timeout: Specifies the number of seconds to wait.

Remarks

If one or more trigger events were detected since the last time
channel.trigger[N].wait orchannel.trigger[N].clear was called,
this function returns immediately.

After waiting for a trigger with this function, the event detector is automatically reset
and rearmed. This is true regardless of the number of events detected.

The value for timeout must be greater than zero and less than 10,000.

Example

To wait 5 seconds for channel trigger event 1:
channel.trigger[1l].wait (5)

3700S-901-01 Rev. C / July 2008

13-83

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

channel.write()

Function Writes a value to a channel.

Usage channel.write (<ch list>, <value>, [<width>])
ch_list: String specifying channels to write, using normal channel list syntax.
value: The value to be written to the channel.

width: Optional value that specifies the channel width of the write.

Remarks For widths greater than 1, the specified channel occupies the least significant byte. For
example, writing the value of OxffO0ff00 to Channel 1 with a width of 4 sets Channel 1
to 0x00, Channel 2 to Oxff, Channel 3 to 0x00, and Channel 4 to Oxff. Writing the value
of OxffOOff00 to Channel 1 with a width of 1 sets Channel 1 to 0x00 and leaves other
channels untouched.

For digital I/O channels, only a width of 1, 2, 3, or 4 is supported. Any other widths are
ignored. Values written to inputs are ignored. If no specified channel is set for output,
then an error is generated. If a width crosses channels, then only the channels set to
output are affected.

Totalizers, DACs, and switch channels do not support a width other than 1. Specifying
a width greater than 1 results in an error.

For a channel with a power state of OFF, an error is generated. No action is taken on
any channel in the specified channel list.

For DAC channels, the value is expected to be the desired floating point voltage or
current. Also, an error is generated if the value is out of range. No action is taken on
any channel in the specified channel list.

For digital I/O channels, the value becomes the settings of the digital output.
For totalizer channels, the value becomes the new current totalizer count.

The time it takes to execute the write command is affected by the channel delay
setting.

Example To output a value of 33 to digital I/O Channel 1:
channel.write ("1001", 33)

13-84 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dataqueue functions and attributes

Use the dataqueue commands to share data between test scripts running in
parallel, and to access data from a remote group or a local node on a TSP-Link
network at any time. You can access data from the data queue even if a remote
group or a nhode has overlapped operations in process.

dataqueue.add()

Function Store an item of data in the data queue.

Usage success = dataqueue.add(valuel[, timeout])
value: The data item to add.
timeout: Maximum amount of time in seconds to wait for room in the queue if it is full.
success: Success indication.

Remarks This function will add one entry to the data queue. If the queue is full, this function will

wait up to timeout seconds for room to be made available. This function will return
true if the value was added to the data queue. It will return false if the queue is full and
the item could not be added before the timeout expires.

The timeout value may only be specified when called from the local node. If a timeout
value is not given, the function will not wait for room in the queue if it is full.

NOTE If value is a table, this function will make a deep copy of it rather than
storing a reference to it. This will make a complete copy of all entries within
the table, including all nested tables.

dataqueue.CAPACITY

Attribute The maximum number of entries the data queue can hold.
Usage capacity = dataqueue.CAPACITY
capacity : Maximum number of entries in the data queue.
Remarks This constant indicates the maximum number of values that can be stored in the data

queue.

dataqueue.clear()

Function Clear the data queue.
Usage dataqueue.clear ()
Remarks This function will remove all entries from the data queue. If any nodes are waiting to

add data to the queue, this method will force them to fail as if they timed out.

3700S-901-01 Rev. C / July 2008

13-85

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dataqueue.count

Attribute The number of entries currently stored in the data queue.
Usage count = dataqueue.count
count: Number of entries in the data queue.
Remarks This attribute is a read-only attribute that indicates how many entries are in the data

queue.

dataqueue.next()

Function Retrieve an entry from the data queue.

Usage value = dataqueue.next ([timeout])
timeout: Maximum amount of time in seconds to wait for data if the queue is empty.
value: The next entry from the data queue.

Remarks This function will remove the next entry from the data queue and return its value. If the

queue is empty, this function will wait up to timeout seconds for data to arrive. If no
data arrives before the timeout expires, this function will return nil.

The timeout value may only be specified when called from the local node. If a timeout
value is not given, the function will not wait for data to be put in the queue if it is empty.

NOTE If the entry is a table, this function will return a deep copy of its contents at
the time the table was added to the data queue rather than returning a
reference to the original table.

delay functions

This function is used to hold up system operation for a specified period of time. It
is typically used to soak a device at a specific voltage or current for a period of

time.
delay()
Function Delays system operation.
Usage delay (seconds)

seconds: Set delay in seconds (100000 seconds maximum).

Remarks e This function will cause a delay for the specified number of seconds. It is
impossible to delay for zero seconds.

e Delays smaller than 50pus (seconds) will be dominated by overhead such that the
actual delay might be as long as 50us (typical). For delays longer than 50us, the
delay may be as much as 10us (typical) more than the requested delay.

Example To pause program execution for 50ms:

delay (0.050)

13-86

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

digio functions and attributes

Use the functions and attributes in this group to control read/write and trigger
operations for the digital 1/0 port.

NOTE The digital I/O lines can be used for both input and output. If a line is
being driven low, then a "0" value will be read by a command for that
line. You must write a "1" to all digital I/O lines that are to be used as

inputs.

digio.readbit()

Function Reads one digital I/O line.
Usage data = digio.readbit (N)
N: Digital /0O line number to be read (1 to 14).
Remarks A returned value of "0" indicates that the line is low. A returned value of "1" indicates
that the line is high.
Details See Digital /0 port.
Also see digio.readport() (on page 13-87)
digio.writebit() (on page 13-92)
digio.writeport() (on page 13-92)
Example Assume line 4 is set high, and it is then read:

data = digio.readbit (4)
print (data)

Output:

1.000000e+00

digio.readport()

Function Reads the digital I/O port.

Usage data = digio.readport ()

Remarks The binary equivalent of the returned value indicates the input pattern on the 1/O port.
The least significant bit of the binary number corresponds to line 1 and bit 14
corresponds to line 14. For example, a returned value of 170 has a binary equivalent
of 00000010101010. Lines 2, 4, 6 and 8 are high (1), and the other 10 lines are low
(0).

Also see digio.readbit() (on page 13-87)

digio.writebit() (on page 13-92)
digio.writeport() (on page 13-92)

3700S-901-01 Rev. C / July 2008

13-87

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

digio.readport()

Example Assume lines 2, 4, 6 and 8 are set high, and the 1/O port is then read:
data = digio.readport ()

print (data)

Output: 1.700000e+02 (binary 10101010)

digio.trigger[N].assert()

Function Asserts a trigger on one of the digital 1/O lines.

Usage digio.trigger[N] .assert ()
N: Digital I/O trigger line: 1 to 14

Remarks The set pulsewidth determines how long the trigger is asserted.
Also see digio.trigger[N].pulsewidth (on page 13-90)
Example Asserts trigger on I/O line 2:

digio.trigger[2] .assert ()

digio.trigger[N].clear()

Function Clears a trigger event on a digital I/O line.

Usage digio.trigger[N].clear ()
N: Digital I/O trigger line: 1 to 14

Remarks A trigger's event detector remembers if a trigger event has been detected since the
last digio.trigger[N].wait call. This function clears a trigger's event detector and
discards the previous history of the trigger line.

Also see digio.trigger[N].wait() (on page 13-92)

Example Clears trigger event on I/O line 2:

digio.trigger[2].clear ()

digio.trigger[N].mode

Attribute Controls the mode in which the trigger event detector as well as the output trigger
generator will operate on the given trigger line.

13-88 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

digio.trigger[N].mode

Usage

To read the trigger mode:

tmode = digio.trigger[N].mode

To write the trigger mode:
digio.trigger[N].mode = tmode

N: Digital I/O trigger line 1 to 14

Set tmode to one of the following values:
digio.TRIG_BYPASS or 0: Allow direct control of the line.

digio. TRIG_FALLING or 1: Detect falling edge triggers as input. Assert a TTL-low
pulse for output.

digio. TRIG_RISING or 2: Use digio.TRIG_RISINGA if the line is in the high output
state. Use digio. TRIG_RISINGM if the line is in the low output state.

digio.TRIG_EITHER or 3: Detect rising or falling edge triggers as input. Assert a TTL-
low pulse for output.

digio. TRIG_SYNCHRONOUSA or 4: Detect falling edge triggers as input and
automatically latch and drive them low when detected. Release a latched line for
output.

digio. TRIG_SYNCHRONOUS or 5: Detect falling edge triggers as input and latch
them low. Assert a TTL-low pulse for output.

digio. TRIG_SYNCHRONOUSM or 6: Detect rising edge triggers as input. Assert a
TTL-low pulse for output.

digio.TRIG_RISINGA or 7: Detect rising edge triggers as input. Assert a TTL-low
pulse for output.

digio. TRIG_RISINGM or 8: Assert a TTL-high pulse for output. Input edge detection is
not possible in this mode.

Remarks

The default trigger mode for a line will be TRIG_BYPASS. In this mode, the line can be
directly controlled as a digital I/O line. When programmed to any other mode, the
output state of the I/O line is controlled by the trigger logic and the user specified
output state of the line will be ignored.

For compatibility with older firmware, when the trigger mode is set to TRIG_RISING,
the user specified output state of the line will be examined. If the output state selected
when the mode is changed is high, the actual mode used will be TRIG_RISINGA. If
the output state selected when the mode is changed is low, the actual mode used will
be TRIG_RISINGM.

TRIG_SYNCHRONOUS is provided for compatibility with older firmware. Either
TRIG_SYNCHRONOUSA or TRIG_SYNCHRONOUSM should be used instead.

e tmode can be expressed as a humber or as one of the pre-defined constants (see
the "Usage" section above).

o When reading the trigger mode, it is returned as a number with the modes noted,
tmode is defined.

Example

To set the trigger mode for I/O line 4 to TRIG_RISING:
digio.trigger[4].mode = 2

3700S-901-01 Rev. C / July 2008

13-89

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

digio.trigger[N].overrun

Attribute Event detector overrun status.

Usage overrun = digio.trigger[N].overrun
overrun: Trigger overrun state.

N: Digital 1/O trigger line: 1 to 14

Remarks This attribute is a read-only attribute that indicates if an event was ignored because
the event detector was already in the detected state when the event occurred. This is
an indication of the state of the event detector built into the line itself. It does not
indicate if an overrun occurred in any other part of the trigger model or in any other
construct that is monitoring the event. It also is not an indication of an output trigger
overrun.

Example overrun = digio.trigger[l].overrun

print (overrun) — false

digio.trigger[N].pulsewidth

Attribute The length of time that the trigger line will be asserted for output triggers. N is a digital
I/O trigger line: 1 to 14

Usage To read pulse width:

width = digio.trigger[N].pulsewidth
To write pulse width:
digio.trigger[N].pulsewidth = width
pulsewidth: length in s (seconds).

N: Digital 1/O trigger line: 1 to 14

Remarks e The trigger line is guaranteed to be asserted for at least the specified time, and it
might be asserted slightly longer.

e Setting pulsewidth to 0 (seconds) asserts the trigger indefinitely.

e The default pulsewidth time is 10us for digio lines 1 through 9, and 20us for digio
lines 10 through 14

Also see See digio.trigger[N].release() (on page 13-90).

Example Sets pulsewidth for trigger line 4 to 20us:

digio.trigger[4] .pulsewidth = 20e-6

digio.trigger[N].release()

Function Releases an indefinite length or latched trigger.

Usage digio.trigger[N].release()

N: Digital I/O trigger line: 1 to 14

Remarks Releases a trigger that was asserted with an indefinite pulsewidth, as well as a trigger
that was asserted in response to receiving a synchronous mode trigger. Only the
specified trigger line (N) is affected.

Also see digio.trigger[N].pulsewidth (on page 13-90)

13-90 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

digio.trigger[N].release()

Example

Releases trigger line 4:

digio.trigger[4].release()

digio.trigger[N].stimulus

Attribute

Event to cause this trigger to assert.

Usage

triggerstimulus = digio.trigger[N].stimulus
Or
digio.trigger[N].stimulus = triggerstimulus

N: Digital I/O trigger line: 1 to 14

triggerstimulus: The event identifier for the triggering event.

Remarks

This attribute selects which event(s) will cause digital output line to assert a trigger.
Set this attribute to 0 to bypass waiting for an event.

Trigger stimulus for a digio line may be set to one of the following (existing trigger
event IDs):

o digio.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the
configuration of the line) on the digital input line.

o display.trigger.EVENT_ID: The trigger key on the front panel is pressed.

e trigger.EVENT_ID: A *trg message on the active command interface. If GPIB is the
active command interface, a GET message will also generate this event.

e trigger.blender[N].EVENT_ID: A combination of events has occurred.
o trigger.timer[N].EVENT_ID: A delay expired.

o tsplink.trigger[N].EVENT_ID: An edge (either rising, falling, or either based on the
configuration of the line) on the tsplink trigger line.

e lan.trigger[N].EVENT_ID

e scan.trigger.EVENT_SCAN_READY: Scan Ready Event.

e scan.trigger.EVENT_SCAN_START: Scan Start Event

e scan.trigger.EVENT_CHANNEL_READY: Channel Ready Event

e scan.trigger.EVENT_MEASURE_COMP: Measure Complete Event

e scan.trigger.EVENT_SEQUENCE_COMP: Sequence Complete Event
e scan.trigger.EVENT_SCAN_COMP: Scan Complete Event

e scan.trigger.EVENT_IDLE: Idle Event

NOTE Use ICL define to set the stimulus value rather than the define value. Doing
this will make the code compatible for future upgrades because they may
need to change when enhancements are added to the instrument.

Example

To set the trigger stimulus of digital I/O line 3 to be the channel ready event during a
scan:

digio.trigger[3].stimulus = scan.EVENT CHANNEL READY

To clear the trigger stimulus of digital I/O line 3:

digio.trigger[3].stimulus = 0

3700S-901-01 Rev. C / July 2008

13-91

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

digio.trigger[N].wait()

Function Waits for a trigger.

Usage triggered = digio.trigger[N].wait (timeout)
N: Digital I/O trigger line: 1 to 14
timeout: Set timeout in seconds.

triggered: Returns “true' if a trigger was detected, or “false' if no triggers were
detected during the timeout period.

Remarks This function will wait up to timeout seconds for an input trigger. If one or more trigger
events were detected since the last time digio.trigger[N].wait (this function) or
digio.trigger[N].clear() (on page 13-88) was called, this function will return immediately.
After waiting for a trigger with this function, the event detector will be automatically
reset and re-armed. This is true regardless of the number of events detected.

Also see digio.trigger[N].clear() (on page 13-88)

Example Waits up to three seconds for a trigger to be detected on trigger line 4, then displays if
the trigger was detected:

triggered = digio.trigger[4].wait (3)
print (triggered)

Output: false (no triggers detected) true (trigger detected)

digio.writebit()

Function Sets a digital I/O line high or low.

