

Analizador de redes

CVM-E3-MINI

MANUAL DE INSTRUCCIONES

(M170B01-01-22A)

CE [f] Bluetooth[®]

PRECAUCIONES DE SEGURIDAD

Siga las advertencias mostradas en el presente manual, mediante los símbolos que se muestran a continuación.

Indica advertencia de algún riesgo del cual pueden derivarse daños personales o materiales.

Circutor

ATENCIÓN

PELIGRO

Indica que debe prestarse especial atención al punto indicado.

Si debe manipular el equipo para su instalación, puesta en marcha o mantenimiento tenga presente que:

CIRCUTOR, SA se reserva el derecho de modificar las características o el manual del producto, sin previo aviso.

LIMITACIÓN DE RESPONSABILIDAD

CIRCUTOR, SA se reserva el derecho de realizar modificaciones, sin previo aviso, del equipo o a las especificaciones del equipo, expuestas en el presente manual de instrucciones.

CIRCUTOR, SA pone a disposición de sus clientes, las últimas versiones de las especificaciones de los equipos y los manuales más actualizados en su página Web .

www.circutor.com

CIRCUTOR,SA recomienda utilizar los cables y accesorios originales entregados con el equipo.

Circutor

CONTENIDO

PRECAUCIONES DE SEGURIDAD	3
LIMITACIÓN DE RESPONSABILIDAD	3
CONTENIDO	4
HISTÓRICO DE REVISIONES	7
SÍMBOLOS	7
1 COMPROBACIONES A LA RECEPCIÓN	8
2 DESCRIPCIÓN DEL PRODUCTO	8
3 INSTALACIÓN DEL EQUIPO	10
3.1 RECOMENDACIONES PREVIAS	10
3.2 INSTALACIÓN	11
3.3 ADAPTADOR DE PANEL 72 x 72 mm	11
3.4 CVM-E3-MINI-FLEX: SENSORES ROGOWSKI	13
3.5 - BORNES DEL FOLJIPO	14
3.5.1 - MODEL OS CVM-E3-MINI-ITE Y CVM-E3-MINI-MC	
3 5 2 - MODELO CVM-E3-MINI-ELEX	14
3 5 3 - MODELO CVM-E3-MINI-ITE-WIEH Y CVM-E3-MINI-MC-WIEH	15
3 5 4 - MODELOS CVVV ES HINNI FLEXWIEth	15
3.6 - ESOLIEMA DE CONFLIONADO	16
3.6.1 - MEDIDA DE RED TRIEÁSICA CON CONEXIÓN A /4 HILOS: CVM-E3-MINI-ITE V CVM-E3-MINI-ITE-WiEłb	16
3.6.2 - MEDIDA DE RED TRIFASICA CON CONEXIÓN A 4 HILOS: CVM-E3-MINI-MC V CVM-E3-MINI-MC-WIEH	. 10
3.6.2 MEDIDA DE RED TRIFASICA CON CONEXION A 4 HILOS. CVM-ES MINI-MET CVM ES MINI-ME VELLI 3.6.3 MEDIDA DE PED TRIFÁSICA CON CONEXIÓN A 4 HILOS. CVM-ES-MINI-ELEV V	. 17
CVM_E2_MINI_ELEX_WEEK	10
	10
2.6.5 - MEDIDA DE RED TRIFASICA CON CONEXION A 3 HILOS. CVM-E3-MINI-ITF T CVM-E3-MINI-ITF-WIEUT	
3.0.5 MEDIDA DE RED TRIFASICA CON CONEXION À 3 HILOS. CVM-ES-MINI-MCT CVM-ES-MINI-MCTWIEUI	. 20
S.O.O MEDIDA DE RED I RIFASILA CON CONEXION À 3 MILOS. CVM-ES-MINI-FLEX I	21
ΟΥΜΞΕΣΞΜΙΝΙΞΕΙΕΛΞΨΙΕΙΙ	∠ I
5.0.7 MEDIDA DE RED I RIFASICA CUN CUNEXIUN A 5 TILUS I I RANSFURMADURES EN CUNEXIUN ARUN.	22
3.6.8 MEDIDA DE RED TRIFASILA CUN CUNEXIUN A 3 HILUS Y TRANSFURMADURES EN CUNEXIUN ARUN:	
UVM-ES-MINI-MU Y UVM-ES-MINI-MU-WIELD	23
3.6.9 MEDIDA DE RED BIFÁSICA CON CONEXION A 3 HILUS: CVM-E3-MINI-ITE Y CVM-E3-MINI-ITE-WIEIN.	24
3.6.10 MEDIDA DE RED BIFASILA CON CONEXION A 3 HILOS: CVM-E3-MINI-MU Y CVM-E3-MINI-MU-WIELN	25
3.6.11 MEDIDA DE RED BIFASILA LUN LUNEXIUN A 3 HILUS: LVM-E3-MINI-FLEX Y	26
	26
3.6.12 MEDIDA DE RED MUNUFASILA DE FASE À FASE DE 2 HILUS: UVM-E3-MINI-ITE Y	27
3.6.13 MEDIDA DE RED MUNUFASILA DE FASE A FASE DE 2 HILUS: LVM-E3-MINI-MU Y	20
	28
3.6.14 MEDIDA DE RED MUNUFASILA DE FASE A FASE DE 2 HILUS: UVM-E3-MINI-FLEX Y	20
	29
3.6.15 MEDIDA DE RED MUNUFASICA DE FASE A NEUTRU DE 2 HILUS: CVM-E3-MINI-ITE Y	20
	30
3.6.16 MEDIDA DE RED MUNUFASICA DE FASE A NEUTRU DE 2 HILUS: CVM-E3-MINI-MU T	71
	31
3.6.17 MEDIDA DE RED MUNUFASILA DE FASE A NEUTRU DE 2 HILUS: UVM-E3-MINI-FLEX Y	22
	32
4 FUNLIUNAMIENTU	
4.2 FUNLIUNES DEL TELLADU	30
	37
4.4 INDILADURES LED.	38
4.5 ENTRADA DIGITAL (Modelos CVM-E3-MINI-xxx)	38
4.6 SALIDA DIGITAL (Modelos CVM-E3-MINI-xxx)	39
	40
5. I PEKFIL ANALYZER	40
5.1.1 VALUKES MAXIMUS	43
5.1.2 VALURES MINIMUS	43
5.1.3 MAXIMA UEMANUA	43
5.I.4 AKMUNILUS	43

Circutor

	5.1.5 - DETECCIÓN DE CONEXIÓN INCORRECTA Y SENTIDO DE GIRO INCORRECTO	44
	5.2 - PEREIL e ³	
	5.3 PANTALLAS DE INFORMACIÓN DEL EOUIPO	49
	5.4 PANTALLA DE ESTADO DE LA ENTRADA Y SALIDA DIGITAL (Modelos CVM-E3-MINI-xxx)	
	5.5 PANTALLAS DE COMUNICACIONES ETHERNET - WI-FI - BLUETOOTH®	50
	5.5.1. COMUNICACIONES ETHERNET: CONFIGURACIÓN DHCP	50
	5.5.2. COMUNICACIONES ETHERNET: DIRECCIÓN IP	50
	5.5.3. COMUNICACIONES ETHERNET: MASCARA IP	51
	5.5.4. COMUNICACIONES ETHERNET: GATEWAY	52
	5.5.5. COMUNICACIONES ETHERNET: DIRECCIÓN MAC	52
	5.5.6. COMUNICACIONES WI-FI: DIRECCION IP	53
	5.5.7. COMUNICACIONES WI-FI: DIRECCION MAC	53
	5.5.8. COMUNICACIONES WI-FI: NIVEL DE LA SENAL	53
6	5.5.9. LUMUNILALIUNES BIUECOOCH®: NUMBRE	54
0		56
	6.2 - SECLINDARIO DE TENSIÓN	56
	6.3 - PRIMARIO DE CORRIENTE	
	6.4 SECUNDARIO DE CORRIENTE	58
	6.5 SENSOR FLEX	58
	6.6 NÚMERO DE CUADRANTES	59
	6.7 CONVENIO DE MEDIDA	59
	6.8 SISTEMA DE MEDIDA	60
	6.9 PERIODO DE INTEGRACIÓN DE LA MÁXIMA DEMANDA	60
	6.10 BORRADO MÁXIMA DEMANDA	61
	6.11 BORRADO DE LOS VALORES MAXIMO Y MINIMOS	61
	6.12 BORRADO DE LOS VALORES DE ENERGIA	62
	6.13 ALTIVAR PANTALLA DE VISUALIZACIUN DE ARMUNICUS	62
	6.14 RATIO DE EMISIONES DE CARBONO PARA LA ENERGIA CONSUMIDA	b3
	6.15 RATIO DE EMISIONES DE CARDONO PARA LA ENERGIA GENERADA	04 6/
	6 17 - RATIO DEL COSTE PARA LA ENERGÍA GENERADA	65
	6.18 - PROGRAMACIÓN DE LA ALARMA : SALIDA DIGITAL TI	66
	6.18.1. VALOR MÁXIMO	68
	6.18.2. VALOR MÍNIMO	68
	6.18.3. RETARDO EN LA CONEXIÓN	69
	6.18.4. VALOR DE HISTÉRESIS	69
	6.18.5. ENCLAVAMIENTO (LATCH)	70
	6.18.6. RETARDO EN LA DESCONEXIÓN	70
	6.18.7. ESTADO DE LOS CONTACTOS	71
	6.18.8. KILOVATIOS POR PULSO	71
	6.18.9. ANCHURA DEL PULSO	72
	6.19 FUNCIONAMIENTO DE LA ENTRADA DIGITAL (Modelos CVM-E3-MINI-xxx)	/3
	6.20 SELECTION DE TARIFA (MODEIOS CVM-E3-MINI-XXX-WIECN)	/ 3
	6.22 - COMUNICACIONES PS-/.85 (Modeles CVM-E3-MINI-yyy)	/4
	6 22 1 - PROTOCOLO NO MODRUS: VELOCIDAD DE TRANSMISIÓN	75
	6.22.2 PROTOCOLO MODBUS: VELECEDAD DE PRRIEÉRICO	76
	6.22.3 PROTOCOLO MODBUS: PARIDAD	76
	6.22.4 PROTOCOLO MODBUS: BITS DE DATOS	77
	6.22.5 PROTOCOLO MODBUS: BITS DE STOP	77
	6.22.6 PROTOCOLO BACnet: VELOCIDAD DE TRANSMISIÓN	78
	6.22.7 PROTOCOLO BACnet: ID	78
	6.22.8 PROTOCOLO BACnet: DIRECCIÓN MAC	79
	6.23 BLOQUEO DE LA PROGRAMACION	79
_	6.23.1 PASSWORD	80
/	LVM-E3-MINI-XXX: COMUNICACIONES RS-485	82
		82
	7.2 ΓΚΟΤΟCOLO ΜΟΟΡΟΟ	دة دو
	7.2.1 ΕJEMPLO DE EECTORA. I UNCIÓN 0X04	כס גע
	7.3 COMANDOS MODBUS	84

7.3.1. VARIABLES DE MEDIDA	84
7.3.2. VARIABLES DE ENERGIA	87
7.3.3. ARMÓNICOS DE TENSIÓN Y CORRIENTE	
7.3.4. BORRADO DE PARÁMETROS	
7.3.5. ESTADO DE LA POTENCIA	
7.3.6. DETECCIÓN DE SENTIDO DE GIRO INCORRECTO	
7.3.7. NÚMERO DE SERIE DEL EQUIPO	
7.3.8. VARIABLES DE CONFIGURACIÓN DEL EQUIPO	
7.4 PROTOCOLO BACnet	
7.4.1 MAPA PICS	
8 CVM-E3-MINI-XXX-WIETH: COMUNICACIONES	
8.1 ENTORNO DE USO Y SALUD	
8.2 COMUNICACIONES Wi-Fi	
8.3 COMUNICACIONES Bluetooth [®]	
8.4 APLICACIÓN MÓVIL	
8.5 PÁGINA WEB DE CONFIGURACIÓN	
9 CARACTERÍSTICAS TÉCNICAS	
10 MANTENIMIENTO Y SERVICIO TÉCNICO	111
11 GARANTÍA	111
12 CERTIFICADO CE	
ANEXO A MENÚS DE CONFIGURACIÓN	

HISTÓRICO DE REVISIONES

Tabla 1: Histórico de revisiones.					
Fecha	Revisión	Descripción			
12/17	M170B01-01-17A	Versión Inicial			
02/18	M170B01-01-18A	Modificaciones en los apartados: 3.3 6.17 10.			
04/18	M170B01-01-18B	Modificaciones en los apartados: 3.2 3.5 5.1.5 - 7.3.6.			
09/18	M170B01-01-18C	Modificaciones en los apartados: 2 3.2 3.4 3.5 3.6 5 5.1.4 6.4 6.7 7.3.1 7.3.7.1 7.3.7.4. - 7.4.1 8.			
02/19	M170B01-01-19A	Modificaciones en los apartados: 7.3.1 8.			
03/19	M170B01-01-19B	Modificaciones en los apartados: 3.6.2 3.6.5.			
03/19	M170B01-01-19C	Modificaciones en los apartados: 3.6.3 3.6.6 3.6.11 3.6.14 3.6.17.			
08/19	M170B01-01-19D	Modificación del Logotipo y colores corporativos			
10/19	M170B01-01-19E	Modificaciones en los apartados: 2 3.5 3.6 4.2 4.5 4.6 5.4 5.5 6.3 6.4 6.5 6.7 6.8. - 6.17 6.19 6.20 6.22 7 7.3.7.1 7.3.7.4 7.3.7.10 7.3.7.11 - 7.3.7.12 7.3.7.13 7.3.7.14 8 9.			
05/20	M170B01-01-20A	Modificaciones en los apartados: 9.			
06/20	M170B01-01-20B	Modificaciones en los apartados: 7.3.1 7.3.2.			
10/20	M170B01-01-20C	Modificaciones en los apartados: 5.5.6 8.4 9.			
12/20	M170B01-01-20D	Modificaciones en los apartados: 3.5.1 3.5.2 7.3.1 9.			
06/21	M170B01-01-21A	Modificaciones en los apartados: 9.			
03/22	M170B01-01-22A	Modificaciones en los apartados: 6.22.1 6.22.6 7.3.7 7.3.8.15 9Anexo A			

SÍMBOLOS

Tabla 2: Símbolos.

Símbolo	Descripción
CE	Conforme con la directiva europea pertinente.
EHC	Conforme a la directiva de la Unión Económica Euroasiática.
🚯 Bluetooth°	Comunicaciones inalámbricas conforme al protocolo Bluetooth®.
	Equipo bajo la directiva europea 2012/19/EC. Al finalizar su vida útil, no deje el equipo en un contenedor de residuos domésticos. Es necesario seguir la normativa local sobre el reciclaje de equipos electrónicos.
	Corriente continua.
~	Corriente alterna.

Nota: Las imágenes de los equipos son de uso ilustrativo únicamente y pueden diferir del equipo original.

Circutor

1.- COMPROBACIONES A LA RECEPCIÓN

A la recepción del equipo compruebe los siguientes puntos:

- a) El equipo se corresponde con las especificaciones de su pedido.
- b) El equipo no ha sufrido desperfectos durante el transporte.
- c) Realice una inspección visual externa del equipo antes de conectarlo.
- d) Compruebe que está equipado con:
 - Una guía de instalación,
 - 1 Retenedor para la sujeción posterior del equipo al carril DIN,
 - 4 conectores.
 - 2 cubrebornes.

Circutor

Si observa algún problema de recepción contacte de inmediato con el transportista y/o con el servicio postventa de **CIRCUTOR.**

2.- DESCRIPCIÓN DEL PRODUCTO

El **CVM-E3-MINI** es un instrumento que mide, calcula y visualiza los principales parámetros eléctricos en redes monofásicas, de dos fases con y sin neutro, trifásicas equilibradas, con medida en ARON o desequilibradas. La medida se realiza en verdadero valor eficaz, mediante tres entradas de tensión CA y tres entradas de corriente.

Existen 6 versiones del equipo en función de la entrada de corriente:

✓ CVM-E3-MINI-ITF y CVM-E3-MINI-ITF-WiEth medida de corriente indirecta con transformadores / 5A o / 1A.

✓ CVM-E3-MINI-MC y CVM-E3-MINI-MC-WiEth medida de corriente indirecta con transformadores eficientes de la serie MC1 y MC3.

✓ CVM-E3-MINI-FLEX y CVM-E3-MINI-FLEX-WiEth medida de corriente a través de sensores Rogowski.

Tabla 3: Modelos.

Madalaa	Salidas de	Entrada digital	Comunicaciones				
Modelos	Pulsos		RS-485	Ethernet	Wi-Fi	Bluetooth®	
CVM-E3-MINI-ITF	✓	✓	✓				
CVM-E3-MINI-ITF-WiEth				✓	✓	✓	
CVM-E3-MINI-MC	~	~	~				
CVM-E3-MINI-MC-WiEth				✓	✓	✓	
CVM-E3-MINI-FLEX	~	~	~				
CVM-E3-MINI-FLEX-WiEth				~	~	✓	

El equipo dispone de:

- 3 teclas, que permiten moverse por las diferentes pantallas y realizar la programación del equipo.

Circutor

- 2 LED de indicación: CPU y ALARMA.
- display LCD, para visualizar todos los parámetros,

3.- INSTALACIÓN DEL EQUIPO

3.1.- RECOMENDACIONES PREVIAS

Circutor

Para la utilización segura del equipo es fundamental que las personas que lo manipulen sigan las medidas de seguridad estipuladas en las normativas del país donde se está utilizando, usando el equipo de protección individual necesario y haciendo caso de las distintas advertencias indicadas en este manual de instrucciones.

La instalación del equipo CVM-E3-MINI debe ser realizada por personal autorizado y cualificado.

Antes de manipular, modificar el conexionado o sustituir el equipo se debe quitar la alimentación y desconectar la medida. Manipular el equipo mientras está conectado es peligroso para las personas.

Es fundamental mantener los cables en perfecto estado para eliminar accidentes o daños a personas o instalaciones.

El fabricante del equipo no se hace responsable de daños cualesquiera que sean en caso de que el usuario o instalador no haga caso de las advertencias y/o recomendaciones indicadas en este manual ni por los daños derivados de la utilización de productos o accesorios no originales o de otras marcas.

En caso de detectar una anomalía o avería en el equipo no realice con él ninguna medida.

Verificar el ambiente en el que nos encontramos antes de iniciar una medida. No realizar medidas en ambientes peligrosos o explosivos.

Antes de efectuar cualquier operación de mantenimiento, reparación o manipulación de cualquiera de las conexiones del equipo se debe desconectar el aparato de toda fuente de alimentación tanto de la propia alimentación del equipo como de la medida. Cuando sospeche un mal funcionamiento del equipo póngase en contacto con el servicio postventa. La instalación del equipo se realiza dentro de un cuadro eléctrico o envolvente, con fijación en carril DIN (IEC 60715).

La distancia mínima recomendada entre carriles, para la instalación de los equipos **CVM-E3-MINI,** es de 150 mm.