Usage digio.writebit (bit, data)
bit: Digital I/O line number (1 to 14)
data: Value to write to the hit; 0 (low) or 1 (high)

Remarks e |f the output line is write protected, using the digio.writeprotect() (on page 13-93)
attribute, the command will be ignored.

e The reset function does not affect the present states of the digital I/O lines.

NOTE The second parameter (data) needs to be 0 to clear the bit. Any value other
than 0 causes the bit to be set.

Also see digio.readbit() (on page 13-87)
digio.readport() (on page 13-87)
digio.writeport() (on page 13-92)

Example Sets digital I/O line 4 low (0):
digio.writebit (4, O0)

digio.writeport()

Function Writes to all digital I/O lines.

Usage digio.writeport (data)

data: Value to write to the port; O to 16383.

13-92 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

digio.writeport()

Remarks

e The binary representation of data indicates the output pattern to be written to the I1/O
port. For example, a data value of 170 has a binary equivalent of 00000010101010.
Lines 2, 4, 6 and 8 are set high (1), and the other 10 lines are set low (0).

o Write protected lines will not be changed (see digio.writeprotect() (on page 13-93)).
e The reset function does not affect the present states of the digital I/O lines.

Also see

digio.readbit() (on page 13-87)
digio.readport() (on page 13-87)
digio.writebit() (on page 13-92)

Example

Sets digital 1/0O lines 1 through 8 high (binary 00000011111111):
digio.writeport (255)

digio.writeprotect

Attribute Write protect mask that disables bits from being changed with the digio.writebit() (on
page 13-92) and digio.writeport() (on page 13-92) functions.
Usage To read writeprotect mask:
mask = digio.writeprotect
To write writeprotect mask:
digio.writeprotect = mask
mask: Set to the value that specifies the bit pattern for write protect.
Remarks e Bits that are set to one cause the corresponding line to be write protected.
e The binary equivalent of mask indicates the mask to be set for the /O port. For
example, a mask value of 7 has a binary equivalent 00000000000111. This mask
write protects lines 1, 2 and 3.
Example Write protects lines 1, 2, 3 and 4:

digio.writeprotect = 15

display functions and attributes

The functions and attributes in this group are used for various display

operations.

display.clear()

Function

Clears all lines of the display.

Usage

display.clear ()

3700S-901-01 Rev. C / July 2008

13-93

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

display.clear()

Remarks e This function will switch to the user screen and then clear the display.

e Thedisplay.clear (), display.setcursor() (on page 13-105), and
display.settext() (on page 13-106) functions are overlapped, non-blocking
commands. That is, the script will NOT wait for one of these commands to
complete. These non-blocking functions do not immediately update the display. For
performance considerations, they write to a shadow and will update the display as
soon as processing time becomes available.

Also see display.setcursor() (on page 13-106)
display.settext() (on page 13-105)

display.getannunciators()

Function Reads the annunciators that are presently turned on.

Usage annun = display.getannunciators/()

annun: Returns the bitmap value for annunciators that are turned on.

13-94 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 13: Instrument Control Library (ICL)

display.getannunciators()

Remarks This function returns a bitmap value that indicates which annunciators are turned on.
The 16- bit binary equivalent of the returned value is the bitmap. For example, assume
the returned value is 1028. The binary equivalent for this value is as follows:
0000010000000100
The above bitmap indicates that bits 3 and 11 are set. From the chart below, bit 3 and
bit 11 corresponds to the annunciators that are turned on (4W and REM). Notice that
the sum of the weighted values for bits 3 and 11 is the returned value (1028).

Annunciator Bit Weighted Annunciator Bit Weighted

Value Value

FILT 1 1 EDIT 9 256
MATH 2 2 ERR 10 512
4w 3 4 REM 11 1024
AUTO 4 8 TALK 12 2048
ARM 5 16 LSTN 13 4096
TRIG 6 32 SRQ 14 8192
*(star) 7 64 REAR 15 16384
SMPL 8 128 REL 16 32768

The following definitions exist:

display. ANNUNCIATOR_x

Where: x equals EDIT, ERROR, REMOTE, TALK, LISTEN, SRQ, REAR, REL,
FILTER, MATH, 4_WIRE, AUTO, ARM, TRIGGER, STAR, or SAMPLE

The values correspond to the annunciators listed above.

For example:

print (display.ANNUNCIATOR EDIT)

2.560000000e+002

print (display.ANNUNCIATOR TRIGGER)

3.200000000e+001

print (display.ANNUNCIATOR AUTO)

8.000000000e+000

Example Reads the annunciators that are turned on:

annun = display.getannunciators()
print (annun)

Output: 1.280000e+03

For the returned value of 1280, the binary equivalent is 0000010100000000. Bits 9
and 11 are set. Using the above chart in "Remarks", the REM and EDIT annunciators
are turned on.

3700S-901-01 Rev. C / July 2008

13-95

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

display.getcursor()

Function Reads the present position of the cursor for the user display.

Usage row, column, style = display.getcursor()
row: Returns the row for the present cursor position.
column: Returns the column for the present cursor position.

style: Returns the cursor style.

Remarks e This function switches the display to the user screen, and then returns values to
indicate row and column position, and cursor style.

e The row value is returned as 1 (top row) or 2 (bottom row).

e With the cursor in the top row, the column is returned as a value from 1 to 20.
With the cursor in the bottom row, the column is returned as a value from 1 to 32.
Columns are numbered from left to right on the display.

e The returned value for style is O (invisible) or 1 (blink).

Also see display.gettext() (on page 13-97)
display.screen (on page 13-104)
display.setcursor() (on page 13-105)
display.settext() (on page 13-106)

Example Reads cursor position (row and column):
row, column = display.getcursor ()

print (row, column)

Output: 1.000000e+00 3.000000e+00

The above output indicates that the cursor is in Row 1 at Column 3.

display.getlastkey()

Function Retrieves the key code for the last pressed key.

Usage key = display.getlastkey ()

13-96 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 13: Instrument Control Library (ICL)

display.getlastkey()

Remarks

This read-only function returns the key code for the last pressed key. key returns one

of the following values:

Key List Value Key List Value
display.KEY_RIGHT 103 display.KEY_INSERT 78
display.KEY_LEFT 104 display.KEY_OPENALL 79
display.WHEEL_LEFT 107 display.KEY_CONFIG 80
display. WHEEL_RIGHT 114 display.KEY_RANGEDOW 81
N
display.KEY_RANGEUP 65 display.KEY_ENTER 82
display.KEY_FUNC 66 display.KEY_REC 83
display.KEY_REL 67 display.KEY_DMM 84
display.KEY_MENU 68 display.KEY_DELETE 85
display.KEY_CLOSE 69 display.KEY_STEP 86
display.KEY_SLOT 70 display.KEY_CHAN 87
display.KEY_RUN 71 display.KEY_RATE 90
display.KEY_DISPLAY 72 display.KEY_LIMIT 91
display.KEY_AUTO 73 display.KEY_TRIG 92
display.KEY_FILTER 74 display.KEY_OPEN 93
display.KEY_EXIT 75 display.KEY_PATT 94
display.KEY_STORE 76 display.KEY_LOAD 95
display.KEY_SCAN 77 display. WHEEL_ENTER 97

A history of the key code for the last pressed front panel key is maintained by the
Series 3700. When the instrument is powered-on, (or when transitioning from local to
remote), the key code is set to O (display.KEY_NONE).

Pressing the EXIT/LOCAL key normally aborts a script. In order to use this function

with the EXIT key, display.locallockout (on page 13-102) must be used.

Also see

display.sendkey() (on page 13-105)

display.locallockout (on page 13-102)

Example

On the front panel, press the MENU key and then send the following code:

key = display.getlastkey ()

print (key)

Qutput: 6.800000e+01

3700S-901-01 Rev. C / July 2008

13-97

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

display.gettext()

Function Reads the text presently displayed

Usage There are five ways to use this function:
text = display.gettext ()
text = display.gettext (embellished)
text = display.gettext (embellished, row)
text = display.gettext (embellished, row, column start)
text = display.gettext (embellished, row, column_ start,

column_end)

embellished Set to false to return text as a simple character string. Set to true to

include all character codes.

row Set to 1 or 2 to select which row to read text. If not included, text from both rows

are read.

column_start Set to starting column for reading text. Default is 1.

column_end Set to ending column for reading text. Default is 20 (Row 1) or 32 (Row

2).

NOTE The range of valid column numbers depends on which row is specified. For
Row 1, valid column numbers are 1 to 20. For Row 2, valid column
numbers are 1 to 32.

Remarks Sending the command without any parameters returns both lines of the display. The
$N character code will be included to show where the top line ends and the bottom line
begins.

With embellished set to true , all other character codes will be returned along with the
message. With embellished set to false, only the message and the $N character code
will be returned. See display.settext() (on page 13-106) for details on the character
codes.

The display will not be switched to the user screen. Text will be read from the active
screen.

Also see display.getcursor() (on page 13-95)
display.setcursor() (on page 13-105)
display.settext() (on page 13-106)

Example Returns all text in both lines of the display:

text = display.gettext ()
print (text)
Output: User Screen SN

The above output indicates that the message "User Screen" is on the top line. The
bottom line is blank.

13-98

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

display.inputvalue()

Function

Displays a formatted input field that the operator can edit.

Usage

There are four ways to use this function:
value = display.inputvalue (format)
value = display.inputvalue (format, default)

value = display.inputvalue (format, default, min)

value display.inputvalue (format, default, min, max)

format: Define format string for the input field using "0's, the decimal point (.), polarity
sign (+) and 'E' for exponent.

default: Set the default value for the parameter.
min: Set the minimum input value that can be set.

max: Set the maximum input value that can be set.

Remarks

This function will make use of text to create an editable input field on the user screen
at the present cursor position. The first write to the display after power-on will clear the
user screen.

Examples of the input field:
e +0.00 00 +00.0000E+00
e 0.00000E+0

Value field:

e + Include a plus sign for positive/negative value entry. Do not include the "+" sign
to prevents negative value entry.

e 0 Defines the digit positions for the value. Up to six 0's can be used for the value
(as shown above in the third and fourth examples).

e _Ifused, include the decimal point (.) where needed for the value.
Exponent field (optional):
e E Include the "E" for exponent entry.

e + Include a plus sign for positive/negative exponent entry. If a "+" sign is not
included, negative exponent entry is prohibited.

e 0 Defines the digit positions for the exponent.

¢ You can also specify minimum and maximum limits for the input field. When NOT
using the "+" sign for the value field, the minimum limit cannot be set to less than
zero. When using the "+" sign, the minimum limit can set to less than zero (for
example, -2).

e There is also an option to specify a default value. When this command is executed,
the initially displayed value for the field will be the default value.

e Message prompts to instruct the operator should be displayed prior to calling this
function. Make sure to position the cursor where the edit field should appear.

e The input value is limited to +1e37.

3700S-901-01 Rev. C / July 2008

13-99

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

display.inputvalue()

Remarks e After sending this command, script execution pauses for the operator to enter a
(cont.) value and press the ENTER key.
cont.

o If limits are used, the operator will not be able to input values outside the minimum
and maximum limits.

e For positive and negative entry ("+" sign used for the value field and/or the
exponent field), polarity of a non-zero value or exponent can be toggled by
positioning the cursor on the polarity sign and turning the navigation wheel. Polarity
will also toggle when using the navigation wheel to decrease or increase the value
or exponent past zero. A zero value or exponent (for example, +00) is always
positive and cannot be toggled to negative polarity.

e After sending this command and pressing the EXIT key, value will return nil.

Also see display.prompt() (on page 13-102)

display.setcursor() (on page 13-105)

display.settext() (on page 13-106)

Example Displays an editable field ("+0.50") for operator input. Valid input range: 0.10 to +2.00,

with a default of 0.50:
display.clear ()
value = display.inputvalue("+0.00", 0.5, -0.1, 2.0)

display.loadmenu.add()

Function Adds an entry to the USER TESTS submenu of the LOAD TEST menu.

Usage There are two ways to use this function:

display.loadmenu.add (displayname, chunk)
display.loadmenu.add (displayname, chunk, memory)
displayname: Name to display in the menu.

chunk: Chunk is the code to be executed.

memory: Save or don't save chunk and displayname in non-volatile memory.
Set memory to one of the following values:

Oordisplay.DONT SAVE

lordisplay.SAVE

The default memory setting is display.SAVE

13-100 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimet

er Reference Manual Section 13: Instrument Control Library (ICL)

display.loadmenu.add()

Remarks

e This function adds an entry to the USER TESTS submenu of the LOAD TEST
menu. If the given item is subsequently selected using the front panel, the chunk
will be executed when the RUN key is pressed.

e The chunk can be made up of scripts, functions, variables, and commands. With
memory set to display.SAVE, commands are saved with the chunk in non-
volatile memory. Scripts, functions, and variables used in the chunk are not saved
by display.SAVE. Functions and variables need to be saved along with the
script. If the script is not saved in non-volatile memory, it will be lost when the
Series 3700 is turned off. See Example 1 below.

e It does not matter what order the menu items are added. They will be displayed in
alphabetical order when the USER TESTS menu is selected.

Also see

display.loadmenu.delete() (on page 13-101)

Examples

Example 1: Assume a script with a function named 'DUT1 "' has already been loaded
into the Series 3700, and the script has NOT been saved in non-volatile memory.

Now assume you want to add a test named 'Test ' to the USER TESTS menu. You
want the test to run the function named 'DUT1 "' and sound the beeper. The following
command will add ' Test ' to the menu, define the chunk, and then save
displayname and chunk in non-volatile memory:

display.loadmenu.add('Test', 'DUT1 () beeper.beep(2, 500)',
display.SAVE)

When 'Test ' is run from the front panel USER TESTS menu, the function named
'DUT1 " will execute and the beeper will beep for two seconds.

Now assume you cycle power on the Series 3700. Because the script was not saved
in non- volatile memory, the function named 'DUT1"' is lost. When 'Test ' is again
run from the front panel, the beeper will beep, but ' DUT1 " will not execute because it
no longer exists in the chunk.

Example 2: This example adds an entry called 'Partl' to the front panel USER
TESTS load menu for the chunk 'testpart ([[Partl]], 5.0) ', and savesit
in non-volatile memory:

display.loadmenu.add('Partl', 'testpart([[Partl]], 5.0)"',
display.SAVE)

display.loadmen

u.delete()

Function Deletes an entry from the USER submenu of the LOAD TEST menu.

Usage display.loadmenu.delete (displayname)
displayname: Name to remove from the menu.

Remarks This function is used to delete an entry (displayname) from the front panel USER
TESTS submenu of the LOAD TEST menu.

Also see display.loadmenu.add() (on page 13-100)

Example Removes the entry named 'Partl’ from the front panel USER TESTS load menu:

display.loadmenu.delete ('Partl"')

3700S-901-01 Rev. C / July 2008

13-101

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

display.locallockout

Attribute

LOCAL key disabled.

Usage

To read state of lockout:

lockout = display.locallockout

To write state of lockout:

display.locallockout = lockout
Set lockout to one of the following values:
Unlocks LOCAL key: 0 or display.UNLOCK
Locks out LOCAL key: 1 or display.LOCK

Remarks

Setting display.locallockout to display.LOCK prevents the user from
interrupting remote operation by pressing the LOCAL key. Set this attribute to
display.UNLOCK to allow the LOCAL key to abort script/remote operation.