Con el equipo conectado, los bornes, la apertura de cubiertas o la eliminación de elementos, puede dar acceso a partes peligrosas al tacto. El equipo no debe ser utilizado hasta que haya finalizado por completo su instalación.

Circutor

El equipo debe conectarse a un circuito de alimentación protegido con fusibles tipo gl (IEC 269) ó tipo M, comprendido entre 0.5 y 2A. Deberá estar previsto de un interruptor magnetotérmico o dispositivo equivalente para desconectar el equipo de la red de alimentación.

El circuito de alimentación y de medida de tensión se deben conectar con cable de sección mínima 1mm².

La línea del secundario del transformador de corriente será de sección mínima de 2.5 mm².

La temperatura de aislamiento de los cables que se conecten al equipo debe ser como mínimo de 62°C.

3.3.- ADAPTADOR DE PANEL 72 x 72 mm

Nota: El adaptador de panel de 72 x 72 mm es un accesorio que se vende por separado.

CIRCUTOR dispone de un adaptador de panel del equipo **CVM-E3-MINI** para poder instalarlo en paneles de 72 x 72 mm.

Figura 1: CVM-E3-MINI con adaptador de panel.

En la Figura 2 se muestra la instalación del adaptador de panel al CVM-E3-MINI.

Desconectar al equipo de toda fuente de alimentación y medida antes de realizar la instalación del adaptador.

Circutor -

Figura 2: Instalación del adaptador de panel.

Tabla 4: Características técnicas del Adaptador de Panel.

Características Técnicas				
Grado de protección	IP40			
Envolvente	Plastico V0 Autoextinguible			

Figura 3: Corte de panel.

3.4.- CVM-E3-MINI-FLEX: SENSORES ROGOWSKI

La medida de corriente en el modelo **CVM-E3-MINI-FLEX** se realiza a través de sensores flexibles, basados en el principio de bobina Rogowski.

Circutor

La flexibilidad del sensor permite la medida de corriente alterna con relativa independencia de la posición del conductor.

CIRCUTOR dispone de 1 modelos de sensores Rogowski que se pueden utilizar con el **CVM-E3-MINI-FLEX: FLEX-MAG.**

La Tabla 6 muestra la conexión de los sensores y la Tabla 5 el error máximo de posición.

Nota: Para más información consultar la guía del sensor correspondiente.

3.5.- BORNES DEL EQUIPO

Circutor -

3.5.1.- MODELOS CVM-E3-MINI-ITF Y CVM-E3-MINI-MC

Figura 4: Bornes del CVM-E3-MINI-ITF / -MC / -FLEX: Superior - Inferior.

Bornes del equipo				
A1: ~ +, Alimentación Auxiliar.	4: S2, Entrada de corriente L2			
A2: ~ -, Alimentación Auxiliar.	5: S1, Entrada de corriente L3			
10: VL1, Entrada de tensión L1	6: S2, Entrada de corriente L3			
11: VL2, Entrada de tensión L2	A: A+ , RS-485			
12: VL3, Entrada de tensión L3	B: B- , RS-485			
13: N, Entrada de tensión Neutro	S: S, GND para RS-485 y para las entradas digitales			
1: S1, Entrada de corriente L1	9: 11, Entrada digital 1 / Selección de tarifa			
2: S2, Entrada de corriente L1	8: 01, Salida digital 1			
3: S1, Entrada de corriente L2	7: CO, Común de la salida digital.			

Tabla 7: Relación de bornes: CVM-E3-MINI-ITF y CVM-E3-MINI-MC.

3.5.2.- MODELO CVM-E3-MINI-FLEX

Tabla 8: Relación de bornes: CVM-E3-MINI-FLEX.

Bornes del equipo				
A1: ~ +, Alimentación Auxiliar.	4: Sin conectar			
A2: ~ -, Alimentación Auxiliar.	5: C, Común de las entradas de corriente			
10: VL1, Entrada de tensión L1	6: SHLD, GND de las entradas de corriente			
11: VL2, Entrada de tensión L2	A: A+ , RS-485			
12: VL3, Entrada de tensión L3	B: B- , RS-485			
13: N, Entrada de tensión Neutro	S: S, GND para RS-485 y para las entradas digitales			
1: L1, Entrada de corriente L1	9: I1, Entrada digital 1 / Selección de tarifa			
2: L2, Entrada de corriente L2	8: 01, Salida digital 1			
3: L3 , Entrada de corriente L3	7: CO, Común de la salida digital.			

3.5.3.- MODELOS CVM-E3-MINI-ITF-WiEth Y CVM-E3-MINI-MC-WiEth

Figura 5: Bornes del CVM-E3-MINI-ITF/-MC/-FLEX-WiEth: Superior - Inferior.

Tahla 9	• Relación	de hornes.	CVM-F3-	-MINI-ITE-	WiFth v	CVM-F	-WiFth
		ue pornes.	CAIN-F2	-1*1111-111-	willing	CVIT-L.	

Bornes del equipo				
A1: ~ +, Alimentación Auxiliar	2: S2, Entrada de corriente L1			
A2: ~ -, Alimentación Auxiliar	3: S1, Entrada de corriente L2			
10: VL1, Entrada de tensión L1	4: S2, Entrada de corriente L2			
11: VL2, Entrada de tensión L2	5: S1, Entrada de corriente L3			
12: VL3, Entrada de tensión L3	6: S2, Entrada de corriente L3			
13: N, Entrada de tensión Neutro	Ethernet: Conexión Ethernet			
1: S1, Entrada de corriente L1				

3.5.4.- MODELO CVM-E3-MINI-FLEX-WiEth

Tabla 10: Relación de bornes: CVM-E3-MINI-FLEX-WiEth.

Bornes del equipo				
A1: ~ +, Alimentación Auxiliar	2: L2, Entrada de corriente L2			
A2: ~ -, Alimentación Auxiliar	3: L3, Entrada de corriente L3			
10: VL1, Entrada de tensión L1	4: Sin conectar			
11: VL2, Entrada de tensión L2	5: C, Común de las entradas de corriente			
12: VL3, Entrada de tensión L3	6: SHLD, GND de las entradas de corriente			
13: N, Entrada de tensión Neutro	Ethernet: Conexión Ethernet			
1: L1, Entrada de corriente L1				

Circutor

3.6.- ESQUEMA DE CONEXIONADO

Circutor

3.6.1.- MEDIDA DE RED TRIFÁSICA CON CONEXIÓN A 4 HILOS: CVM-E3-MINI-ITF Y CVM-E3-MINI-ITF-WiEth

Sistema de medida: 4-3Ph

Figura 6: Medida trifásica con conexión a 4 hilos: CVM-E3-MINI-ITF y CVM-E3-MINI-ITF-WiEth.

Para garantizar el aislamiento del equipo y su categoría, es necesario conectar los terminales S2 de los transformadores a tierra. 3.6.2.- MEDIDA DE RED TRIFÁSICA CON CONEXIÓN A 4 HILOS: CVM-E3-MINI-MC Y CVM-E3-MINI-MC-WiEth

Circutor

Sistema de medida: 4-3Ph

Nota: No conectar los transformadores de corriente MC a tierra.

3.6.3.- MEDIDA DE RED TRIFÁSICA CON CONEXIÓN A 4 HILOS: CVM-E3-MINI-FLEX Y CVM-E3-MINI-FLEX-WiEth

Circutor

Sistema de medida: 4-3Ph

Figura 8: Medida trifásica con conexión a 4 hilos: CVM-E3-MINI-FLEX y CVM-E3-MINI-FLEX-WiEth.

Es obligatorio conectar el terminal **SHLD** de la sonda.

3.6.4.- MEDIDA DE RED TRIFÁSICA CON CONEXIÓN A 3 HILOS: CVM-E3-MINI-ITF Y CVM-E3-MINI-ITF-WiEth

Circutor

Sistema de medida: 3-3Ph

Figura 9: Medida trifásica con conexión a 3 hilos: CVM-E3-MINI-ITF y CVM-E3-MINI-ITF-WiEth.

Para garantizar el aislamiento del equipo y su categoría, es necesario conectar los terminales S2 de los transformadores a tierra. 3.6.5.- MEDIDA DE RED TRIFÁSICA CON CONEXIÓN A 3 HILOS: CVM-E3-MINI-MC Y CVM-E3-MINI-MC-WiEth

Sistema de medida: 3-3Ph

Figura 10: Medida trifásica con conexión a 3 hilos: CVM-E3-MINI-MC y CVM-E3-MINI-MC-WiEth.

Nota: No conectar los transformadores de corriente MC a tierra.

Circutor

El valor del secundario del transformador MC es fijo a 0.250 A

3.6.6.- MEDIDA DE RED TRIFÁSICA CON CONEXIÓN A 3 HILOS: CVM-E3-MINI-FLEX Y CVM-E3-MINI-FLEX-WiEth

Circutor

Sistema de medida: 3-3Ph

Figura 11: Medida trifásica con conexión a 3 hilos: CVM-E3-MINI-FLEX y CVM-E3-MINI-FLEX-WiEth.

3.6.7.- MEDIDA DE RED TRIFÁSICA CON CONEXIÓN A 3 HILOS Y TRANSFORMADORES EN CONEXIÓN ARON: CVM-E3-MINI-ITF Y CVM-E3-MINI-ITF-WiEth

Sistema de medida: 3-ArOn

Figura 12: Medida trifásica con conexión a 3 hilos y transformadores en conexión ARON: CVM-E3-MINI-ITF y CVM-E3-MINI-ITF-WiEth.

Circutor

Para garantizar el aislamiento del equipo y su categoría, es necesario conectar los terminales S2 de los transformadores a tierra.