Example

Disables the front panel LOCAL key:
display.locallockout = display.LOCK

display.menu()

Function Presents a menu on the front panel display.

Usage selection = display.menu(name, items)

name: Menu name to display on the top line.

items: Menu items to display on the bottom line.

Remarks e The menu consists of the menu name string on the top line, and a selectable list of
items on the bottom line. The menu items must be a single string with each item
separated by whitespace. The name for the top line is limited to 20 characters.

e After sending this command, script execution pauses for the operator to select a
menu item. An item is selected by rotating the navigation wheel (or using the
CURSOR keys) to place the blinking cursor on the item, and then pressing the
navigation wheel (or ENTER key). When an item is selected, the text of that
selection is returned.

e Pressing the EXIT key will not abort the script while the menu is displayed, but it
will return nil. The script can be aborted by calling the exit function when nil is
returned.

Example Displays a menu with three menu items. If the second menu item is selected, selection

will be given the value Test2:

selection = display.menu("Sample Menu", "Testl Test2
Test3")

print (selection)

Output: Test?2

13-102

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

display.prompt()

Function Prompts the user to enter a parameter from the front panel.

Usage There are four ways to use this function:
value = display.prompt (format, units, help)
value = display.prompt (format, units, help, default)

value = display.prompt (format, units, help, default, min)

value
max)

display.prompt (format, units, help, default, min,

format: Define format string for the input field using zeros (0), the decimal point (.),
polarity sign (+), and exponent (E).

units: Set units text string for top line (8 characters maximum).

help: Text string to display on the bottom line (32 characters maximum).
default: Set the default value for the parameter.

min: Set the minimum input value that can be set.

max: Set the maximum input value that can be set.

Remarks This function will create an editable input field at the present cursor position, and an
input prompt message on the bottom line. Example of a displayed input field and
prompt:

e 0.00V

e InputOto +2V

The format configures the editable input field. Four examples for the format:
e +0.00

e 00

e +00.0000E+00

¢ 0.00000E+0

Value field:

e +: Include a plus sign for positive/negative value entry. Not including the "+" sign
prevents negative value entry.

¢ 0: Defines the digit positions for the value. Up to six "0's can be used for the value
(as shown above in the third and fourth usage examples). If used, include the
decimal point (.) where needed for the value.

Exponent field (optional):
e E: Include the "E" for exponent entry.

e +: Include a "+" sign for positive/negative exponent entry. Do not include the "+"
sign to prevents negative value entry.

o 0: Defines the digit positions for the exponent.

3700S-901-01 Rev. C / July 2008 13-103

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

display.prompt()

Remarks e units: a string that indicates the units (for example, "V" or "A") for the value and

(cont.) help provides a message prompt on the bottom line.

e You can also specify minimum and maximum limits for the input field. When NOT
using the "+" sign for the value field, the minimum limit cannot be set to less than
zero. When using the "+" sign, the minimum limit can set to less than zero (for
example, -2).

e There is also an option to specify a default value. When this command is executed,
the initially displayed value for the field will be the default value.

e Message prompts to instruct the operator should be displayed prior to calling this
function. Make sure to position the cursor where the edit field should appear.

e The input value is limited to +1e37.

e After sending this command, script execution pauses for the operator to enter a
value and press ENTER:

o If limits are used, the operator will not be able to input values outside the minimum
and maximum limits.

e For positive and negative entry ("+" sign used for the value field and/or the
exponent field), polarity of a non-zero value or exponent can be toggled by
positioning the cursor on the polarity sign and turning the navigation wheel. Polarity
will also toggle when using the navigation wheel to decrease or increase the value
or exponent past zero. A zero value or exponent (for example, +00) is always
positive and cannot be toggled to negative polarity.

e After sending this command and pressing the EXIT key, the value will return nil.

Also see display.inputvalue() (on page 13-98)

Example Prompts the operator to enter a voltage value; valid input range is 0 to +2.00, with a
default of 0.50:
value = display.prompt("0.00", "V", "Input 0 to +2V" 0.5,
0, 2)

The above command will display the following input prompt:
0.50v
Input 0 to +2V

display.screen

Attribute The selected display screen.

Usage To read display screen: displayid = display.screen
To write display screen: display.screen = displayid
Set displayid to one of the following values:

0 ordisplay.MAIN: Displays main screen.

1 ordisplay.USER: Displays the user screen.

Remarks Setting this attribute selects the display screen for the front panel. Read this attribute
to determine which of the available display screens was last selected.

13-104 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 13: Instrument Control Library (ICL)

display.screen

Example

Selects the user display:

display.screen display.USER

display.sendkey

0

Function Send key code that simulates the action of a front panel control being pressed.
Usage display.sendkey (keycode)
Set key code to one of the values shown below:
Key List Value Key List Value
display.KEY RIGHT 103 display.KEY INSERT 78
display.KEY LEFT 104 display.KEY OPENALL | 79
display.WHEEL LEFT 107 display.KEY CONFIG 80
display.WHEEL RIGHT 114 display.KEY RANGEDO | 81
WN
display.KEY RANGEUP 65 display.KEY ENTER 82
display.KEY FUNC 66 display.KEY REC 83
display.KEY REL 67 display.KEY DMM 84
display.KEY MENU 68 display.KEY DELETE 85
display.KEY CLOSE 69 display.KEY STEP 86
display.KEY SLOT 70 display.KEY CHAN 87
display.KEY RUN 71 display.KEY RATE 90
display.KEY DISPLAY 72 display.KEY LIMIT 91
display.KEY AUTO 73 display.KEY TRIG 92
display.KEY FILTER 74 display.KEY OPEN 93
display.KEY EXIT 75 display.KEY PATT 94
display.KEY STORE 76 display.KEY LOAD 95
display.KEY SCAN 77 display.WHEEL ENTER | 97
NOTE When using this function, send built-in defines such as
display.KEY RIGHT (rather than the numeric value of 103). This will
allow for greater forward compatibility with respect to firmware revisions.
For example, use display.KEY ENTER instead of 82.
Also see Front panel keys for key functions.
Example To use a bus command to simulate the action of a front panel RUN key being pressed:

display.sendkey (display.KEY RUN)

3700S-901-01 Rev. C / July 2008

13-105

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

display.setcursor()

Function Sets the position of the cursor.
Usage There are two ways to use this function:

display.setcursor (row, column)

display.setcursor (row, column, style)

row: Set row number for the cursor (1 or 2).

column: Set the column number for the cursor. For row 1, the column can be set from

1 to 20. For row 2, the column can be set from 1 to 32.

style: Set the cursor style to be invisible (0) or blink (1).

Remarks e Sending this command selects the user screen and then moves the cursor to the
given location.

e An out of range parameter for row will set the cursor to row 2. An out of range
parameter for column will set the cursor to column 20 (for row 1) or 32 (for row 2).

e An out of range parameter for style (a parameter other than 1 or 0) sets it to O
(invisible).

e A blinking cursor will only be visible when it is positioned over displayed text. It
cannot be seen when positioned over a space character.

e The display.clear() (on page 13-93), display.setcursor, and
display.settext() (on page 13-106) functions are overlapped, non-blocking
commands. That is, the script will NOT wait for one of these commands to
complete. These non-blocking functions do not immediately update the display. For
performance considerations, they write to a shadow and will update the display as
soon as processing time becomes available.

Also see display.clear() (on page 13-93)

display.getcursor() (on page 13-95)

display.gettext() (on page 13-97)

display.settext() (on page 13-106)

Example Positions cursor in row 2, column 1:

display.setcursor (2, 1)

display.settext()

Function

Displays text on the user screen.

Usage

display.settext ("text")

text: Text message string to be displayed.

13-106

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

display.settext()

Remarks This function selects the user display screen, and displays the given text. The first
write to the display after power-on will clear the user screen.
The text starts at the present cursor position. After the text is displayed, the cursor will
be located after the last character in the display message.
Top line text will not wrap to the bottom line of the display automatically. Any text that
does not fit on the current line will be truncated. If the text is truncated, the cursor will
be left at the end of the line.
The text remains on the display until replaced or cleared.
The following character codes can be also be included in the text string:
e $N Newline: Starts text on the next line. If the cursor is already on line 2, text will

be ignored after the $N is received. $R Sets text to Normal.

e 3$B: Sets text to blink.
e 3$D: Sets text to dim intensity.
e $F: Sets text to background blink.
e $$: Escape sequence to display a single "$".
The display.clear (on page 13-93), display.setcursor (on page 13-105), and
display.settext functions are overlapped, non-blocking commands. That is, the
script will NOT wait for one of these commands to complete. These non-blocking
functions do not immediately update the display. For performance considerations, they
write to a shadow and will update the display as soon as processing time becomes
available.

Also see display.clear() (on page 13-93)
display.getcursor() (on page 13-95)
display.gettext() (on page 13-97)
display.setcursor() (on page 13-105)

Example Displays a message on the user screen:
To display "Message Test" on the top line and the bottom line displays the blinking
message "with Row 2 Blinking":
display.clear ()
display.settext ("Message Test SNSBwith Row 2 Blinking")
To display the unit's serial number on the top line:
display.clear()
display.settext (localnode.serialno)
(see localnode.serialno (on page 13-214))

display.waitkey()

Function Captures the key code value for the next key press.

Usage key = display.waitkey ()

3700S-901-01 Rev. C / July 2008

13-107

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

display.waitkey()

Remarks After sending this function, script execution pauses until a front panel key or the
navigation wheel is pressed, or the navigation wheel is turned to the right or left. After
pressing a control or turning the navigation wheel, the key code value for that key will
be returned. The chart shown below lists the key code value for each front panel
control. The controls are listed alphabetically.
If the EXIT key is pressed while this function is waiting for a key press, the script will
not be aborted.
A typical use for this function is to prompt the user to press the EXIT key to abort the
script or press any other key to continue. If key code value 75 is returned (EXIT key
pressed), then the exit() function can be called to abort the script.

Key List Value Key List Value
display.KEY RIGHT 103 display.KEY INSERT 78
display.KEY LEFT 104 display.KEY OPENALL | 79
display.WHEEL LEFT 107 display.KEY CONFIG 80
display.WHEEL RIGHT 114 display.KEY RANGEDO | 81
WN
display.KEY RANGEUP 65 display.KEY ENTER 82
display.KEY FUNC 66 display.KEY REC 83
display.KEY REL 67 display.KEY DMM 84
display.KEY MENU 68 display.KEY DELETE 85
display.KEY CLOSE 69 display.KEY STEP 86
display.KEY SLOT 70 display.KEY CHAN 87
display.KEY RUN 71 display.KEY RATE 90
display.KEY DISPLAY 72 display.KEY LIMIT 91
display.KEY AUTO 73 display.KEY TRIG 92
display.KEY FILTER 74 display.KEY OPEN 93
display.KEY EXIT 75 display.KEY PATT 94
display.KEY STORE 76 display.KEY LOAD 95
display.KEY SCAN 77 display.WHEEL ENTER | 97

The above chart lists the numeric key code values for the front panel controls. The key
code value identifiers are listed in the documentation for display.sendkey() (on page
13-105) (for example, display.KEY RUN is the identifier for the RUN key).

Also see display.sendkey() (on page 13-105)

display.settext() (on page 13-106)
display.getlastkey() (on page 13-96)

13-108

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

display.waitkey()

Example The following code pauses script execution and wait for the operator to press a key or
the navigation wheel, or rotate the navigation wheel:

key = display.waitkey ()
print (key) — 8.600000e+01

The above output (8.600000e+01, or 86) indicates that the STEP key was pressed.

dmm functions and attributes

Use the functions and attributes in this group to control DMM operation, set
limits, and perform calibration. Default configuration names like "dcvolts",
"temperature", "fourwireohms", etc., imply the reset conditions for the
corresponding functions. For example, sending dmm. setconfig("slotl",
"dcvolts™) sets all channels on Slot 1 to use DC volts factory-default settings.
To make a channel use one setting that is different, create a user dmm
configuration with dmm. configure.set ("mydcv") and then set "mydcv" to

the desired channels.

dmm.adjustment.count

Attribute Indicates the number of times the unit has been adjusted.

Usage cal count = dmm.adjustment.count

cal_count: Represents the number of times unit has been adjusted.

Remarks Use this attribute to query the unit for the number of times the unit has been adjusted.

This item can only be set when calibration is unlocked.

Example To query for the adjustment count:

CalCount = dmm.adjustment.count

dmm.adjustment.date

Attribute Sets or queries the adjustment date in UTC format (number of seconds since January
1, 1970).
Usage CalDate = dmm.adjustment.date

CalDate: Represents the number of seconds since January 1, 1970.
To set the adjustment date based on the present date of the system:
dmm.adjustment.date = os.time ()

To set the adjustment date as July 4, 2007

dmm.adjustment.date = os.time ({year=2007, month=7, day =
4})

Remarks Use this attribute to set and get the adjustment date of the DMM in UTC format. See
Lua documentation for formatting options with os . date.

This item can only be set when calibration is unlocked.

3700S-901-01 Rev. C / July 2008 13-109

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.adjustment.date

Example

Also see usage for setting date.

NOTE For following assume set date to July 4, 2007.

To query date and format the response as mm/dd/yyyy:
print (os.date ("%m/%d/%Y",

dmm.adjustment.date)) — 07/04/2007

To query date and format the response as mm/dd/yy:

print (os.date ("%x",

dmm.adjustment.date)) — 07/04/07

dmm.aperture

Attribute

Indicates the aperture setting for the active DMM function in seconds.

Usage

To read the aperture:

value = dmm.aperture

value: Represents the present aperture setting in seconds
To write the aperture:

dmm.aperture = value

value: Represents the desired aperture:

e For 50Hz, the range is 10e-6 to 0.250 second.

e For 60Hz, the range is 8.33e-6 to 0.250 second.

e For frequency and period, 0.01 to 0.273 second.

Remarks

This is the aperture setting for the DMM and it applies to the selected function as
indicated by dmm.func (on page 13-137). Querying the aperture when the selected
function does not have an aperture associated with it will cause nil to be returned.

An error is generated if a command is received when dmm.func (on page 13-137) =
"continuity” or "nofunction”.

Changing functions with dmm.func (on page 13-137) will reflect the aperture setting for
that function.

The setting for aperture may be adjusted based on what the DMM supports.
Therefore, after setting the aperture, query the value to see if it was adjusted.

If the detector bandwidth (dmm.detectorbandwidth (on page 13-132)) setting is 30 or
less for "acvolts" or "accurrent”, then an error message will be generated when trying
to set the aperture for these functions. The detector bandwidth setting is one of three
values (based on input parameter): 3, 30, or 300.

Input parameter Converted value
<30 3

Between 30 and 300 30

> 300 300

13-110

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.aperture

Also see dmm.func (on page 13-137)

dmm.nplc (on page 13-152)

Example To set the aperture to 16.67 milliseconds for DC volts:

dmm. func = "dcvolts"

dmm.aperture = 16.67e-3

dmm.appendbuffer()

Function Appends data from reading buffer to USB flash drive.

Usage dmm.appendbuffer ('<reading buffer name>', '<filename>',
time format)

reading buffer name: The name of a previously created DMM reading buffer.
filename: The destination filename located on the USB flash drive.

time_format: This optional parameter indicates how the date and time information
should be appended to the file to the thumb drive. Use the following values for
time_format:

e dmm.buffer.SAVE RELATIVE TIME, which saves relative time stamps only

e dmm.buffer.SAVE FORMAT TIME, which is the defaultif no time format
specified and saves dates, times and fractional seconds

e dmm.buffer.SAVE RAW TIME, which saves seconds and fractionalseconds
only

e dmm.buffer.SAVE TIMESTAMP TIME, which only saves time stamps

3700S-901-01 Rev. C / July 2008 13-111

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.appendbuffer()

Remarks

The first parameter (reading buffer name) represents the reading buffer to be
saved. The second (filename) is the filename of file to append reading buffer data
to on USB flash drive. The third parameter is optional and indicates how the date and
time information from the buffer should be saved. For options that save more than one
item of time information, each item is comma delimited. For example, the default
format will have <date>, <time>, and <fractional seconds> for each
reading, separated by commas.

This command appends data to an existing file or creates the file, if it doesn't exist.
Because it is appending data, it does not include the header information like the
dmm.savebuffer() (on page 7-10) command. This command doesn't care about the
data format of existing data because it only appends data. Therefore, the index column
entry starts at 1 for each append operation. Like the savebuffer command, it appends
all data in the reading buffer specified.

Errors are generated if the reading buffer does not exist or is not a DMM buffer, or if
the destination filename is not specified correctly. The file extension .csv is
appended to the filename if necessary. Any specified file extension other than . csv
generates errors.

Valid destination filename examples:

dmm. appendbuffer ('mybuffer', '/usbl/mydata')
dmm.appendbuffer ('mybuffer', '/usbl/mydata.csv')
Invalid destination filename examples:

dmm. appendbuffer ('mybuffer', '/usbl/mydata.')

-Invalid extension due to period by no following letters for extension.
dmm.appendbuffer ('mybuffer', '/usbl/mydata.txt')
-Invalid extension. Use . csv or do not specify (no period)

dmm. appendbuffer ('mybuffer', '/usbl/mydata.txt.csv')

-invalid extension because 2 periods specified (mydata txt.csv would be
correct).

NOTE The reading buffer files saved to the USB flash drive will always have an
extension of . csv

Example

To append readings from valid DMM buffer named mybuffer with default time
information to a file named mydata.csv onthe USB flash drive:

dmm. appendbuffer ('mybuffer', '/usbl/mydata.csv')

To append readings from mybuffer with relative time stamps to a file named
mydatarel.csv on the USB flash drive:

dmm. appendbuffer ('mybuffer', '/usbl/mydatarel.csv',
dmm.buffer.SAVE RELATIVE TIME)

13-112

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.autodelay

Attribute

Indicates the auto delay setting for the active DMM function.

Usage

To read the autodelay setting:

value = dmm.autodelay

value: Represents the present auto delay setting

To write the autodelay setting:

dmm.autodelay = value

value: Represents the desired auto delay. Set to one of the following:
e dmm.ON or 1 to enable auto delay

e dmm.OFF or 0 to disable auto delay
e dmm.AUTODELAY_ONCE or 2

Remarks

This is the auto delay setting for the DMM and it applies to the selected function as
indicated by dmm.func (on page 13-137). Querying the auto delay when the selected
function doesn't have an auto delay setting associated with it will cause nil to be
returned.

An error is generated if command is received when dmm. func = "nofunction".
Also, an error will be generated if the value is invalid.

Changing functions with dmm.func (on page 13-137) will reflect the auto delay setting
for that function.

A setting of dmm . OFF has the DMM take a measurement has fast as possible without
concern of delays needed based on range, function and other settings.

A setting of dmm . ON has the DMM wait the necessary delay for each and every
measurement it takes.

A setting of dmm . AUTODELAY ONCE will only incur the delay on the first
measurement set or group. This is the factory default and reset setting.

For example:

dmm.autodelay = dmm.AUTODELAY ONCE
dmm.measurecount = 10

MyReadingBuffer = dmm.makebuffer (1000)

dmm.measure (MyReadingBuffer)

This will only incur the auto delay on the first of the 10 readings. Readings 2 through
10 will occur as fast as possible.

Also see

dmm.func (on page 13-137)

Example

To enable auto delay for DC volts:

dmm. func = "dcvolts"

dmm.autodelay = dmm.ON

To set auto delay to set once:

dmm.autodelay = dmm.AUTODELAY ONCE

3700S-901-01 Rev. C / July 2008

13-113

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.autorange

Attribute Indicates the auto range setting for the active DMM function.

Usage To read the auto range:
value = dmm.autorange
value: Represents the present auto range setting (1 = ON, 0 = OFF).

To write the auto range:

dmm.autorange = value

value: Represents the desired auto range setting. Use one of the following:
e dmm.ON or 1: Enables auto ranging.

e dmm.OFF or 0: Disables auto ranging.

Remarks This is the auto range setting for the DMM. It applies to the selected function as
indicated by dmm.func (on page 13-137). Querying the auto range when the selected
function does not have an auto range associated with it will cause nil to be returned.
An error is generated if command is received when dmm.func = "temperature”,
"frequency”, "period", "continuity” or "nofunction”. Also, an error will be generated if the
value is out of range.
Changing functions with dmm.func (on page 13-137) reflects the autorange setting for
that function.
The default setting is dmm.ON.

Example To enable auto ranging for 2-wire ohms:

dmm. func = "twowireohms"

dmm.autorange = dmm.ON

dmm.autozero

Attribute

Indicates the auto zero setting for the active DMM function.

Usage

To read the auto zero status:

value = dmm.autozero

value: Represents the present auto zero setting (1 = ON, 0 = OFF)
To change the auto zero status:

dmm.autozero = value

value: Represents the desired auto zero. Use one of the following:
e dmm.ON or 1 to enable auto zero

e dmm.OFF or 0 to disable auto zero

e dmm.AUTOZERO_ONCE or 2 to refresh backgrounds once and go to auto zero off
setting (O will be returned if auto zero status is read).

13-114

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.autozero

Remarks

This is the auto zero setting for the DMM. It applies to the selected function as
indicated by dmm.func (on page 13-137). Querying the auto zero when the selected
function does not have an auto zero setting associated with it will cause nil to be
returned.

An error is generated if command is received when dmm. func =
"nofunction". Also, an error will be generated if the value is invalid.

Changing functions with dmm.func (on page 13-137) will cause that function's auto
zero setting to take effect.

The auto zero once setting will force a refresh of the backgrounds. After doing this
once, the auto zero setting will automatically be set to "OFF". Therefore, querying the
dmm.autozero state after setting dmm.autozero to 2 generates a response of 0 and
not 2.

Example

To enable auto zero for DC volts:

dmm. func = "dcvolts"

dmm.autozero = dmm.ON

To force backgrounds to cycle once and set auto zero to OFF:

dmm.autozero = dmm.AUTOZERO ONCE

print (dmm.autozero) — 0.000000000e+000

dmm.buffer.catalog()

Function

Creates an iterator for the user-created reading buffers.

Usage

for name in dmm.buffer.catalog() do...end

Remarks

Accessing the catalog for the user-created local reading buffers allows the user to print
the names of all reading buffers in system. The entries will be enumerated in no
particular order. From this list, one may selectively delete reading buffers from the
system. For example:

for name in dmm.buffer.catalog() do print (name) end
outputs:

buf3

bufb

bufl

Now, with these buffers in the system, to delete bufl:
bufl = nil

collectgarbage ()

Key Note: Don't delete the reading buffers by doing

for name in dmm.buffer.catalog() do name = nil end

This will not delete the reading buffers from the system but make the system appear
locked up and an abort will need to be done to stop the command from running by
pressing the EXIT key on front panel. This occurs because name is a string type
variable and not a reading buffer type.

3700S-901-01 Rev. C / July 2008

13-115

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

dmm.buffer.catalog()

Also see dmm.buffer.info (on page 13-116)

Example To print all user-created local reading buffers in the system:
for name in dmm.buffer.catalog() do

print (name)

end
dmm.buffer.info()
Function Returns the size and capacity of the reading buffer parameter.
Usage size, capacity = dmm.buffer.info (buffer name)

buffer_name: String representing the reading buffer name to query for size and
capacity

size: Number representing the n attribute of reading buffer parameter

capacity: Number representing the capacity attribute of reading buffer parameter

Remarks This function uses the specified reading buffer input parameter name to find the
corresponding size and capacity to return. Use this function with the
dmm.buffer.catalog() function to output the size and capacity for all reading buffers in
the system.

Also see dmm.buffer.catalog() (on page 13-115)

13-116

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 13: Instrument Control Library (ICL)

dmm.buffer.info()

Example

Assume the system has the following reading buffers created: bufl, buf2, buf3,

buf4, and bufb.

Now, query the system for the size and capacity of each reading buffer without
formatting the results.

for n in dmm.buffer.catalog()

print (dmm.buffer.info (n))

end

Output results:
0.000000000e+000
0.000000000e+000
0.000000000e+000
0.000000000e+000
0.000000000e+000

2.000000000e+003
4.000000000e+003
5.000000000e+003
3.000000000e+003
1.000000000e+003

Now, to query the system for the name, size, and capacity of each reading buffer while
formatting the results:

for n in dmm.buffer.catalog() do
size, cap = dmm.buffer.info (n)
print(n, 'size = ' .. size, 'capacity = ' .. cap)
end
Output results:
buf2 size=0 capacity = 2000
buf4 size=0 capacity = 4000
buf5 size=0 capacity = 5000
buf3 size=0 capacity = 3000
bufl size=0 capacity = 1000

dmm.buffer.maxcapacity

Attribute Indicates the overall max capacity for reading buffers in the system.

Usage maxcap = dmm.buffer.maxcapacity

maxcap: Number representing the overall max capacity for reading buffers

3700S-901-01 Rev. C / July 2008 13-117

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

dmm.buffer.maxcapacity

Remarks

Use this attribute to determine what the system maximum capacity for reading buffer
storage is. This value represents the total system reading buffer storage size. A single
reading buffer may be created (dmm.makebuffer () (on page 7-8) with this as its
size or several reading buffers may be created in the system that are smaller in size.
However, the sum total of all reading buffer sizes in the system can't exceed this
maximum. For example,

print (dmm.buffer.maxcapacity) -> 6.500000000e+005

So we have 650,000 readings as our max capacity.

Also see

dmm.buffer.usedcapacity (on page 13-118)
dmm.buffer.info (on page 13-116)

Example

To read the maximum reading buffer capacity for the system:

MaxBuffCap = dmm.buffer.maxcapacity

dmm.buffer.usedcapacity

Attribute

Indicates how much of the maximum capacity for reading buffers in the system is
used.

Usage

usedcap = dmm.buffer.usedcapacity

usedcap: Number representing current used capacity for reading buffers in system

Remarks

Use this attribute to determine how much of the system maximum capacity for reading
buffer storage is used. This value represents the sum total capacity of all reading
buffers in the system. For example, assume the following commands have been
executed:

bufl dmm.makebuffer (300000)
buf2 = dmm.makebuffer (300000)

Therefore:
print (dmm.buffer.usedcapacity) -> 6.000000000e+005

print (dmm.buffer.maxcapacity - dmm.buffer.usedcapacity) ->
5.000000000e+004

This shows that we have 50,000 available for creating additional reading buffers.

Also see

dmm.buffer.maxcapacity (on page 13-117)
dmm.buffer.info (on page 13-116)

Example

To read the used reading buffer capacity for the system:
UsedBuffCap = dmm.buffer.usedcapacity

13-118

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.calibration.ac()

Function

Signals the desired AC calibration step on the DMM.

Usage

dmm.calibration.ac (step, value)
step: Represents the AC calibration step to perform

value Represents the associated value for this functions step. This is an optional
parameter. Only use if calibration step has a value associated. If no value is needed,
use dmm.calibration.ac (step)

Remarks

Use this command to indicate the desired AC calibration step to perform on the DMM.
This command will generate an error if the step is out of sequence, does not exist, or
the calibration is locked. An error will be generated if the calibration step does not
complete successfully or if the value passed is invalid for the step, out of range, or not
needed.

Details

AC volts calibration
dmm.calibration.ac(l) ' AC cal step 1
(10mv, 1lkHz step)
dmm.calibration.ac(2) ' AC cal step 2
(100mVv, 1lkHz step)
dmm.calibration.ac(3) ' AC cal step 3
(100mVv, 50kHz step)
dmm.calibration.ac(4) ' AC cal step 4
(1v, 1lkHz step)
dmm.calibration.ac(5) ' AC cal step 5
(1v, 50kHz step)
dmm.calibration.ac(6) ' AC cal step 6
(10V, 1kHz step)
dmm.calibration.ac(7) ' AC cal step 7
(10v, 50kHz step)
dmm.calibration.ac(8) ' AC cal step 8
(100Vv, 1lkHz step)
dmm.calibration.ac(9) ' AC cal step 9
(100v, 50kHz step)
dmm.calibration.ac(10) ' AC cal step 10
(300Vv, 1kHz step)

3700S-901-01 Rev. C / July 2008

13-119

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.calibration.ac()
Details, AC current calibration
continued dmm.calibration.ac(11l) ' AC cal step 11
(L00uA 1kHz step)
dmm.calibration.ac(12) ' AC cal step 12
(ImA 1kHz step)
dmm.calibration.ac(13) ' AC cal step 13
(10mA 1kHz step)
dmm.calibration.ac(14) ' AC cal step 14
(100mA 1kHz step)
dmm.calibration.ac(15) ' AC cal step 15
(1A 1kHz step)
dmm.calibration.ac(16) ' AC cal step 16
(2A 1kHz step)
Example To perform AC calibration step 1 after unlocking calibration:

dmm.calibration.ac (1)

dmm.calibration

.dc()

Function

Signals the desired DC calibration step on the DMM.

Usage

dmm.calibration.dc (step,

value)

step: Represents the DC calibration step to perform

value: Represents the associated value for the specified step. This is an optional
parameter; only use if step has a value associated. If no value is needed, use
dmm.calibration.dc (step).

Remarks

needed).

Use this command to indicate the desired DC calibration step to perform on the DMM.
This command will generate an error if the step is out of sequence, does not exist, or
the calibration is locked. An error will be generated if the calibration step does not
complete successfully or if the value passed is invalid for the step (out of range or not

13-120

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual

Section 13: Instrument Control Library (ICL)

dmm.calibration.dc()

Details

DC volts calibration
dc (1)
circui

dc (2)

dmm.calibration.