3.6.8.- MEDIDA DE RED TRIFÁSICA CON CONEXIÓN A 3 HILOS Y TRANSFORMADORES EN CONEXIÓN ARON: CVM-E3-MINI-MC Y CVM-E3-MINI-MC-WIEth

Circutor

Sistema de medida: 3-Ar On

Figura 13: Medida trifásica con conexión a 3 hilos y transformadores en conexión ARON: CVM-E3-MINI-MC y CVM-E3-MINI-MC-WiEth.

Nota: No conectar los transformadores de corriente MC a tierra.

El valor del secundario del transformador MC es fijo a 0.250 A.

3.6.9.- MEDIDA DE RED BIFÁSICA CON CONEXIÓN A 3 HILOS: CVM-E3-MINI-ITF Y CVM-E3-MINI-ITF-WiEth

Sistema de medida: 3-2Ph

Figura 14: Medida bifásica con conexión a 3 hilos: CVM-E3-MINI-ITF y CVM-E3-MINI-ITF-WiEth.

Circutor

Para garantizar el aislamiento del equipo y su categoría, es necesario conectar los terminales S2 de los transformadores a tierra. 3.6.10.- MEDIDA DE RED BIFÁSICA CON CONEXIÓN A 3 HILOS: CVM-E3-MINI-MC Y CVM-E3-MINI-MC-WiEth

Circutor

Sistema de medida: 3-2Ph

Figura 15: Medida bifásica con conexión a 3 hilos: CVM-E3-MINI-MC y CVM-E3-MINI-MC-WiEth.

Nota: No conectar los transformadores de corriente MC a tierra.

El valor del secundario del transformador MC es fijo a 0.250 A

3.6.11.- MEDIDA DE RED BIFÁSICA CON CONEXIÓN A 3 HILOS: CVM-E3-MINI-FLEX Y CVM-E3-MINI-FLEX-WiEth

Circutor

Sistema de medida: 3-2Ph

Figura 16: Medida bifásica con conexión a 3 hilos: CVM-E3-MINI-FLEX y CVM-E3-MINI-FLEX-WiEth.

3.6.12.- MEDIDA DE RED MONOFÁSICA DE FASE A FASE DE 2 HILOS: CVM-E3-MINI-ITF Y CVM-E3-MINI-ITF-WiEth

Circutor

Sistema de medida: 2-2Ph

Figura 17: Medida monofásica de fase a fase de 2 hilos: CVM-E3-MINI-ITF y CVM-E3-MINI-ITF-WiEth.

Para garantizar el aislamiento del equipo y su categoría, es necesario conectar los terminales S2 de los transformadores a tierra. 3.6.13.- MEDIDA DE RED MONOFÁSICA DE FASE A FASE DE 2 HILOS: CVM-E3-MINI-MC Y CVM-E3-MINI-MC-WiEth

Circutor

Sistema de medida: 2-2Ph

Nota: No conectar los transformadores de corriente MC a tierra.

3.6.14.- MEDIDA DE RED MONOFÁSICA DE FASE A FASE DE 2 HILOS: CVM-E3-MINI-FLEX Y CVM-E3-MINI-FLEX-WiEth

Circutor

Sistema de medida: 2-2Ph

3.6.15.- MEDIDA DE RED MONOFÁSICA DE FASE A NEUTRO DE 2 HILOS: CVM-E3-MINI-ITF Y CVM-E3-MINI-ITF-WiEth

Sistema de medida: 2- IPh

Figura 20: Medida monofásica de fase a neutro de 2 hilos: CVM-E3-MINI-ITF y CVM-E3-MINI-ITF-WiEth.

Circutor

Para garantizar el aislamiento del equipo y su categoría, es necesario conectar los terminales S2 de los transformadores a tierra.

3.6.16.- MEDIDA DE RED MONOFÁSICA DE FASE A NEUTRO DE 2 HILOS: CVM-E3-MINI-MC Y CVM-E3-MINI-MC-WiEth

Circutor

Sistema de medida: 2- IPh

Nota: No conectar los transformadores de corriente MC a tierra.

El valor del secundario del transformador MC es fijo a 0.250 A.

3.6.17.- MEDIDA DE RED MONOFÁSICA DE FASE A NEUTRO DE 2 HILOS: CVM-E3-MINI-FLEX Y CVM-E3-MINI-FLEX-WiEth

Sistema de medida: 2- IPh

Ν Alimentación Auxiliar **Power Supply** VL1 Ŧ -0 Í 0 Ε L1 1 L2 1 1 2 L3 🔟 3 4 Ц С 5 ЦЦ SHLD 6 || N | VL1 L1 С SHLD L1 Ν CARGA / LOAD ≻

Figura 22: Medida monofásica de fase a neutro de 2 hilos: CVM-E3-MINI-FLEX y CVM-E3-MINI-FLEX-WiEth.

 $\underline{\wedge}$

Circutor

Es obligatorio conectar el terminal SHLD de la sonda.

4.- FUNCIONAMIENTO

El **CVM-E3-MINI** es un analizador de redes en los cuatro cuadrantes (consumo y generación). El equipo puede trabajar según tres convenios de medida diferentes:

- ✓ Convenio de medida CIRCUTOR.
- ✓ Convenio de medida **IEC**.
- ✓ Convenio de medida IEEE.

La configuración del convenio de medida se realiza a través del menú de configuración, ver "6.7.- CON-VENIO DE MEDIDA"

✓ Convenio de medida CIRCUTOR:

Figura 23: Convenio de medida CIRCUTOR.

✓ Convenio de medida IEC:

Funcionamiento de los 4 cuadrantes (Q1, Q2, Q3, Q4)

Valores del cos φ en funcionamiento receptor (Q1,Q4)

Circutor

Circutor

✓ Convenio de medida IEEE:

Funcionamiento de los 4 cuadrantes (Q1, Q2, Q3, Q4)

Figura 25: Convenio de medida IEEE.

4.1.- PARÁMETROS DE MEDIDA

El equipo visualiza los parámetros eléctricos que se muestran en la Tabla 11.

Parámetro	Unidades	Fases L1-L2-L3	Total III	Valor Máximo	Valor Mínimo
Tensión fase-neutro	Vph-N	✓		✓	\checkmark
Tensión fase-fase	Vph-ph	✓	\checkmark	✓	✓
Corriente	А	✓	\checkmark	✓	\checkmark
Frecuencia	Hz	✓	\checkmark	✓	\checkmark
Potencia Activa	M/kW	✓	\checkmark	✓	✓
Potencia Aparente	M/kVA	✓	\checkmark	✓	✓
Potencia Reactiva Total	M/kvar	✓	\checkmark	✓	✓
Potencia Reactiva Total Consumo	M/kvar	✓	\checkmark	✓	✓
Potencia Reactiva Total Generación	M/kvar	✓	\checkmark	✓	✓
Potencia Reactiva Inductiva Total	M/kvarL	✓	\checkmark	✓	\checkmark
Potencia Reactiva Inductiva Consumo	M/kvarL	✓	\checkmark	✓	\checkmark
Potencia Reactiva Inductiva Generación	M/kvarL	✓	\checkmark	✓	✓
Potencia Reactiva Capacitiva Total	M/kvarC	✓	\checkmark	✓	✓
Potencia Reactiva Capacitiva Consumo	M/kvarC	✓	\checkmark	✓	✓
Potencia Reactiva Capacitiva Generación	M/kvarC	✓	\checkmark	✓	✓
Factor de potencia	PF	✓	\checkmark	✓	✓
Cos φ	φ	✓	\checkmark	✓	✓
THD % Tensión	% THD V	✓		✓	✓
THD % Corriente	% THD A	✓		✓	✓
Descomposición armónica Tensión (hasta 31º armónico)	harm V	✓			

Parámetro	Unidades	Fases L1-L2-L3	Total III	Valor Máximo	Valor Mínimo
Descomposición armónica Corriente (hasta 31º armónico)	harm V	✓			
Energía Activa total (consumo y generación)	M/kWh	✓(1)	✓		
Energía Reactiva Inductiva Total (consumo y generación)	M/kvarLh	√ (1)	~		
Energía Reactiva Capacitiva Total (consumo y generación)	M/kvarCh		\checkmark		
Energía aparente Total (consumo y generación)	M/kVAh		\checkmark		
Energía Activa Tarifa 1 (consumo y generación)	M/kWh	✓(1)	\checkmark		
Energía Reactiva Inductiva Tarifa 1 (consumo y generación)	M/kvarLh	√ (1)	~		
Energía Reactiva Capacitiva Tarifa 1 (consumo y generación)	M/kvarCh		~		
Energía aparente Tarifa 1 (consumo y generación)	M/kVAh		✓		
Energía Activa Tarifa 2 (consumo y generación)	M/kWh	√ (1)	\checkmark		
Energía Reactiva Inductiva Tarifa 2 (consumo y generación)	M/kvarLh	√ (1)	~		
Energía Reactiva Capacitiva Tarifa 2 (consumo y generación)	M/kvarCh		~		
Energía aparente Tarifa 2(consumo y generación)	M/kVAh		\checkmark		
Máxima Demanda de la Corriente	А	✓		✓	
Máxima Demanda de la Potencia Activa	M/kW		\checkmark	\checkmark	
Máxima Demanda de la Potencia Aparente	M/kVA		\checkmark	\checkmark	
Máxima Demanda de la Potencia Inductiva	M/kvarL		\checkmark	\checkmark	
Máxima Demanda de la Potencia Capacitiva	M/kvarC		\checkmark	✓	
Parámetro	Unidades	Tarifa: T	1-T2	T2 Total	
N° de horas	hours	✓		~	/
Coste	COST	✓		✓	/
Emisiones CO ₂	kgCO ₂	\checkmark		↓	/

Tabla 11 (Continuación): Parámetros de medida del CVM-E3-MINI.