(4 wire short
dmm.calibration.
step)
dc (3,

(open circuit
dmm.calibration.
< valu
dc (4,

-11 < va

(+10V step, 9
dmm.calibration.
(-10V step,
dmm.calibration.dc (5,
(+100V step, 90 < va
Resistance calibration
dmm.calibration.dc (6,
(100 ohm step, 90 <
dmm.calibration.dc (7,
(10k ohm step, 9k <
dmm.calibration.dc (8,
(100k ohm step, 90k
dmm.calibration.dc (9,

(IM ohm step, .9M <

DC current calibration
dmm.calibration.dc (10,
(100uA step,
dmm.calibration.dc (11,
(ImA step,
dmm.calibration.dc (12,
(10mA step,
dmm.calibration.dc (13,
(100mA step,
dmm.calibration.dc (14,

(1A step,

‘' DC cal step 1
t step)

‘' DC cal step 2

<value>) ' DC cal step 3
e < 11)

<value>) ' DC cal step 4
lue < -9)

<value>) ' DC cal step 5
lue < 110)

<value>) ' DC cal step 6
value < 110)

<value>) ' DC cal step 7
value < 11k)

<value>) ' DC cal step 8

< value < 110k)

<value>) ' DC cal step 9

value < 1.1M)

<value>) ' DC cal step 10
90u < wvalue < 110u)
<value>) ' DC cal step 11
.9m < value < 1.1m)
<value>) ' DC cal step 12
9m < value < 11lm)
<value>) ' DC cal step 13
90m < wvalue < 110m)
<value>) ' DC cal step 14

.9 < value < 1.1)

Example

To perform DC calibration step 2

dmm.calibration.dc (2)

To perform DC calibration step 3

dmm.calibration.dc (3,

after unlocking calibration:

with a value of 10 after unlocking calibration:
10)

3700S-901-01 Rev. C / July 2008

13-121

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.calibration

Jlock()

Function Locks calibration.

Usage dmm.calibration.lock()

Remarks Use this command to lock an unlocked calibration. Once locked, calibration will need
to be unlocked to be performed again. An error will be generated if this command is
issued when calibration is already locked. This function locks calibration but does not
save calibration data. Calibration data will be lost if it is not saved before locking.

Also see dmm.calibration.save() (on page 13-122)

Example To lock calibration:

dmm.calibration.lock ()

dmm.calibration

.password

Attribute

Sets the password to unlock calibration.

Usage

dmm.calibration.password = password

password: A string representing the valid password to unlock calibration.

Remarks

Use this attribute to set the password to unlock calibration. Make note of the password
because there is no command to query for the password once set on the system. This
command will generate an error if calibration is locked or if the password string length
is greater than 10 characters.

This item can only be set when calibration is unlocked.

Example

To set the password to "MyUnlock™ after unlocking calibration with the saved
password:

dmm.calibration.password = "MyUnlock"

dmm.calibration

.save()

Function Saves calibration data.

Usage dmm.calibration.save ()

Remarks Use this command to save calibration data after performing a calibration. This
command needs to be received before locking calibration, otherwise the data will be
lost. This command will save the calibration constants, adjustment date, and increase
the adjustment count by 1. An error will be generated if this command is issued when
calibration is already locked. This command will save the calibration data with its
present values regardless of errors in the data. The user should not issue a save
unless the calibration procedure was performed with no errors. If no calibration date
was specified (see dmm.adjustment.date (on page 13-109)), the date will be auto
generated based on the system date.

Also see dmm.calibration.lock() (on page 13-121)
dmm.adjustment.date (on page 13-109)

Example To save calibration data:

dmm.calibration.save ()

13-122

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.calibration.unlock()

Function Unlocks calibration.

Usage dmm.calibration.unlock (password)
password: A string representing the password to unlock calibration.

Remarks Use this command to unlock calibration (if locked). An error will be generated if the
password does not match the one saved. The default password from the factory is
"K1003706". This may be changed with dmm.calibration.password (on page 13-122).

Also see dmm.calibration.password (on page 13-122)

Example To unlock calibration using the default password:

dmm.calibration.unlock ("KI003706")

dmm.calibration

.verifydate

Attribute

Set or queries the calibration verification date in UTC format (number of seconds since
January 1, 1970).

Usage

To query the calibration verify date:

CalDate = dmm.calibration.verifydate

CalDate: Represents the number of seconds since January 1, 1970.

To set the calibration verification date based on the current date of the system:
dmm.calibration.verifydate = os.time ()

To set the calibration verification date as July 4, 2007:

dmm.calibration.verifydate = os.time ({year=2007, month=7,
day = 4})

Remarks

This attribute sets and gets the calibration verification date of the DMM in UTC format.
See Lua documentation for formatting options with os.date.

This item can only be set when calibration is unlocked.

Example

NOTE Example assumes the set date is July 4, 2007.

To query calibration verification date and format the response as mm/dd/yyyy:

print (os.date ("%m/%d/%Y", dmm.calibration.verifydate))
—07/04/2007

To query calibration verification date and format the response as mm/dd/yy:

print (os.date ("%x", dmm.calibration.verifydate))

—07/04/07

dmm.close()

Function Closes the specified channel or channel pattern in preparation for a DMM
measurement.
Usage dmm.close (<ch list>)

ch_list: string listing the channel or channel pattern to close.

3700S-901-01 Rev. C / July 2008

13-123

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

dmm.close()

Remarks The actions associate with this function includes:

e Opens previously closed channels if they interfere with measurement including
analog backplane relays 1, 2, and common-side ohms on all slots, if needed. The
opening and closing of channels mimics that of channel.exclusiveslotclose() (on
page 13-43). Therefore, when using a for-loop with dmm.close() (on page 13-123)
command, the last channel on each slot will be closed at the end of the for loop
execution. To have additional analog backplane relays 3 through 6 closed, use
them on an alternate slot or if need to be on same slot then create a channel
pattern. To have additional channels closed, then use patterns. Using patterns, you
must specify all items to close, including analog backplane relays 1 and 2. With
patterns, there is no auto manipulation of analog backplane relays 1 and 2 like
there is with channels.

e Any amp channels will open as well. If there is a need to have multiple amp
channels closed at a time then create a channel pattern.

e Next, this command will close the associated channels and analog backplane
relays which include analog backplane relay 1 and 2 as needed based on
configuration associated with channel (see dmm.getconfig() (on page 13-139))
Analog backplane relays specified by channel.setbackplane() (on page 13-70) are
not used.

e This command will configure the DMM based on the configuration associated with
the channel or channel pattern being closed (see dmm.getconfig() (on page 13-
139)). If the configuration is a default name, the function of that configuration will
be reset back to factory default settings. User must create a unique DMM
configuration to avoid using factory default settings when assigning to a channel
(see dmm.configure.set() (on page 13-129) and dmm.setconfig() (on page 13-168)
commands.)

Details An error will be generated if:

e There is a syntax error in parameter string.

e An empty parameter string is specified.

e The specified channel or channel pattern is invalid.

e The channel number does not exist for slot specified.

e The slot is empty.

e The channel pattern does not exist.

e A forbidden item is specified.

e The specified channel does not support being closed (like a digital /0O channel).
e More than 1 channel or channel pattern specified.

e The channel is paired with another bank for a multi-wire application.
e The channel is an analog backplane relay.

e The channel’s configurationis 'nofunction’.

Once an error is detected, the command stops processing. Channels will open and
close, and the DMM will be reconfigured only if no error is detected. Otherwise,
channels and DMM remain unchanged.

This command allows you to separate the closing of channels from measuring.
Therefore, you may execute any number of commands between the close and
measure commands to satisfy your application needs.

13-124 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.close()

Also see

channel.exclusiveslotclose() (on page 13-43)
channel.getclose() (on page 13-46)
channel.getstate() (on page 13-56)
dmm.open() (on page 13-154)

Example

To close Channel 3 on Slot 3 and prepare the DMM for measuring temperature at
'mytemperature’ settings:

dmm.setconfig('3003', 'mytemperature')

dmm.close ('3003")

To close a channel pattern called mychans and prepare DMM for measuring
'devolts' atfactory default settings:

dmm.setconfig('mychans', 'dcvolts')

dmm.close ('mychans')

dmm.configure.catalog()

Function

Creates an iterator for the user-created DMM configurations.

Usage

for name in dmm.configure.catalog() do .. end

Remarks

Accessing the catalog for user DMM configurations allows the user to print or delete all
configurations in volatile memory. The entries will be enumerated in no particular
order. This will only list user-created DMM configurations; it does not list the factory
default configurations.

Also see

dmm.configure.delete() (on page 13-125)
dmm.configure.query() (on page 13-126)
dmm.configure.recall() (on page 13-128)
dmm.configure.set() (on page 13-129)

Example

To delete all user-created DMM configurations from volatile memory:
for name in dmm.configure.catalog() do
dmm.configure.delete (name)
end
To print all user-created DMM configurations in volatile memory:
for name in dmm.configure.catalog() do
print (name)

end

dmm.configure.delete()

Function

Deletes the specified user created DMM configuration from memory.

Usage

dmm.configure.delete (name)

name: String containing the name of the DMM configuration to delete

3700S-901-01 Rev. C / July 2008

13-125

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.configure.delete()

Remarks

The function will delete the specified DMM configuration from memory. An error will be
generated if the name specified does not exist as a user configuration. After executing
this command, the specified name will no longer exist as a valid configuration. Deleting
an existing DMM configuration invalidates an existing scan list.

Also see

dmm.configure.catalog() (on page 13-125)
dmm.configure.set() (on page 13-129)
dmm.configure.query() (on page 13-126)
dmm.configure.recall() (on page 13-128)

Example

To delete a user configuration called myDCV:
dmm.configure.delete ("myDCV")

dmm.configure.query()

Function

Provides a list of all of the pertinent DMM settings associated with a configuration.

Usage

config = dmm.configure.query (myconfig, myseparator)
myconfig: A string with the name for the DMM configuration being listed.

myseparator: String representing the two-character separator between items. This is
an optional parameter. Default value: , (comma-space delimited)

config: Output string representing the DMM attribute settings of myconfig.

13-126

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.configure.query()

Remarks This function will list the settings contained within the specified configuration,
myconfig, along with the corresponding DMM attributes contained within that
configuration. A nil response is generated if the specified configuration does not exist,
along with an error message stating the referenced name does not exist. The second
parameter, myseparator, is optional. If not specified, the attributes are comma
delimited within the config response. However, if specified, then the attributes will be
delimited by this two-character separator. If more than two characters are specified, an
error message (string is too long) is generated. To query the factory default settings for
a function, use the desired function for the myconfig parameter. Valid default functions

are:
e ‘"dcvolts"
e "acvolts"

e "dccurrent"

e accurrent”

e "twowireohms"

e "fourwireohms"

e ‘"temperature"

¢ "frequency"”

e "period"

e "continuity"

e "commonsideohms"
¢ "nofunction”

To query for the settings associated with the active function, call this function with the
myconfig parameter set to "active”.

Also see dmm.configure.catalog() (on page 13-125)
dmm.configure.set() (on page 13-129)
dmm.configure.delete() (on page 13-125)

dmm.configure.recall() (on page 13-128)

3700S-901-01 Rev. C / July 2008 13-127

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

dmm.configure.query()

Example To see the DMM attributes within MyDcv separated by commas:
MyDcvItems = dmm.configure.query ("MyDcv")
print (MyDcvItems)

To see the DMM attributes within MyDcv separated by newlines:
MyDcvItems = dmm.configure.query ("MyDcv", "\n")
print (MyDcvItems)

To see the factory default settings for DC volts separated by newlines:
FactoryDCV = dmm.configure.query ("dcvolts", "\n")
print (FactoryDCV)

To see the DMM attributes for the active function separated by newlines:
ActiveFunc = dmm.configure.query ("active", "\n")

print (ActiveFunc)

dmm.configure.recall()

Function Recalls a user or factory DMM configuration.

Usage dmm.configure.recall (config)

config: A string representing the name of the DMM configuration to recall.

13-128 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.configure.recall()

Remarks

This command will recall a saved DMM configuration from memory. The DMM
attributes associated with that configuration will be updated to reflect the settings in the
configuration. The ones not pertinent will not be changed. The function associated with
the configuration will become the active one. The previous values of those being
updated will be lost. The specified DMM configuration to recall may be a factory one or
user one.

To recall a factory configuration, send the function name as the config value. Valid
factory configurations are:

e ‘"dcvolts"

e "acvolts"

e ‘"dccurrent”

e "accurrent”

e "twowireohms"
o “fourwireohms"
e temperature"
e "frequency”

e "period"

e “continuity"

e "commonsideohms"
e "nofunction”

Recalling a factory configuration also changes the corresponding DMM function
(dmm.func) and resets that function’s attributes to their default values. Settings not
pertaining to the function will remain unchanged.

An error is generated if the specified configuration does not exist in memory.

Also see

dmm.configure.set() (on page 13-129)
dmm.configure.delete() (on page 13-125)
dmm.configure.query() (on page 13-126)
dmm.func (on page 13-137)

Example

To recall a DMM configuration call "mydmm":
dmm.configure.recall ("mydmm")
To recall factory default settings for "temperature":

dmm.configure.recall ("temperature")

dmm.configure.set()

Function

Creates a DMM configuration with the pertinent attributes based on the selected
function and associates it with the specified name.

Usage

dmm.configure.set (confiqg)

config: A string with the name for the DMM configuration being created.

3700S-901-01 Rev. C / July 2008

13-129

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

dmm.configure.set()

Remarks

If the configuration specified is being used for an existing DMM configuration, then that
configuration will be overwritten with the new configuration settings, if no errors occur.
The previous configuration associated with config will be lost. All channels that have
this configuration as their associated DMM configurations now will start using the new
attribute settings.

This command creates a copy of the selected function along with its pertinent settings
to volatile memory to be recalled later when desired. If a DMM setting is not pertinent it
will not be stored. Therefore, creating a configuration with dcvolts set as the function
will not store the temperature settings. A DMM configuration has only one function
associate with it and enough settings information to support that function and no more.

An error will be generated if the name being used to create a configuration
corresponds to a factory default configuration.

If the specified name already exists then that configuration will be overwritten with the
new information and the previous configuration will be lost.

Executing a dmm.configure.set on an existing DMM configuration will invalidate an
existing scan list (the DMM configuration may or may not be used in the current scan
list). If the configuration being created does not already exist, the scan list will not be
invalidated.

The maximum number of characters for a named configuration is 30. An error will be
generated if the number of characters in config parameter is greater than 30.

Details

These are not persistent through a power cycle. User DMM configurations are part of
the data associated with a saved setup.

Also see

dmm.configure.catalog() (on page 13-125)
dmm.configure.delete() (on page 13-125)
dmm.configure.query() (on page 13-126)
dmm.configure.recall() (on page 13-128)

Example

To create a DMM configuration as "mydmm":

dmm.configure.set ("mydmm")

dmm.connect

Attribute

Indicates how the DMM relays should be connected to the analog backplane.

13-130

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.connect

Usage

To read the DMM relay connection setting:
value = dmm.connect
value: Represents the present DMM relay connection setting

To write the DMM relay connection setting:

dmm.connect = value

value: Represents the desired DMM relay connection setting

where value is:

e dmm.CONNECT_NONE or 0 to have no relays connected

e dmm.CONNECT_ALL or 7 to have all relays connected (default value)

e dmm.CONNECT_TWO_WIRE or 1 to have 2-wire relay connected

¢ dmm.CONNECT_FOUR_WIRE or 3 to have 2-wire & sense relays connected
e dmm.CONNECT_TWO_WIRE_AMPS or 5 to 2-wire & amps relay connected
e dmm.CONNECT_AMPS or 4 to have amps relay connected

Remarks

Use the value setting, as indicated in the usage section to indicate, which of the DMM
relays you want connected to the backplane. The relays are bitmapped into the lower
3 bits of the value where bit 0, a value of 1, represents the 2-wire relay. Bit 1, a value
of 2, represents the sense relay and bit 3, a value of 4, represents the amp relay. By
setting the appropriate bit to a 1, then that relay is closed. Likewise, setting it to zero,
opens that relay.

An error will be generated only if the sense relay bit is set to a 1 and if the sense relay
with amps is selected. These two settings correspond to a value of 2 or 6, respectively.
Also, an error will be generated for a value less than 0 or greater than 7.

Default setting is dmm.CONNECT_ ALL.

Details

Use of this command is not recommended with the exception of special cases. The
default setting should handle most applications.

Example

To connect the DMM 2-wire and amp relays to the analog backplane:
dmm.connect = dmm.CONNECT TWO WIRE AMPS

dmm.dbreferenc

e

Attribute

Indicates the DB reference setting for the DMM in volts.

Usage

To read the DB reference:
value = dmm.dbreference
value: Represents the present DB reference setting in volts

To write the DB reference:

dmm.dbreference = value

value: Represents the desired DB reference in volts (1e-7 to 1000)

3700S-901-01 Rev. C / July 2008

13-131

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

dmm.dbreference

Remarks This is the DB reference setting for the DMM and it applies to the selected function as
indicated by dmm.func. Querying this setting when the selected function does not
support it will cause nil to be returned.

Command only applies when dmm.func = "dcvolts” or "acvolts". For all other functions
an error will be generated if this command is received. Also, an error will be generated
if the value is out of range.

Changing functions with dmm.func (on page 13-137) will reflect the DB reference
setting for that function.

Example To set the DB reference to 5 volts for DC volts:
dmm. func = "dcvolts"

dmm.dbreference = 5

dmm.detectorbandwidth

Attribute Indicates the detector bandwidth setting for the DMM in Hertz.
Usage To read the detector bandwidth:
value = dmm.detectorbandwidth

value: Represents the present detector bandwidth setting in Hertz
To write the detector bandwidth:

dmm.detectorbandwidth = value

value: Represents the desired detector bandwidth in Hertz (3 to 300). Values less than
30, the parameter is adjusted to 3. Values between 3 and 300, the parameter is
adjusted to 30. For values greater than 300, the parameter is adjusted to 300.

Remarks This is the AC detector bandwidth setting for the DMM and it applies to the selected
function as indicated by dmm.func. Querying the aperture when the selected function
does not have a detector bandwidth setting associated with it will cause nil to be
returned.

Command only applies when dmm.func = "acvolts" or "accurrent". For all other
functions an error will be generated if this command is received. Also, an error will be
generated if the value is out of range. The default setting for both functions is 300.

Changing functions with dmm.func (on page 13-137) will reflect the detector bandwidth
setting for that function.

When trying to set the aperture for functions with dmm.aperture (on page 13-110)
attribute, if the detector bandwidth setting is 30 or less, an error message will be

generated.
Example To set the detector bandwidth to 100 Hertz for AC volts:
dmm. func = "acvolts"

dmm.detectorbandwidth = 100 --this gets adjusted to 30
print(dmm.detectorbandwidth) --> "30"

13-132 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.displaydigits

Attribute

Indicates the display digits setting for the selected DMM function.

Usage

To read the display digits setting:

value = dmm.displaydigits

value: Represents the present display digits setting.
To write the display digits setting:
dmm.displaydigits = value

value: Represents the desired display digits setting. Set to one of the following:
dmm.DIGITS_7_5 or 7 to enable 7.5 display digits
dmm.DIGITS_6_5 or 6 to enable 6.5 display digits
dmm.DIGITS_5_5 or 5 to enable 5.5 display digits
dmm.DIGITS_4_5 or 4 to enable 4.5 display digits
dmm.DIGITS_3_5 or 3 to enable 3.5 display digits

Remarks

This is the display digits setting for the DMM and it applies to the selected function as
indicated by dmm.func. Querying the setting when the selected function doesn't
support it will cause nil to be returned.

An error will be generated if the value is invalid.
Changing functions with dmm.func has no effect on this setting.

The factory default is 6 because on "dcvolts” and dmm.reset value is dependent on
function resetting.

Example

To enable display digits to 7.5 for dcvolts:
dmm. func = "dcvolts"

dmm.displaydigits = dmm.DIGITS 7 5

dmm.drycircuit

Attribute

Indicates the dry circuit setting for the selected DMM function.

Usage

To read the dry circuit:

value = dmm.drycircuit
value: Represents the present dry circuit setting

To write the dry circuit:

dmm.drycircuit = value
value Represents the desired dry circuit setting. Use one of the following:
dmm.ON or 1 to enable dry circuit.

dmm.OFF or 0 to disable dry circuit

3700S-901-01 Rev. C / July 2008

13-133

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

dmm.drycircuit

Remarks This is the dry circuit setting for the DMM and it applies to the selected function as
indicated by dmm.func. Querying the setting when the selected function does not
support it will cause nil to be returned.

This command only applies when dmm.func = "fourwireohms" or "commonsideohms".
All other function settings will generate an error if the command is received. Also, an
error will be generated if the value is invalid.

Changing functions with dmm.func (on page 13-137) will reflect the dry circuit setting
for that function.

The factory default and dmm.reset() (on page 13-161) function value is dmm.OFF.

Example To enable dry circuit for 4-wire ohms:
dmm. func = "fourwireohms"

dmm.drycircuit = dmm.ON

dmm . filter.count

Attribute Indicates the filter count setting for the selected DMM function.
Usage To read the filter count:
value = dmm.filter.count

value: Represents the present filter count setting

To write the filter count:

dmm.filter.count = value

value: Represents the desired filter count setting from 1 to 100

Remarks This is the filter count setting for the DMM and it applies to the selected function as
indicated by dmm.func. Querying the setting when the selected function does not
support it will cause nil to be returned.

This attribute indicates the number of measured readings to yield one filtered
measurements when filtered measurements are enabled.

The command will generate an error when dmm.func = "frequency"”, "period",
"continuity" or "nofunction". Also, an error will be generated if the value is out of range.

Changing functions with dmm.func (on page 13-137) will reflect the filter count setting
for that function.

The dmm.reset() (on page 13-161) function sets the filter count to 10.

Also see dmm.filter.enable (on page 13-134)

dmm filter.type (on page 13-135)

Example To set the filter count for 2-wire ohms to 5:
dmm. func = "twowireohms"

dmm.filter.count = 5

13-134 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm filter.enable

Attribute

Enables or disables filtered measurements for the selected DMM function.

Usage

To read the filter enable:

value = dmm.filter.enable

value: Represents the present filter enable setting

To write the filter enable:

dmm.filter.enable = value

value: Represents the desired filter enable setting. Use one of the following:

e dmm.ON or 1 to enable filter measurements

e dmm.OFF or 0 to disable filter measurements

Remarks

This is the filter enable setting for the DMM and it applies to the selected function as
indicated by dmm.func. Querying the setting when the selected function does not
support it will cause nil to be returned.

This attribute indicates whether filtered measurements are enabled (or not).

Changing functions with dmm.func (on page 13-137) will reflect the filter enable setting
for that function.

The dmm.reset() (on page 13-161) function disables the filter.

Also see

dmm filter.count (on page 13-134), dmm.filter.type (on page 13-135),
dmm.filter.window (on page 13-136)

Example

To enable the filter for 2-wire ohms:
dmm. func = "twowireohms"

dmm.filter.enable = dmm.ON

dmm filter.type

Attribute

Indicates the filter type for the DMM measurements on selected DMM functions.

Usage

To read the filter type:

value = dmm.filter.type

value: Represents the present filter type setting

To write the filter type:

dmm.filter.type = value

value: Represents the desired filter type for measurements. Use:

e dmm.FILTER_MOVING_AVG or 0 for moving average filter
e dmm.FILTER_REPEAT_AVG or 1 for repeat filtering

3700S-901-01 Rev. C / July 2008

13-135

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm filter.type

Remarks This is the filter type setting for the DMM and it applies to the selected function as
indicated by dmm.func (on page 13-137). Querying the setting when the selected
function does not support it will cause nil to be returned.

There are two averaging filter types to choose from: Repeating and moving. For the
repeating (which is power-on default), the stack (filter count) is filled, and the
conversions are averaged to yield a reading. The stack is then cleared, and the
process starts over.

The moving average filter uses a first-in, first-out stack. When the stack (filter count)
becomes full, the measurement conversions are averaged, yielding a reading. For
each subsequent conversion placed into the stack, the oldest conversion is discarded.
The stack is re-averaged, yielding a new reading.

The command will generate an error when dmm.func = "frequency”, "period",
"continuity" or "nofunction”. Also, an error will be generated if the value is invalid.
Changing functions with dmm.func (on page 13-137) will reflect the filter type setting
for that function.

The dmm.reset() (on page 13-161) function selects the repeat filter.

Also see dmm.filter.count (on page 13-134), dmm.filter.enable (on page 13-134),
dmm.filter.window (on page 13-136)

Example To set the filter type for 2-wire ohms to moving average:

dmm. func = "twowireohms"

dmm.filter.type = dmm.FILTER MOVING AVG

dmm.filter.window

Attribute

Indicates the filter window for the DMM measurements

Usage

To read the filter window:

value = dmm.filter.window

value: Represents the present filter window setting
To write the filter window:
dmm.filter.window = value

value: Represents the desired filter window for measurements. Use a value between 0
and 10 to indicate percent of range.

Remarks

This is the filter window setting for the DMM and it applies to the selected function as
indicated by dmm.func (on page 13-137). Querying the setting when the selected
function does not support it will cause nil to be returned.

This attribute indicates the filter window to use in percent of range.

The command will generate an error when dmm.func = "frequency”, "period",
"continuity" or "nofunction". Also, an error will be generated if the value is out of range.

Changing functions with dmm.func (on page 13-137) will reflect the filter window
setting for that function.

The dmm.reset() (on page 13-161) function selects a filter window of 0.1.

13-136

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm_ filter.window

Also see

dmm. filter.enable (on page 13-134), dmm.filter.count (on page 13-134), dmm.filter.type
(on page 13-135).

Example

To set the filter window for 2-wire ohms to 0.25:
dmm. func = "twowireohms"

dmm.filter.window = 0.25

dmm.fourrtd

Attribute

Indicates the type of 4-wire RTD being used.

Usage

To read the 4-wire RTD type:

value = dmm.fourrtd
value: Represents the present type for 4-wire RTD

To write the 4-wire RTD type:

dmm. fourrtd = value

value: Represents the desired type for 4-wire RTD. Use one of the following for
values:

e dmm.RTD_PT100 or 0O for type PT100

e dmm.RTD_D100 or 1 for type D100

e dmm.RTD_F100 or 2 for type F100

e dmm.RTD_PT385 or 3 for type PT385

e dmm.RTD_PT3916 or 4 for type PT3916

e dmm.RTD_USER or 5 for user specified type

Remarks

This attribute is only valid when dmm.func = "temperature”. All other configurations
generate an error and return nil when queried. When the function is temperature, the
4-wire RTD is only used when the transducer type is 4-wire RTD (see dmm.transducer
(on page 13-173)). For all other transducer types, the setting will be updated but
ignored until the transducer type is set for 4-wire RTD.

Changing functions with dmm.func (on page 13-137) will reflect the 4-wire RTD setting
for that function.

The dmm.reset() (on page 13-161) function will set this attribute to dmm.RTD_PT100.

Example

To set the type of 4-wire RTD for PT3916:

dmm. func = "temperature"
dmm.transducer = dmm.TEMP_ FOURRTD
dmm. fourrtd = dmm.RTD PT3916

3700S-901-01 Rev. C / July 2008

13-137

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.func
Attribute Sets or indicates the selected function for the DMM.
Usage To read the function:
myfunc = dmm. func
myfunc: string indicating the presently selected DMM function
To write the function:
dmm. func = myfunc
myfunc: string representing the desired active DMM function
Set myfunc to one of the following:
e "dcvolts" or dmm.DC_VOLTS
e "acvolts", or dmm.AC_VOLTS
e "dccurrent” or dmm.DC_CURRENT
e "accurrent" or dmm.AC_CURRENT
e "twowireohms" or dmm.TWO_WIRE_OHMS
e "fourwireohms" or dmm.FOUR_WIRE_OHMS
e "temperature" or dmm. TEMPERATURE
e "frequency" or dmm.FREQUENCY
e "period" or dmm.PERIOD
e "continuity" or dmm.CONTINUITY
e "commonsideohms" or dmm.COMMON_SIDE_OHMS
e "nofunction” or dmm.NO_FUNCTION
Remarks Setting this attribute changes the selected DMM function and indicates how the other

DMM attributes are to be processed. It does not modify any attribute of the DMM
except the one indicating the selected DMM functionality. However, the DMM gets
updated to use the current values for each attribute that pertains to the newly selected
function. The current values being used are the ones from when the selected function
was last active.

An error will be generated if the setting does not match one of the ones specified in
usage. If an error is found, no change is made to the function.

Default setting is "dcvolts". An error will occur if a user DMM configuration name is
used to set the function.

13-138

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.func
Details The DMM has a flat view of settings in terms of commands. However, internally, the
DMM maintains settings on per function basis. Therefore, to see a setting for a
particular function, you need to change to that function with this command (dmm.func)
and then write or read the desired setting. For example, to see the NPLC setting for
DC volts:
dmm. func = "dcvolts"
dcv_nplc = dmm.nplc
With the DMM internally maintaining settings on a per function basis, you may change
to a function and write your desired settings. Next, change to another function and
write those desired settings. Now, you may switch back to your original function and
those settings will be there. For example:
dmm. func = dmm.DC VOLTS
dmm.nplc = 0.5
dmm.range = 10
dmm. func = "twowireohms"
dmm.nplc = 0.1
dmm.range = 100000
dmm. func = "dcvolts"
print (dmm.nplc) — 0.5
print (dmm.range) — 10
dmm. func = dmm.TWO WIRE OHMS
print (dmm.nplc) — 0.1
print (dmm.range) — 100000
Also see dmm.configure.recall() (on page 13-128)
Example To make "temperature" the active DMM function:
dmm. func = "temperature"
dmm.getconfig()
Function Queries for the DMM configurations associated with channel list parameter items.
Usage config =dmm.getconfig(<ch list>)
ch_list: A string indicating channels and/or channel patterns to query.
config: A comma-delimited string listing DMM configurations associated with items in
ch list.

3700S-901-01 Rev. C / July 2008

13-139

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.getconfig()

Remarks Use this command to query for DMM configurations associated with channels or
channel patterns. The response will be a comma-delimited string listing the
configurations in the same order as specified in ch _list.

The configurations listed in the response indicate how the DMM will be configured

when the corresponding channel or channel pattern is closed with the dmm.close() (on

page 13-123) function or used in a scan list without an overriding DMM configuration.