Circutor

⁽¹⁾ Variables solo visibles por comunicaciones, ver **Tabla 28**.

4.2.- FUNCIONES DEL TECLADO

Circutor -

El **CVM-E3-MINI** dispone de 3 teclas para moverse por las diferentes pantallas y para realizar la programación del equipo.

Función de las teclas por las pantallas de medida (Tabla 12):

Tecla	Pulsación corta	Pulsación larga (2 s)
<	Pantalla anterior	Visualización del valor mínimo
\bigcirc	Pantalla siguiente	Visualización del valor máximo
	Salto entre los diferentes perfiles (analyzer, e3)	Entrada al menú de programación
		Visualización de la Máxima Demanda
$\langle \rangle$		Desenclava la alarma activa
		Modelos CVM-E3-MINI-xxx : Visualización del estado de la entrada y salida digital. Modelos CVM-E3-MINI-xxx-WiEth : Visualización de las pantallas de comunica- ciones Ethernet, Wi-Fi y Bluetooth®.
		Visualización de las pantallas de información del equipo.

Tabla 12: Función de las teclas en las pantallas de medida.

Función de las teclas por las pantallas de armónicos (Tabla 13):

Tabla 13: Función de las teclas	s en las pantallas de armónicos.
---------------------------------	----------------------------------

Tecla	Pulsación corta	Pulsación larga (2 s)
<	Salida de las pantallas de armónicos	
\triangleright	Pantalla siguiente	
	Salto entre los diferentes tipos de armó- nicos	Entrada al menú de programación

Función de las teclas en el menú de programación, modo consulta (Tabla 14):

Tecla	Pulsación corta	Pulsación larga (2 s)	
\checkmark	Pantalla anterior	Salida de programación	
$\textcircled{\ }$	Pantalla siguiente	Salida de programación	
		Entrada y salida del modo edición del menú de programación	

Tabla 14: Función de las teclas en el menú de programación, modo consulta.
Función de las teclas en el menú de programación, modo edición (Tabla 15):

Tecla	Pulsación
<	Desplaza hacia el anterior digito editable (intermitente)
	Incrementa los digitos (0-9) o salto entre las diferentes opciones de forma rotatoria.
\bigcirc	Desplaza hacia el siguiente digito editable (intermitente)

Tabla 15: Función de las teclas en el menú de programación, modo edición.

Circutor

4.3.- DISPLAY

El equipo dispone de un display LCD retro iluminado donde se visualizan todos los parámetros indicados en la **Tabla 11**.

El display está dividido en dos áreas (Figura 26):

Figura 26: Áreas del display del CVM-E3-MINI.

 \checkmark El área de **datos**, donde se visualizan todos los valores que está midiendo o calculando el equipo.

✓ El área de **estados del equipo,** donde se muestran los diferentes estados, perfiles e información del equipo (**Tabla 16**).

lcono	Descripción	lcono	Descripción	
\$8	Estado de la instalación: ▼ Instalación consumiendo. ▲ Instalación generando.	inst Valor instantáneo		
e ³	Perfil de funcionamiento e ³	min Valor mínimo		
T12	Tarifa : T1 Tarifa 1, T2 Tarifa 2	prog	Pantalla de programación	
dem	Valor de máxima demanda	ſ	Menú de programación: Bloqueado mediante password. Desbloqueado.	
max	Valor máximo	() ()	Comunicaciones activadas	

Tabla	16:	lconos	del	display.	
				onspiej.	

4.4.- INDICADORES LED

Circutor

El equipo CVM-E3-MINI dispone de 2 LEDs:

- CPU, indica que el equipo está encendido, parpadea cada segundo.

- ALARMA / PULSOS ENERGÍA, si está encendido indica que hay una alarma activada o una salida por pulsos de energía. En el caso de los pulsos de energía el LED se ilumina con la cadencia de dichos pulsos.

Figura 27: Indicadores LED del CVM-E3-MINI.

4.5.- ENTRADA DIGITAL (Modelos CVM-E3-MINI-xxx)

El **CVM-E3-MINI-xxx** dispone de una entrada digital (bornes **S** y **9** de la **Figura 4**) programable para funcionar como entrada lógica o de selección de tarifas.

Si se configura como entrada lógica, el equipo visualiza el estado de dicha entrada. Ver "6.19.- FUNCIO-NAMIENTO DE LA ENTRADA DIGITAL"

Pulsando las teclas (S) es posible acceder a la pantalla de estado de la entrada digital, ver "5.4.-PANTALLA DE ESTADO DE LA ENTRADA Y SALIDA DIGITAL"

En función del estado de las entradas podemos determinar la tarifa seleccionada, según la Tabla 17.

l1,Ent	Tacifa	
Entrada lógica	larira	
Х		T1
	0	T1
	1	T2

Tabla 17: Selección de tarifa en función de la entrada.

Nota: En los modelos **CVM-E3-MINI-xxx-WiEth** la selección de tarifa se realiza a través del menú de configuración.

4.6.- SALIDA DIGITAL (Modelos CVM-E3-MINI-xxx)

El equipo dispone de 1 salida digital, transistor NPN optoaislado (bornes **8** y **7** de la **Figura 4**) totalmente programables, ver "6.18.- PROGRAMACIÓN DE LA ALARMA : SALIDA DIGITAL T1".

Circutor

Pulsando las teclas \bigcirc es posible acceder a la pantalla de estado de la salida digital, ver "5.4.-PANTALLA DE ESTADO DE LA ENTRADA Y SALIDA DIGITAL"

5.- VISUALIZACIÓN

Circutor.

El **CVM-E3-MINI** dispone de 2 perfiles de funcionamiento con las pantallas de visualización acordes al perfil seleccionado:

- ✓ Perfil Analizador, **analyzer**,
- ✓ Perfil eficiencia energética eléctrica, e³,

El equipo visualiza por defecto el perfil de eficiencia energética eléctrica, **e**³, pulsar la tecla = para pasar de un perfil de funcionamiento a otro.

5.1.- PERFIL ANALYZER

En el perfil **analyzer** del equipo se visualizan 15 pantallas diferentes (**Tabla 18**) y los armónicos de tensión y corriente, hasta 31° armónico, de cada una de las lineas, L1, L2 y L3 (*"5.1.4.- ARMÓNICOS"*)

Para moverse por las diferentes pantallas hay que utilizar las teclas \leq y \geq .

El símbolo **inst** en la parte izquierda de la pantalla indica que los valores que se están visualizando son instantáneos.

Pantalla	Parámetros (unidades)
V8 L1 229.7	Tensión fase-neutro L1 (V ^{ph-N})
Inst L2 235.5 V	Tensión fase-neutro L2 (V ^{ph-N})
L3 24 15	Tensión fase-neutro L3 (V ^{ph-N})
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tensión fase-fase L1-L2 (V ^{ph-ph}) Tensión fase-fase L2-L3 (V ^{ph-ph}) Tensión fase-fase L3-L1 (V ^{ph-ph})
• ⁸ 235.5 ^Ⅲ	Tensión fase-neutro media
inst 408.0 v	Tensión fase-fase media
• 50.0 1 ^{Hz}	Frecuencia (Hz)

Tabla 18: Pantallas del perfil analyzer.

F	Pantalla	Parámetros (unidade	s)
▼ L1 (526.3	Corriente L1 (A)	
inst		Corriente L2 (A) Corriente L3 (A)	
L3 Į	12.5 1		
▼8 L1 ™	1 154 kw		
L2 inst	10.93	Potencia Activa L1 (M/I Potencia Activa L2 (M/I	< W) < W)
● ¹ L3	9.26	Potencia Activa L3 (M/	< W)
▼ 8 L1 ^{T1}	12.09	Potencia Anarente I 1 (M	(k\/
L2 inst		Potencia Aparente L2 (M Potencia Aparente L2 (M	/ kVA) / kVA)
L3	10.30		/ KVA)
▼8 L1 ™	3.73	Potoscia Dosctiva laductiva L1 (N	(kupd)
L2 inst	0.00	Potencia Reactiva Inductiva L1 (M Potencia Reactiva Inductiva L2 (M Potencia Reactiva Inductiva L2 (M	1/kvar ^L) 1/kvar ^L)
L3	₩		17 KVal ⁻)
▼8 L1 ⊤ 2	0.00		
L2 inst	273	Potencia Reactiva Lapacitiva L Potencia Reactiva Capacitiva L	1 (M/kvar _c) 2 (M/kvar _c)
L3	NNN U.U.U kvar₀	Potencia Keactiva Lapacitiva L.	s (MI7 KVar _c)
▼ 8 T 2	<u>]</u>	Potencia Activa III (M/I	<w)< th=""></w)<>
inst	33.42 kva	Potencia Aparente III (M Potencia Reactiva Inductiva III (M	/kVA) /kvar ^L)
ſ	kvar ^L		

Tabla 18 (Continuación): Pantallas del perfil analyzer.