An error will be generated if:

e Syntax error exists in parameter string.

¢ An empty parameter string is specified.

e A specified channel or channel pattern is invalid.

e Channel number does not exist for slot based on installed card.

e Slot is empty.

e Channel pattern does not exist.

e Channel being specified does not support a configuration setting like a digital 1/0
channel or analog backplane relay.

Command processing will stop once an error is detected and a nil response is

generated.

Also see dmm.setconfig() (on page 13-168)

Example To query channels on Slots 1 and 2:

myconfigs = dmm.getconfig('slotl, slot2')

To query Channels 1 to 10 on Slot 3:
myconfigs = dmm.getconfig('3001:3010")

dmm.inputdivide

=

Attribute

Enables or disables the 10M ohm input divider.

Usage

To read the input divider state:

value = dmm.inputdivider

value: Represents the present input divider

To write the input divider state:
dmm.inputdivider = value

value: Represents the desired input divider state.
Use one of the following for value:

e dmm.ONorl
e dmm.OFFor 0

13-140

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.inputdivider

Remarks

This attribute is only valid when dmm.func = "dcvolts". All other functions generate an
error and return nil when queried.

Changing functions with dmm.func (on page 13-137) will reflect the 10M ohm input
divider for that function.

The factory default and dmm.reset() (on page 13-161) function value is dmm.OFF.

Example

To enable the input divider for DC volts:
dmm. func = "dcvolts"

dmm.inputdivider = dmm.ON

dmm.limit[Y].auto

clear where Y =1 or 2 for limit
number

Attribute

Indicates if limit Y should be cleared automatically or not.

Usage

To read the auto clear setting:

value = dmm.limit[Y].autoclear
To write the auto clear setting:
dmm.limit[Y].autoclear = value
Use one of the following:

e dmm.ON or 1 to enable auto clear

e dmm.OFF or 0 to disable auto clear

Remarks

When this attribute is set to dmm.ON,a limit fail condition will track how the
measurements are taken. If the measurement failed limit, then the fail indication will be
set. If the next measurement passes limit, the failed limit condition clears. Therefore, if
scanning or taking a series of measurements with auto cleared enabled for a limit,
then the last measurement limit dictates the fail indication for the limit. To know if any
of a series of measurements failed the limit, then set the auto clear setting to off. When
set to dmm.OFF, a failed indication will not be cleared automatically and will remain
set until it is cleared by dmm.limit[Y].clear() (on page 13-141). The auto clear setting
affects both the high and low limits of Y.

Also see

dmm.measure() (on page 13-150)

Example

Enable auto clear on limit 2:

dmm.limit[2].autoclear = dmm.ON

dmm.limit[Y].clear() where Y =1 or 2 for limit

number

Function

Clears the test results of limit Y.

Usage

dmm.limit[Y].clear ()

Remarks

This function clears the test results limit.

Also see

dmm.limit[Y].high.fail (on page 13-142)

dmm.limit[Y].low.fail (on page 13-143)

3700S-901-01 Rev. C / July 2008

13-141

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

dmm.limit[Y].clear() where Y =1 or 2 for limit
number

Example To clear the test results for both the high and low limit 2:

dmm.limit[2].clear ()

dmm.limit[Y].enable where Y =1 or 2 for limit
number
Attribute Enable or disable limit Y testing.
Usage To read the state of limit Y:
value = dmm.limit[Y] .enable

To write the state of limit Y:
dmm.limit[Y].enable = value
Set value to:

e dmm.ON or 1 to enable limit Y testing
e dmm.OFF or 0 to disable limit Y testing

Remarks When this attribute is set to dmm.ON, the limit Y testing will occur on each
measurement taken by the DMM whether being requested by the dmm.measure
function or being part of a scan sequence. Limit Y testing involves using the low limit
value (specified by dmm.limit[Y].low.value (on page 13-144)) and high limit value
(specified by dmm.limit[Y].high.value (on page 13-143)). If the measurement value
falls outside either of these limits, then the test fails. Else, it passes. To see the test
results, use the dmm.limit[Y].low.fail (on page 13-143) and dmm.limit[Y].high.fail (on
page 13-142) attributes.

To not use limit Y testing, set the attribute to dmm.OFF. The default setting is
dmm.OFF. With limits disabled, limit testing is not performed after taking a
measurement. Therefore, the status bits are not updated, the fail indication does not
get updated and hardware lines are not generated.

Limits are invalid when dmm.func = "continuity". Trying to use the limit commands with
this function selected will generate an error.

Limits may be enabled with this command, but without assigning the events to a
trigger stimulus for a digital I/O line, there will be no hardware indication of limits. See
the dmm.limit[Y].high and dmm.limit[Y].low commands (listed in the "Also See"
section).

Also see dmm.limit[Y].high.value (on page 13-143)
dmm.limit[Y].high.fail (on page 13-142)
dmm.limit[Y].low.fail (on page 13-143)
dmm.limit[Y].low.value (on page 13-144)

Example Enable limit 2 testing:
dmm.limit[2] .enable = dmm.ON

13-142 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.limit[Y].high.fail where Y = 1to 2 for limit
number

Attribute Query for the high test results of limit Y.

Usage To read the high fail indication of limit Y:

value = dmm.limit[Y].high.fail

Remarks This attribute returns the results of high limit Y testing:
e 0O indicates test passed — measurement within the high limit
e lindicates test failed — measurement has exceeded high limit

A failed indication does indicate the high limit caused the failure. You may read the
measurement event register of the status model to see fail indication as well. This
response only has meaning if the limit's auto clear setting is disabled and the limit is
enabled. Otherwise, it will indicate the results of the last limit test when enabled.

Example To query the test results of high limit 2:
results = dmm.limit[2].high.fail

dmm.limit[Y].high.value where Y =1 or 2 for limit
number
Attribute Indicates the high limit value for limit Y.
Usage To read the high value of limit Y:
value = dmm.limit[Y].high.value

To write the high value of limit Y:

dmm.limit[Y].high.value = value

value: Valid range of -4294967295 to +4294967295

Remarks Use this attribute to specify or query the high limit value of limit Y. When limit Y testing
is enabled (dmm.limit[Y].enable (on page 13-142)), the measurement value must be
greater than this value to avoid causing a fail indication for the limit. The default value
is 1 for limit 1 and 2 for limit 2. You may set or get the value regardless if the limit is set
to a digio trigger stimulus (digio.trigger[N].stimulus =
dmm.trigger.EVENT_LIMIT1_HIGH or dmm.trigger. EVENT_LIMIT2_HIGH).

Also see dmm.limit[Y].high.fail (on page 13-142)
dmm.limit[Y].low.value (on page 13-144)

Example To set high limit of limit 2 to 5:
dmm.limit[2] .high.value = 5

dmm.limit[Y].low.fail where Y =1 or 2 for limit
number
Attribute Query for the low test results of limit Y.
Usage To read the low fail indication of limit Y:
value = dmm.limit[Y].low.fail

3700S-901-01 Rev. C / July 2008 13-143

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

dmm.limit[Y].low.fail where Y =1 or 2 for limit
number

Remarks This attribute returns the results of low limit Y testing:
e 0O indicates test passed — measurement within the low limit
e lindicates test failed — measurement has exceeded low limit
A failed indication does indicate the low limit caused the failure. You may read the
measurement event register of the status model to see fail indication as well. This
response only has meaning if the limit's auto clear setting is disabled and the limit is
enabled. Otherwise, it will indicate the results of the last limit test when enabled.

Also see digio.trigger[N].stimulus (on page 13-91)

Example To query the test results of low limit 2:
results = dmm.limit[2].low.fail

dmm.limit[Y].low.value where Y =1 or 2 for limit

number

Attribute Indicates the low limit value for limit Y.

Usage To read the low value of limit Y:
value = dmm.limit[Y].low.value
To write the low value of limit Y:
dmm.limit[Y].low.value = value
value: Valid range is -4294967295 to +4294967295

Remarks Use this attribute to specify or query the low limit value of limit Y. When limit Y testing
is enabled (dmm.limit[Y].enable (on page 13-142)), the measurement value must be
greater than this value to avoid causing a fail indication for the limit. The default value
is -1 for limit 1 and -2 for limit 2. You may set or get the value regardless if the limit is
set to a digio trigger stimulus (digio.trigger[N].stimulus =
dmm.trigger.EVENT_LIMIT1_LOW or dmm.trigger. EVENT_LIMIT2_LOW).

Also see dmm.limit[Y].low.fail (on page 13-143)
dmm.limit[Y].high.value (on page 13-142)

Example To set low limit of limit 2 to -5:
dmm.limit[2].low.value = -5

dmm.linesync

Attribute Attribute indicating whether line sync is used during the measurement.

13-144

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.linesync

Usage

To read the linesync state:
value = dmm.linesync
To write the linesync state:
dmm.linesync = value
value: Set to one of the following:

e dmm.ON or 1 to enable line sync
e dmm.OFF or 0 to disable line sync

Remarks

This attribute is only valid when dmm.func = "dcvolts", "dccurrent”, "twowireohms",
"fourwireohms", "temperature", "continuity”, and "commonsideohms." All other
functions generate an error and return nil when queried.

Changing functions with dmm.func (on page 13-137) will reflect the line sync setting
for that function.

The factory default and dmm.reset() (on page 13-161) function value is dmm.OFF.

Enabling this attribute will synchronize a trigger to the main power line crossings.

Example

To enable line sync on "fourwireohms"
dmm. func = "fourwireohms"

dmm.linesync = dmm.ON

dmm.makebuffe

r()

Function Creates a user buffer for storing readings.
Usage mnybuffer = dmm.makebuffer (buffersize)
buffersize: Maximum number of readings that can be stored.
Remarks These reading buffers are allocated dynamically. This function creates the buffers

where buffersize indicates the maximum number of readings the buffer can store.

These buffers can be deleted by setting mybuffer to nil.

3700S-901-01 Rev. C / July 2008

13-145

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

dmm.makebuffer()

Details Once a buffer is created, the attributes are:

e nybuffer.appendmode =1 (ON) or 0 (OFF) — default 0 over a bus interface,
but 1 for ones created on the front panel

e mybuffer.basetimeseconds returns the seconds for reading buffer entry 1
(read-only attribute).

e nybuffer.basetimefractional returns the seconds and fractional
seconds for reading buffer entry 1 (read-only attribute).

e nybuffer.capacity for overall buffer size

e nybuffer.collecttimestamps = 1(ON) or O(OFF) — default 1
e nmybuffer.collectchannels = 1(ON) or O(OFF) — default 1

e mnybuffer.n for number of readings stored in buffer currently

e nybuffer.timestampresolution returns the resolution of the time
stamping (read-only attribute).

The following buffer bits indicate buffer statuses:
dmm.buffer.LIMIT1 LOW BITorl
dmm.buffer.LIMIT1 HIGH BITor2
dmm.buffer.LIMIT2 LOW BIT or4
dmm.buffer.LIMIT2 HIGH BITor 8
dmm.buffer.MEAS OVERFLOW BIT or 64

dmm.buffer.MEAS CONNECT QUESTION BITor128

Details, To see readings in buffer:
continued printbuffer(x, y, mybuffer)

x and y: represent reading numbers desired
To see readings, channels, and units:

printbuffer (x, y, mybuffer, mybuffer.channels,
mybuffer.units)

x and y: represent reading numbers desired

To see time stamps in buffer:
mybuffer.collecttimestamps = 1

print(x, y, mybuffer, mybuffer.timestamps)
x and y: represent readings and time stamps for elements x to y
To see seconds, fractional seconds, and relative time stamps,
mybuffer.collecttimestamps = 1

printbuffer (x,y, mybuffer.seconds)

printbuffer(x,y, mybuffer.fractionalseconds)

printbuffer (x,y, mybuffer.relativetimestamps)

13-146 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.makebuffer()

Also see Reading buffers (on page 7-12) for more information on reading buffer aspects in the
system
Example To create a user reading buffer named mybuffer2, with a capacity of 300:

mybuffer2 = dmm.makebuffer (300)

To delete mybuffer2:
mybuffer2 = nil

dmm.math.enable

Attribute Enable or disable math operation on measurements.
Usage To read the math operation state:
value = dmm.math.enable

To write the math operation state:

dmm.math.enable = value
value: Set to one of the following:
dmm.ON or 1 to enable math operation on measurements

dmm.OFF or 0 to disable math operation on measurements

Remarks When this attribute is set to dmm.ON, the math operation specified by math format
attribute (dmm.math.format (on page 13-147)) will be performed before completing a
measurement.

To not perform a math operation on a measurement, set the attribute to dmm.OFF.
The default setting is dmm.OFF.

Also see dmm.math.format (on page 13-147)

Example To enable math operation on measurements:

dmm.math.enable = dmm.ON

dmm.math.format

Attribute Specifies the math operation to perform on measurements.
Usage To read the math operation type:
value = dmm.math.format

To write the math operation type:

dmm.math.format = value

Set value to:

e dmm.MATH NONE or0

e dmm.MATH_MXB or 1

e dmm.MATH_PERCENT or 2

e dmm.MATH_RECIPROCAL or 3

3700S-901-01 Rev. C / July 2008 13-147

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

dmm.math.format

Remarks To have no math operation performed on the measurements, set this attribute to
dmm.MATH_NONE. Having this equal dmm.MATH_NONE and enabling math
operation (dmm.math.enable), the equivalent effect is disabling math operation.

Use a setting of dmm.MATH_MXB to have

Y = mX + b where X is the normal measurement

m is user entered constant for scale factor (dmm.math.mxb.mfactor (on page 13-149))
b is user entered constant for offset (dmm.math.mxb.bfactor (on page 13-148))

Y is the result

When using relative offset measurement control (dmm.rel.enable (on page 13-159)),
the rel’ed reading is used for X.

Use a setting of dmm.MATH_PERCENT to have:

(Input - Reference)
Percent = % 1 00%

Feference

where:

Input is the normal measurement (if using REL, it will be the Rel'ed value)
Reference is user entered constant (dmm.math.percent (on page 13-150))
Percent is the result

Use a setting of dmm.MATH_RECIPROCAL for 1/X operation, where X is normal or
REL’ed measurement value.

The desired math operation is performed before any of the enabled limit testing.
Default setting is dmm.MATH_PERCENT.

Also see dmm.math.enable (on page 13-147)
dmm.math.mxb.bfactor (on page 13-148)
dmm.math.mxb.mfactor (on page 13-149)

dmm.math.percent (on page 13-150)

Example To enable the reciprocal operation on measurements:
dmm.math.format = dmm.MATH RECIPROCAL
dmm.math.enable = dmm.ON

13-148 3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.math.mxb.bfactor

Attribute Specifies the offset for the y = mx + b operation.
Usage To read the offset for the y = mx + b operation:
value = dmm.math.mxb.bfactor

To write the offset for the y = mx + b operation:

dmm.math.mxb.bfactor = value

value: Valid range is -4294967295 to +4294967295

Remarks This attribute specifies the offset (b) for an mx + b operation.