Tabla 18 (Continuación): Pantallas del perfil analyzer. Pantalla Parámetros (unidades) •8 ⊺2 3 (74 ш kW Potencia Activa III (M/k W) 3345 Potencia Aparente III (M/kVA) k**V**Α inst Potencia Reactiva Capacitiva III (M/kvar_c) 271 kvar_c **-**8 L1 0.95 Τ2 $\cos \varphi L1 (\cos \varphi)$ inst L2 $\cos \varphi L2 (\cos \varphi)$ $\cos \varphi L3 (\cos \varphi)$ L3 0.90 Cos φ **•**8 L1 095 T 2 Factor de potencia L1 (PF) <u>L</u>2 095 PF Factor de potencia L2 (PF) inst Factor de potencia L3 (PF) L3 0.89 ш •8 T 2 <u>0</u>94 PF Factor de potencia III (PF) inst $\cos \varphi \parallel \mid (\cos \varphi)$ 098 Cos φ **-**8 L1 T 2 THD % Tensión L1 (V THD %) 20 L2 THD % Tensión L2 (V THD %) V inst THD % Tensión L3 (V THD %) L3 8.0 **-**8 L1 THD% 38 T 2 THD % Corriente L1 (A THD %) L2 THD % Corriente L2 (A THD %) inst Α THD % Corriente L3 (A THD %) L3

En estas pantallas también se visualizan:

- ✓ Valores máximos
- ✓ Valores mínimos
- ✓ Máxima Demanda
- ✓ Armónicos

5.1.1.- VALORES MÁXIMOS

Para ver los valores máximos de la pantalla que se está visualizando hay que pulsar la tecla 🕑 durante 2 segundos. Estos se visualizan durante 10 segundos.

Circutor

Se pueden visualizar el resto de valores máximos, pulsando las teclas $\stackrel{{\displaystyle ext{ of }}}{>}$ y $\stackrel{{\displaystyle ext{ of }}}{>}$.

En el display aparece el símbolo **max**.

Los valores máximos y mínimos se resetean a través del menú de programación. (*"6.11.- BORRADO DE LOS VALORES MÁXIMO Y MÍNIMOS"*).

5.1.2.- VALORES MÍNIMOS

Para ver de los valores mínimos de la pantalla que se está visualizando hay que pulsar la tecla 🔇 durante 2 segundos. Estos se visualizan durante 10 segundos.

Se pueden visualizar el resto de valores máximos, pulsando las teclas $ext{ }$ y imes.

En el display aparece el símbolo **min**.

Los valores máximos y mínimos se resetean a través del menú de programación. (*"6.11.- BORRADO DE LOS VALORES MÁXIMO Y MÍNIMOS"*).

5.1.3.- MÁXIMA DEMANDA

El equipo calcula la máxima demanda de:

- ✓La Corriente de cada una de las fases.
- ✓ La Potencia Activa trifásica.
- ✓ La Potencia Aparente trifásica.
- ✓ La Potencia Inductiva trifásica.
- ✓ La Potencia Capacitiva trifásica.

Se puede visualizar si estando en la pantalla de visualización del parámetro se pulsan simultáneamente las teclas y >.

En el display aparece el símbolo **dem**.

Para dejar de visualizar los valores de máxima demanda pulsar la teclas ${}^{<}$ o ${}^{>}$.

Los valores máxima demanda se resetean a través del menú de programación: "6.10.- BORRADO MÁXI-MA DEMANDA".

5.1.4.- ARMÓNICOS

El equipo mide y visualiza los armónicos de tensión y corriente, hasta 31º armónico, de cada una de las lineas, L1, L2 y L3.

El equipo, por defecto, tiene deshabilitada la visualización de los armónicos, ver *"6.13.- ACTIVAR PAN-TALLA DE VISUALIZACIÓN DE ARMÓNICOS"* para habilitar la visualización.

Para la correcta medición de los armónicos es necesario un nivel mínimo de señal, 20 V para la medida

de los armónicos de tensión y 200 mA para los armónicos de corriente. Si los niveles son inferiores, el equipo no los calcula y se visualiza el valor 0.

Las pantallas de visualización de armónicos se visualizan pulsando la tecla > después de la ultima pantalla del perfil.

Los armónicos se representan tal y como se muestra en la **Figura 28**. En la figura se muestra el 15° armónico (H15) de tensión.

Figura 28: 15º Armónico de tensión.

La tecla > salta a la siguiente pantalla de armónicos.

Con la tecla ≡ saltaremos de los armónicos de tensión a los armónicos de corriente, y de los armónicos de corriente a la pantalla inicial de los valores instantáneos.

5.1.5.- DETECCIÓN DE CONEXIÓN INCORRECTA Y SENTIDO DE GIRO INCORRECTO

✓ Conexión incorrecta o desconexión

El equipo dispone de un sistema para detectar la conexión incorrecta o desconexión de las lineas de tensión. Si se produce este error, el equipo visualiza **0** en las líneas con valor de tensión inferior al 50% del de la linea con mayor valor de tensión.

✓ Sentido de giro incorrecto

Circutor

El equipo dispone de un sistema para detectar el sentido de giro incorrecto de las tensiones. Es decir, si cada una de las tensiones se ha conectado correctamente al borne que le corresponde, L1 al borne 10, L2 al borne 11 y L3 al borne 12.

Si hay un error en el sentido de giro, los iconos L1, L2 y L3 del display parpadean.

El equipo dispone de un parámetro de comunicaciones RS-485, que indica si se ha detectado un sentido de giro incorrecto (*"7.3.6. DETECCIÓN DE SENTIDO DE GIRO INCORRECTO"*)

Nota: La detección del sentido de giro solo está habilitada para los sistemas de medida: Medida de red trifásica (4-3Ph, 3-3Ph y 3-R-0n) y Medida de red Bifásica con conexión a 3 hilos (3-2Ph).

5.2.- PERFIL e³

En el perfil e^3 del equipo se visualizan las energías consumidas y generadas de la instalación. Así, como el estado de la misma:

♥ Instalación consumiendo.
 ♥ Instalación generando.

Con una pulsación larga (3 seg) de las teclas > o < se pasa de la visualización de los valores generados a la visualización de los valores consumidos.

Los valores generados se identifican por el signo negativo que aparece delante de cada parámetro.

Nota: Si se ha configurado la opción de 2 cuadrantes, solo se pueden visualizar los valores consumidos.

Este perfil se identifica por el símbolo e^3 en la parte izquierda de la pantalla.

Para moverse por las diferentes pantallas hay que utilizar pulsaciones cortas de las teclas \leq y \geq .

Pantalla	Parámetros (unidades)
[™] 00000 [™] 05878 545	Energía Activa Trifásica Total ⁽²⁾⁽³⁾ (kWh)
^{••} ⁸ ΠΠΠΠ [■]	
07530. kvan	Energía aparente Trifásica Total ⁽²⁾⁽³⁾ (kVAh)
• <u>570</u>	
00793.	Energía Reactiva Inductiva Trifásica Total ⁽²⁾⁽³⁾ (kvar ^L h)
● ↓ ↓ kvar⊾h	
₽ ³ 00000 m	
00406.	Energía Reactiva Capacitiva Trifásica Total ⁽²⁾⁽³⁾ (kvar _c h)
● 938 kvar _c h	

Tabla 19: Pantallas del perfil e³.

Tabla 19 (Continuación	 Pantallas 	del nerfil e ³

Pantalla	Parámetros (unidades)
e ³ ⁸ 00058. € 7864 ^{cost}	Coste Total ⁽²⁾ (cost)
• 5728 kgco ₂	Emisiones CO ₂ Total ⁽²⁾ (kgCO ₂)
e ³ ⁸ 05395 ^{Hours} €	Nº de horas Total ⁽²⁾ (hours)
e ³ T1 00000 kWh 050 10 € 546	Energía Activa Trifásica Tarifa 1 ⁽³⁾ (kWh)
• ⁹ 00000 [™] 07530 kvAh • 510	Energía aparente Trifásica Tarifa 1 ⁽³⁾ (kVAh)
• ⁸ 00000 ^Ⅲ 00733. • 101 kvar [⊥] h	Energía Reactiva Inductiva Trifásica Tarifa 1 ⁽³⁾ (kvar ^L h)

Tabla 19 (Continuación): Pantallas del perfil e³.

⁽³⁾ El valor máximo de visualización de la Energía, mediante display, es 999999999999.999 k.

Los símbolos **T1** y **T2** del display indican las dos tarifas de las que dispone el equipo. Si la tarifa que se está visualizando es la tarifa actual, el símbolo parpadea.

Si se está visualizando la tarifa Total (= Tarifa 1 + Tarifa 2) Los símbolos **T1** y **T2** permanecen apagados.

5.3.- PANTALLAS DE INFORMACIÓN DEL EQUIPO

Pulsando las teclas () a la vez, desde cualquier pantalla de visualización, el equipo muestra las pantallas de información del equipo, con la versión del equipo y el número de serie (**Figura 29**).

Circutor

Figura 29: Pantallas de información del equipo.

5.4.- PANTALLA DE ESTADO DE LA ENTRADA Y SALIDA DIGITAL (Modelos CVM-E3-MINI-xxx)

Pulsando las teclas () = a la vez, desde cualquier pantalla de visualización, el equipo muestra el estado de entrada y salida digital (Figura 30)

Figura 30: Pantalla de estado de la entrada y salida digital.

El parámetro DUE indica el estado de la salida digital: **0**: Salida no activada **1**: Salida activada.

El parámetro I n indica el estado de la entrada digital.

Si se ha configurado como entrada lógica: **0**: Entrada no activada **1**: Entrada activada. Si se ha configurado como selección de tarifa: **T1**: Tarifa 1 seleccionada. **T2**: Tarifa 2 seleccionada.

5.5.- PANTALLAS DE COMUNICACIONES ETHERNET - Wi-Fi - Bluetooth® (Modelos CVM-E3-MINI-xxx-WiEth)

Nota: En el "ANEXO A.- MENÚS DE CONFIGURACIÓN" se puede visualizar el árbol de configuración completo.

Pulsando las teclas 🗢 🚍 a la vez, desde cualquier pantalla de visualización, el equipo muestra las pantallas de configuración y visualización de las comunicaciones Ethernet, Wi-Fi y Bluetooth[®].

5.5.1. COMUNICACIONES ETHERNET: CONFIGURACIÓN DHCP

Circutor

En esta pantalla se selecciona la habilitación o no del DHCP. Si se selecciona la habilitación del DHCP (configuración por defecto), la dirección IP se asigna dinámicamente a través de un servidor central y no es necesario configurar ningún parámetro más.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para desplazarse entre las posibles opciones:

No se habilita el DHCPSe habilita el DHCP

Para validar la opción pulsar 🔳 durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder a la siguiente pantalla de comunicaciones pulsar la tecla >.

5.5.2. COMUNICACIONES ETHERNET: DIRECCIÓN IP

En esta pantalla se configura (DHCP no habilitado) o visualiza la dirección IP.

Pulsar la tecla 📃 para visualizar el valor.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Circutor

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Para validar el dato pulsar 🚍 durante 3 segundos, el icono **prog** deja de parpadear.

Pulsar la tecla () para volver a la pantalla inicial de la dirección IP.

Para acceder a la siguiente pantalla de comunicaciones pulsar la tecla >.

5.5.3. COMUNICACIONES ETHERNET: MASCARA IP

En esta pantalla se configura (DHCP no habilitado) o visualiza la mascara IP.

Pulsar la tecla 📃 para visualizar el valor.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Pulsar la tecla 😑 para volver a la pantalla inicial de la mascara IP.

Para acceder a la siguiente pantalla de comunicaciones pulsar la tecla >.

5.5.4. COMUNICACIONES ETHERNET: GATEWAY

Circutor

En esta pantalla se configura (*DHCP no habilitado*) o visualiza la puerta de enlace, gateway, de las comunicaciones ethernet.

Pulsar la tecla 💷 para visualizar el valor.

Pulsar la tecla (=) durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Para validar el dato pulsar 🔳 durante 3 segundos, el icono **prog** deja de parpadear.

Pulsar la tecla 😑 para volver a la pantalla inicial del gateway.

Para acceder a la siguiente pantalla de comunicaciones pulsar la tecla >.

5.5.5. COMUNICACIONES ETHERNET: DIRECCIÓN MAC

En esta pantalla se visualiza la dirección MAC del equipo.

Pulsar la tecla 😑 para visualizar el valor.

Para acceder al siguiente a la siguiente pantalla de comunicaciones pulsar la tecla >.

5.5.6. COMUNICACIONES WI-FI: DIRECCIÓN IP

En esta pantalla se visualiza la dirección IP para las comunicaciones Wi-Fi.

Pulsar la tecla 📃 para visualizar el valor.

Para acceder a la siguiente pantalla de comunicaciones pulsar la tecla >.

Nota: Las comunicaciones Wi-Fi funcionan únicamente en modo DHCP.

5.5.7. COMUNICACIONES WI-FI: DIRECCIÓN MAC

En esta pantalla se visualiza la dirección MAC para las comunicaciones Wi-Fi.

Pulsar la tecla 😑 para visualizar el valor.

Para acceder a la siguiente pantalla de comunicaciones pulsar la tecla >.

5.5.8. COMUNICACIONES WI-FI: NIVEL DE LA SEÑAL

En esta pantalla se visualiza el nivel de la señal Wi-Fi.

Pulsar la tecla 😑 para visualizar el valor.

Para acceder a la siguiente pantalla de comunicaciones pulsar la tecla >.

Nota: Si la comunicación Wi-Fi está deshabilitada en display aparece el texto DFF. **Nota:** Si el nivel de la señal es < 25% se recomienda utilizar comunicaciones Ethernet para evitar cualquier incidencia en el registro de datos.

5.5.9. COMUNICACIONES Bluetooth®: NOMBRE

Circutor.

En esta pantalla se visualiza el nombre del equipo en las comunicaciones Bluetooth®.

Pulsar la tecla 🔳 para visualizar el valor.

Pulsar las teclas < = a la vez, para salir de las pantallas de comunicaciones Ethernet, Wi-Fi y Bluetooth[®].

6.- CONFIGURACIÓN

Para entrar en el menú de configuración hay que pulsar la tecla 💻 durante 3 segundos.

Si en las pantalla de configuración aparare el icono ullet, los parámetros de configuración se pueden editar sin problemas.

Si aparece el icono, ₩, el equipo tiene bloqueada la configuración mediante password ("6.23.- BLO-

QUEO DE LA PROGRAMACIÓN") y en el momento en que intente editar el valor, mediante la tecla , aparece la pantalla de la **Figura 31** para introducir el password de desbloqueo.

Figura 31: Pantalla de password.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Para validar el valor del password pulsar la tecla > si estamos en el último dígito o la tecla < si estamos en el primer dígito.

Valor del password: 1234

Si el valor del password introducido es correcto, ya se podrán modificar los parámetros de configuración.

Nota: En el **"ANEXO A.- MENÚS DE CONFIGURACIÓN"** se puede visualizar el árbol de configuración completo.

6.1.- PRIMARIO DE TENSIÓN

Circutor

En esta pantalla se programa el primario del transformador de tensión.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Para validar el dato pulsar 💷 durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Valor máximo de programación: 99999. Valor mínimo de programación: 1. Ratio de tensión ≤ 1000. Ratio de tensión x Ratio de corriente ≤ 300000.

Nota: El Ratio es la relación entre el primario y el secundario.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.2.- SECUNDARIO DE TENSIÓN

En esta pantalla se programa el secundario del transformador de tensión.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Circutor

Para validar el dato pulsar 📃 durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Valor máximo de programación: 999. Valor mínimo de programación: 1. Ratio de tensión ≤ 1000. Ratio de tensión x Ratio de corriente ≤ 300000.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.3.- PRIMARIO DE CORRIENTE

Nota: Pantalla visible en los modelos CVM-E3-MINI-ITF, CVM-E3-MINI-ITF-WiEth, CVM-E3-MINI-MC y CVM-E3-MINI-MC-WiEth.

En esta pantalla se programa el primario del transformador de corriente.

Pulsar la tecla 🔲 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las t	eclas (>) y (<)	para desplazar	el cursor de
edición.			

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Valor máximo de programación: 10000. Valor mínimo de programación: 1. Ratio de tensión x Ratio de corriente ≤ 300000.

Nota: El Ratio es la relación entre el primario y el secundario.

Para acceder al siguiente paso de programación pulsar la tecla 😕.

6.4.- SECUNDARIO DE CORRIENTE

Circutor

Nota: Pantalla visible en los modelos CVM-E3-MINI-ITF y CVM-E3-MINI-ITF-WiEth.

En esta pantalla se selecciona el secundario del transformador de corriente.

Pulsar la tecla 🔲 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para desplazarse entre las posibles opciones: 1A o 5A.

Ratio de tensión x Ratio de corriente \leq 300000.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.5.- SENSOR FLEX

Nota: Pantalla visible en los modelos CVM-E3-MINI-FLEX y CVM-E3-MINI-FLEX-WiEth.

En esta pantalla se selecciona el sensor flexible Rogowski que se va a utilizar para la medida de corriente.

Pulsar la tecla 🔲 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para desplazarse entre las posibles opciones:

LSPE / sensor Rogowski de 100uV/A.LSPE2 sensor Rogowski de 76uV/A.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla >

6.6.- NÚMERO DE CUADRANTES

En esta pantalla se selecciona el número de cuadrante en los que el equipo realiza la medida.

582 9080

Pulsar la tecla = durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 📃 para desplazarse entre las posibles opciones: 2 o 4 cuadrantes.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla 😕.

6.7.- CONVENIO DE MEDIDA

En esta pantalla se selecciona el convenio de medida que realizará el equipo.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla para desplazarse entre las posibles opciones:

E 🕝 Convenio de medida Circutor.

I EE Convenio de medida IEC.

I EEE Convenio de medida IEEE.

Para validar el dato pulsar ≡ durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.8.- SISTEMA DE MEDIDA

Circutor

En esta pantalla se selecciona el sistema de medida.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para desplazarse entre las posibles opciones:

Ч-ЭРЬ Medida de Red Trifásica con conexión a 4 hilos.

3-3Ph Medida de Red Trifásica con conexión a 3 hilos.

3-Ar Dr Medida de Red Trifásica con conexión a 3 hilos y transformadores en conexión ARON.⁽⁴⁾

3-2Ph Medida de Red Bifásica con conexión a 3 hilos.

2-2Ph Medida de Red Monofásica de fase a fase de 2 hilos.

2- IPh Medida de Red Monofásica de fase a neutro de 2 hilos.

⁽⁴⁾ Opción no disponible para los modelos CVM-E3-MINI-FLEX y CVM-E3-MINI-FLEX-WiEth.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.9.- PERIODO DE INTEGRACIÓN DE LA MÁXIMA DEMANDA

En esta pantalla se programa el periodo de integración de la máxima demanda en minutos.

Pulsar la tecla 🔲 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas \bigotimes y \bigotimes para desplazar el cursor de edición.

Para validar el dato pulsar 🔳 durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

irrutor

Valor máximo de programación: 60. Valor mínimo de programación: 0.

Nota: La programación del valor **0** deshabilita el calculo de la máxima demanda.

Para acceder al siguiente paso de programación pulsar la tecla 😕.

6.10.- BORRADO MÁXIMA DEMANDA

En esta pantalla se selecciona el borrado o no de la máxima demanda.

Pulsar la tecla 🔳 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla para desplazarse entre las posibles opciones: **Yes** o **No**.

Para validar el dato pulsar 💷 durante 3 segundos, el icono **prog** deja de parpadear.

Si seleccionamos la opción **Yes**, el equipo procede automáticamente al borrado de los datos de la máxima demanda, y se vuelve a ver por pantalla la opción **No**.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.11.- BORRADO DE LOS VALORES MÁXIMO Y MÍNIMOS

En esta pantalla se selecciona el borrado o no de los valores máximos y mínimos

Pulsar la tecla 🔲 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Circutor –

Utilizar la tecla () para desplazarse entre las posibles opciones: **Yes** o **No**.