Also see dmm.math.format (on page 13-147)

dmm.math.mxb.mfactor (on page 13-149)

Example To set the offset for mx +b operation to 50:
dmm.math.mxb.bfactor = 50

dmm.math.mxb.mfactor

Attribute Specifies the scale factor for the y = mx + b operation.
Usage To read the scale factor for y = mx + b operation:
value = dmm.math.mxb.mfactor

To write the scale factor for y = mx + b operation:

dmm.math.mxb.mfactor = value

value: Valid range for value is -4294967295 to +4294967295

Remarks This attribute represents the scale factor (m) for an mx + b operation.

Details dmm.math.format (on page 13-147)
dmm.math.mxb.bfactor (on page 13-148)

Example To set the scale factor for mx +b operation to 0.80:

dmm.math.mxb.mfactor = 0.80

dmm.math.mxb.units

Attribute Specifies the unit character for the y = mx + b operation.
Usage To read unit character for y = mx + b operation:
value = dmm.math.mxb.units

To write unit character for y = mx + b operation:

dmm.math.mxb.units = value

value: Valid characters, A to Z, [char for micro symbol (as in pV), use ']’ char for onm
symbol (as in Q) and use '\\' char for degree symbol (as in °).

Remarks This attribute represents the unit character to use when the math format is set for mx +
b (dmm.math.format = dmm.MATH_MXB).

Default setting is X'.

3700S-901-01 Rev. C / July 2008 13-149

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.math.mxb.units

Also see

dmm.math.format (on page 13-147)

Example

To set the units for mx +b operation to 'Q":

dmm.math.mxb.units = 'Q"'

dmm.math.percent

Attribute Specifies the constant to use for the percent operation.
Usage To read the constant for the percent operation:

value = dmm.math.percent

To write the constant for the percent operation:

dmm.math.percent = value

value: Valid range is -4294967295 to +4294967295
Remarks This attribute represents the constant to use for percent.
Also see dmm.math.format (on page 13-147)
Example To constant for percent operation to 1250:

dmm.math.percent = 1250

To acquire the percent constant:

dmm.math.percent = dmm.measure ()

dmm.measure()

Function

Handles taking measurements on the DMM without using the trigger model.

Usage

There are two ways to use this function:

To return the last reading of the measurement process taken and accounted for
by dmm.measurecount:

reading = dmm.measure ()
reading: Contains the last reading of the measurement process

To return the last reading of the measurement process while storing all readings
accounted for by dmm.measurecount:

reading = dmm.measure (rbuffer)

rbuffer: A previously created reading buffer object where all the reading(s) will be
stored.

reading: Contains the last reading of the measurement process

13-150

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.measure()

Remarks

This function returns only the last actual measurement as reading. To use the
additional information acquired while making a measurement, a reading buffer must be
used. If the instrument is configured to return multiple readings when a measurement
is requested, all readings will be available in the reading buffer if one is designated
and has been created (see rbuffer in Usage), but only the last reading will be returned
as reading.

The dmm.measurecount (on page 13-151) attribute determines how many
measurements are performed. When using a buffer, it also determines the number of
readings to store in the buffer.

Also see

dmm.makebuffer() (on page 7-8)
dmm.measurecount (on page 13-151)

dmm.measurewithtime() (on page 13-151)

Example

To perform 100 DC voltage measurements and store them in a buffer called "mybuff":
mybuff = dmm.makebuffer (100)
dmm. func = "dcvolts"

dmm.measurecount = 100

dmm.measure (mybuff)

dmm.measurecount

Attribute

Indicates the number of measurements to take when a measurement is requested by
dmm.measure.

Usage

To read measure count:
count = dmm.measurecount
To write measure count:

dmm.measurecount = count

count: Number of measurements. Maximum value: 450000

Remarks

This attribute controls the number of measurements taken any time a measurement is
requested. When using a reading buffer with a measure command, the count also
controls the number of readings to be stored.

It has no effect on the trigger model, and the trigger model does not affect this setting.

The factory default and dmm.reset() (on page 13-161) value is 1.

Also see

dmm.makebuffer() (on page 7-8)
dmm.measure() (on page 13-150)

Example

To set the measure count on DMM to 50:

dmm.measurecount = 50

3700S-901-01 Rev. C / July 2008

13-151

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.measurewithtime()

Function Handles taking measurements on the DMM without using the trigger model and
returns the reading along with time information.

Usage There are two ways to use this function:
e To return the last reading of the measurement process taken and accounted for by

dmm.measurecount:
reading, seconds, fractional = dmm.measurewithtime ()
reading: Contains the last reading of the measurement process
seconds: Contains seconds
fractional: Contains fractional seconds
e To return the last reading of the measurement process while storing all readings
accounted for by dmm.measurecount:
reading, seconds, fractional =
dmm.measurewithtime (rbuffer)

reading: Contains the last reading of the measurement process
seconds: Contains seconds
fractional: Contains fractional seconds

Remarks This function returns only the last actual measurement and time information as
reading, seconds, and fractional seconds. To use the additional information acquired
while making a measurement, a reading buffer must be used. If the instrument is
configured to return multiple readings when a measurement is requested, all readings
will be available in rbuffer if one is provided, but only the last measurement and time
information will be returned.
The dmm.measurecount (on page 13-151) attribute determines how many
measurements are performed. When using a buffer, it also determines the number of
readings to store in the buffer.

Also see dmm.makebuffer() (on page 7-8)
dmm.measure() (on page 13-150)
dmm.measurecount (on page 13-151)

Example To perform 100 DC voltage measurements and store then in a buffer called mybuf £,

and print the last measurement and time information:

mybuff = dmm.makebuffer (100)

dmm. func = "dcvolts"

dmm.measurecount = 100

reading, seconds, fractional = dmm.measurewithtime (mybuff)
print (reading, seconds, fractional) ®

-1.064005867e-002 1.779155900e+007 1.245658350e-001

13-152

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.nplc

Attribute

Indicates the integration rate in line cycles for the DMM.

Usage

To read the integration rate:

value = dmm.nplc

value: Represents the present integration rate in line cycles
To write the integration rate:

dmm.nplc = value

value: Represents the desired integration in line cycles:

e 60 Hertz: 0.0005 to 15
e 50 Hertz: 0.0005 to 12

Remarks

This is the integration rate setting for the DMM in line cycles. It applies to the selected
function as indicated by dmm.func (on page 13-137). Querying the setting when the
selected function does not support it will cause nil to be returned.

The command generates an error when dmm.func is:
¢ "frequency"”

e "period"

e "continuity"

e "nofunction”

Also, an error will be generated if the value is out of range and dependent on the line
frequency.

Changing functions with dmm.func (on page 13-137) will reflect the integration rate for
that function.

The setting for NPLC may be adjusted based on what the DMM supports. Therefore,
after setting the NPLC, query the value to see if it was adjusted.

The factory default and dmm.reset() (on page 13-161) function value is 1.

Also see

dmm.aperture (on page 13-110)

Example

To set the NPLC for 2-wire ohms to 0.5:
dmm. func = "twowireohms"

dmm.nplc = 0.5

3700S-901-01 Rev. C / July 2008

13-153

Section 13: Instrument Control Library (ICL) Series 3700 System Switch/Multimeter Reference Manual

dmm.offsetcompensation

Attribute

Indicates the offset compensation setting for the DMM.

Usage

To read the offset compensation:

value = dmm.offsetcompensation

value: Represents the present offset compensation setting.

To write the offset compensation:

dmm.offsetcompensation = value

value: Represents the desired offset compensation setting. Set to one of the following:

e dmm.ON or 1 to enable offset compensation

e dmm.OFF or 0 to disable offset compensation

Remarks

This is the offset compensation setting for the DMM, and it applies to the selected
function as indicated by dmm.func (on page 13-137). Querying the setting when the
selected function does not support it will cause nil to be returned.

The command applies when dmm.func is:
e "fourwireohms"

e "commonsideohms"

e "temperature”

When dmm.func = "temperature”, the command applies only when the transducer type
is 3 or 4-wire RTD (for all others, it is ignored). Set this command like you would for 4-
wire ohm measurements.

All other function settings will generate an error if the command is received. Also, an
error will be generated if the value is invalid.

Changing functions with dmm.func (on page 13-137) will reflect the offset
compensation setting for that function.

The factory default and dmm.reset() (on page 13-161) function value is dmm.OFF.

Example

To enable offset compensation for 4-wire ohms:
dmm. func = "fourwireohms"

dmm.offsetcompensation = dmm.ON

dmm.open()

Function

Opens the specified channel or channel pattern.

Usage

dmm.open (<ch list>)

ch_list: string listing the channel or channel pattern to open.

13-154

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.open()
Remarks Aspects associated with this function include:

e Opening the channels and analog backplane relays for a measuring function.

e The configuration (see dmm.getconfig() (on page 13-139)) associated with the
specified channel dictates whether a paired channel is open or not. For channel
patterns, the channels associated with it will be opened. Channel patterns don’t
support the concept of pairing channels for multi-wire measurements.

e The configuration (see dmm.getconfig() (on page 13-139)) will dictate whether
analog backplane relay 1 and 2 are opened.

e Does not use analog backplane relays specified by channel.setbackplane() (on
page 13-70) function or poles setting set by channel.setpole() (on page 13-79)
function.

An error will be generated if:

e There is a syntax error in parameter string.

e An empty parameter string is specified.

e The specified channel or channel pattern is invalid.

e A channel number does not exist for installed card in slot specified.

e Aslotis empty.

e The channel pattern does not exist.

e Does not support being closed like a digital I/O channel.

e Channel is paired with another bank for a multi-wire application.

e Channel’s configuration is 'nofunction’.

e More than one channel or channel pattern is specified in parameter.

Once an error is detected, the command stops processing. Channels open only if no

error is detected. Otherwise, channels remain unchanged.

This command allows you to separate the opening of channels with closing in a

measuring aspect. Therefore, you may execute any number of commands between

the open and close commands to satisfy your application needs.
Also see channel.getclose() (on page 13-46)

channel.getstate() (on page 13-56)

dmm.close() (on page 13-123)
Example To open Channel 3 on Slot 3:

dmm.open ('3003")

To open a channel pattern called 'mychans':

dmm.open ('mychans')

3700S-901-01 Rev. C / July 2008 13-155

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.opendetector

Attribute

Indicates the state of the temperature or 4-wire ohms open lead detector being used.

Usage

To read the open lead detector state:

value = dmm.opendetector

value: Represents the present open detector state

To write the open lead detector state:

dmm.opendetector = value

value: Represents the desired open detector state. Set to one of the following:

e dmm.ON or 1 to enable the open lead detector

e dmm.OFF or 0 to disable the open lead detector

Remarks

This attribute is valid when dmm.func = "temperature”. It also is valid when dmm.func
= "fourwireohms". All other configurations generate an error and return nil when
queried (including "twowireohms"). When on temperature, the open detector setting is
only used when the transducer type is thermocouple. For all other transducer types, it
is ignored.

Changing functions with dmm.func (on page 13-137) will reflect the open detector
setting for that function.

The factory default and dmm.reset() (on page 13-161) function value is dmm.OFF.

Example

To enable the thermocouple open detector:
dmm. func = "temperature"
dmm.transducer = dmm.TEMP THERMOCOUPLE

dmm.opendetector = dmm.ON

dmm.range

Attribute

Indicates the range of DMM for the selected function.

Usage

To read the range for the selected function:

value = dmm.range

value: Represents the present range for the selected function.
To write the range for the selected function:

dmm.range = value

value: Represents the expected measurement value or desired range for the selected
function.

13-156

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.range

Remarks

This attribute is the range setting for the selected function (see dmm.func (on page 13-
137)) of the DMM. Querying the range when the selected function does not have a
range associated with it will cause nil to be returned.

The range will be selected based on which one best suits the expected measure value
(value parameter). The command is applicable when dmm.func = "dcvolts" (0 to 303,
default 303), "acvolts” (0 to 303, default 303), "dccurrent” (0 to 3.1, default 3.1),
"accurrent” (0 to 3.1, default 3.1), "twowireohms" (0 to 120e6, default 120e6),
"fourwireohms" (0 to 120e6, default 120e6) and "commonsideohms" (0 to 120e6,
default 120e6).

NOTE The values in parentheses represent the valid range setting for each
function.

An error will be generated if the command is received when dmm.func (on page 13-
137) is:

e ‘"temperature"

¢ "frequency"”

e "period"

e "continuity"

e "nofunction”.

Also, an error will be generated if parameter value does not make sense for selected
function.

Changing functions with dmm.func (on page 13-137) will reflect the range setting for
that function.

The factory default and dmm.reset() (on page 13-161) function value is 303 because
the default functionis "dcvolts".

Set this value to the expected measurement value and the unit will select the range
appropriate to measure that value. Setting the range with this attribute will
automatically disable the auto range setting (dmm.autorange (on page 13-113)
command).

Example

To set the range for DC volts to 10:
dmm. func = "dcvolts"

dmm.range = 5

3700S-901-01 Rev. C / July 2008

13-157

Section 13: Instrument Control Library (ICL)

Series 3700 System Switch/Multimeter Reference Manual

dmm.refjunction

Attribute

Indicates the type of the thermocouple reference junction.

Usage

To read the reference junction type:

value = dmm.refjunction

value: Represents the present reference junction type.
To write the reference junction type:

dmm.refjunction = value

value: Represents the desired reference junction type. Use one of the following
values:

e dmm.REF_JUNCTION_SIMULATED or 0

e dmm.REF_JUNCTION_INTERNAL or 1

e dmm.REF_JUNCTION_EXTERNAL or 2

Remarks

This attribute is only valid when dmm. func = "temperature". All other
configurations generate an error and return nil when queried. When on temperature,
the setting is only applicable when the transducer type is set for thermocouple. For all
other transducer types, the reference junction may be set, but will be ignored until the
transducer type is set to thermocouple.

Changing functions with dmm.func (on page 13-137) will reflect the reference junction
setting for that function.

The factory default and dmm.reset() (on page 13-161) function value is
dmm.REF JUNCTION INTERNAL.

Details

The default value is internal; change to simulated or external as needed.

Example

To enable the simulated thermocouple reference junction:

dmm. func = "temperature"

dmm.transducer = dmm.TEMP_ THERMOCOUPLE
dmm.refjunction = dmm.REF JUNCTION SIMULATED

dmm.rel.acquire

0

Function

Acquires an internal measurement to store as the relative (REL) level value.

Usage

rel value = print(dmm.rel.acquire())

rel_value: The internal measurement acquired for the relative (REL) level value.

13-158

3700S-901-01 Rev. C/ July 2008

Series 3700 System Switch/Multimeter Reference Manual Section 13: Instrument Control Library (ICL)

dmm.rel.acquire()

Remarks This function triggers the DMM to take a new measurement for the selected function.
This measurement will then be stored as the new REL level setting.
This function will return the acquired reading or nil, if an error occurred. An error will be
generated if the active function does not support a REL level setting or the DMM is
unable to take the measurement. When an error occurs, the REL level setting
maintains the last valid setting.
The command will generate an error when dmm.func (on page 13-137) equals one of
the following:
e "continuity"
e "nofunction”
After executing this command, use the dmm.rel.level (on page 13-160) attribute to see
the last REL level value that was acquired or set by the user. Setting t