Para validar el dato pulsar 💻 durante 3 segundos, el icono **prog** deja de parpadear.

Si seleccionamos la opción **Yes**, el equipo procede automáticamente al borrado de los valores máximos y mínimos, y se vuelve a ver por pantalla la opción No.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.12.- BORRADO DE LOS VALORES DE ENERGÍA

En esta pantalla se selecciona el borrado o no de los valores de energía, costes, emisiones de CO_2 y N° de horas.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para desplazarse entre las posibles opciones: **Yes** o **No**.

Para validar el dato pulsar 🔲 durante 3 segundos, el icono **prog** deja de parpadear.

Si seleccionamos la opción **Yes**, el equipo procede automáticamente al borrado de los valores, y se vuelve a ver por pantalla la opción No.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.13.- ACTIVAR PANTALLA DE VISUALIZACIÓN DE ARMÓNICOS

En esta pantalla se selecciona la visualización o no de las pantallas de armónicos.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Circutor

Utilizar la tecla 💻 para desplazarse entre las posibles opciones: **Yes** o **No**.

Para validar el dato pulsar 💷 durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.14.- RATIO DE EMISIONES DE CARBONO PARA LA ENERGÍA CONSUMIDA

El ratio de emisiones de carbono es la cantidad de emisiones que se emiten en la atmósfera para producir una unidad de electricidad (1kWh).

El ratio del mix europeo es aproximadamente de 0.65 kgCO₂ por kWh.

En esta pantalla se programa el ratio de emisiones de carbono para la energía consumida, de las 2 tarifas de las que dispone el equipo: T1 en la línea superior y T2 en la línea inferior.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas \bigotimes y \bigotimes para desplazar el cursor de edición.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Valor máximo de programación: 1.9999. Valor mínimo de programación: 0.

Para acceder al siguiente paso de programación pulsar la tecla 😕.

6.15.- RATIO DE EMISIONES DE CARBONO PARA LA ENERGÍA GENERADA

El ratio de emisiones de carbono es la cantidad de emisiones que se emiten en la atmósfera para producir una unidad de electricidad (1kWh).

El ratio del mix europeo es aproximadamente de 0.65 kgCO, por kWh.

Circutor

En esta pantalla se programa el ratio de emisiones de carbono para la energía generada, de las 2 tarifas de las que dispone el equipo: T1 en la línea superior y T2 en la línea inferior.

Pulsar la tecla 🔲 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Para validar el dato pulsar 🔳 durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Valor máximo de programación: 1.9999. Valor mínimo de programación: 0.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.16.- RATIO DEL COSTE PARA LA ENERGÍA CONSUMIDA

En esta pantalla se programa el coste por kWh de electricidad, para la energía consumida, de las 2 tarifas de las que dispone el equipo : T1 en la línea superior y T2 en la línea inferior.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Circutor

Utilizar la tecla (para modificar e	el valor del	dígito que	está parpadeando.
---------------------	--	------------------	--------------	------------	-------------------

Cuando el valor en pantalla sea el deseado, utilizar las teclas \bigotimes y \bigotimes para desplazar el cursor de edición.

Para validar el dato pulsar 🔳 durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Valor máximo de programación: 1.9999. Valor mínimo de programación: 0.

Para acceder al siguiente paso de programación pulsar la tecla 😕.

6.17.- RATIO DEL COSTE PARA LA ENERGÍA GENERADA

En esta pantalla se programa el coste por kWh de electricidad, para la energía generada, de las 2 tarifas de las que dispone el equipo : T1 en la línea superior y T2 en la línea inferior.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas \bigotimes y \bigotimes para desplazar el cursor de edición.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Valor máximo de programación: 1.9999. Valor mínimo de programación: 0.

Para acceder al siguiente paso de programación pulsar la tecla 😕.

6.18.- PROGRAMACIÓN DE LA ALARMA : SALIDA DIGITAL T1

Circutor

En este paso se programan todos los valores correspondientes a la salida digital T1.

Dub EodE prog

En esta pantalla se selecciona el código de la variable, en función de las tablas **Tabla 20, Tabla 21** y **Tabla 22,** que controlarán la salida digital T1.

Pulsar la tecla (=) durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

En el caso de no querer programar ninguna variable, programar **00**.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Si el código introducido es incorrecto, el valor se borra y se restablece el último valor guardado.

Para validar el dato pulsar 🔳 durante 3 segundos, el icono **prog** deja de parpadear.

Parametro	Fase	Lodigo	Fase	Lodigo	Fase	Lodigo	Fase	Lodigo	
Tensión Fase-Neutro	L1	01	L2	09	L3	17	-	-	
Corriente	L1	02	L2	10	L3	18	-	-	
Potencia Activa	L1	03	L2	11	L3	19	===	25	
Potencia Reactiva Inductiva	L1	04	L2	12	L3	20		26	
Potencia Reactiva Capacitiva	L1	05	L2	13	L3	21		27	
Potencia Aparente	L1	06	L2	14	L3	22		28	
Factor de potencia	L1	07	L2	15	L3	23		29	
Coseno φ	L1	08	L2	16	L3	24		30	
% THD V	L1	36	L2	37	L3	38	-	-	
% THD A	L1	39	L2	40	L3	41	-	-	
Tensión Fase-Fase	L1/2	32	L2/3	33	L3/1	34	-	-	
Frecuencia	-	31	-	-	-	-	-	-	
Máxima demanda Corriente	L1	45	L2	46	L3	47	-	-	
Máxima demanda Potencia Activa	-	-	-	-	-	-		42	

Tabla 20: Código de los parámetros para la programación de la salida digital (Tabla 1)

Tabla 20 (Continuación): Código de los parámetros para la programación de la salida digital (Tabla 1).

Circutor

Parámetro	Fase	Código	Fase	Código	Fase	Código	Fase	Código
Máxima demanda Potencia Aparente	-	-	-	-	-	-		43
Máxima demanda Potencia Inductiva	-	-	-	-	-	-		132
Máxima demanda Potencia Capacitiva	-	-	-	-	-	-		133

Existen también, unos parámetros (**Tabla 21**) que hacen referencia a las tres fases a la vez (función OR). Si se tiene seleccionada una de estas variables, la alarma se activará cuando cualquiera de las tres fases cumpla con las condiciones programadas.

Tabla 21:Código de los parámetros para la programación de la salida digital (Tabla 2).

Tipo de parámetro	Código		
Tensión Fase-Neutro	200		
Corriente	201		
Potencia Activa	202		
Potencia Reactiva Inductiva	203		
Potencia Reactiva Capacitiva	204		
Factor de potencia	205		
Tensión Fase-Fase	206		
% THD V	207		
% THD A	208		
Potencia Aparente	209		

Tabla 22: Código de los parámetros para la programación de la salida digital (pulsos de energía) (Tabla 3)

Parámetro	Tarifa	Código	Tarifa	Código	Tarifa	Código
Energía Activa Consumida	T1	49	T2	70	total	112
Energía Activa Generada	T1	59	T2	80	total	122
Energía Reactiva Inductiva Consumida	T1	51	T2	72	total	114
Energía Reactiva Inductiva Generada	T1	61	T2	82	total	124
Energía Reactiva Capacitiva Consumida	T1	53	T2	74	total	116
Energía Reactiva Capacitiva Generada	T1	63	T2	84	total	126
Energía aparente Consumida	T1	55	T2	76	total	118
Energía aparente Generada	T1	65	T2	86	total	128

Para acceder al siguiente paso de programación pulsar la tecla 😕.

Si se ha seleccionado un parámetro de la **Tabla 20** o **Tabla 21** la siguiente pantalla de configuración se muestra en el apartado *"6.18.1. VALOR MÁXIMO"*

Si se ha selecciona un parámetro de la **Tabla 22**, la siguiente pantalla de configuración se muestra en el apartado *"6.18.8. KILOVATIOS POR PULSO"*

6.18.1. VALOR MÁXIMO

Circuto

En esta pantalla se programa el valor máximo, es decir, el valor por encima del cual se activa la alarma.

Pulsar la tecla 🔲 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Nota: El equipo permite la configuración de valores negativos. Para ello hay que incrementar el primer dígito más allá del número 9.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Nota: Atención al programar la Potencia de generación (visualizada en valores negativos).**Ejemplo:** Si se quiere introducir una alarma de potencia de generación con límites entre 2kW y 1kW, programar como **valor máximo** : - 1kW y como **valor mínimo** : - 2 kW.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla 😕.

6.18.2. VALOR MÍNIMO

En esta pantalla se programa el valor mínimo, es decir, el valor por debajo del cual se activa la alarma.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Nota: El equipo permite la configuración de valores negativos. Para ello hay que incrementar el primer dígito más allá del número 9.

Cuando el valor en pantalla sea el deseado, utilizar las teclas \bigotimes y \bigotimes para desplazar el cursor de edición.

Circutor

Nota: Atención al programar la Potencia de generación (visualizada en valores negativos).**Ejemplo:** Si se quiere introducir una alarma de potencia de generación con límites entre 2kW y 1kW, programar como **valor máximo** : - 1kW y como **valor mínimo** : - 2 kW.

Para validar el dato pulsar 🔳 durante 3 segundos, el icono **prog** deja de parpadear. Para acceder al siguiente paso de programación pulsar la tecla 🕗.

6.18.3. RETARDO EN LA CONEXIÓN

En esta pantalla se programa el retardo en segundos en la conexión de la alarma.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Para validar el dato pulsar 💷 durante 3 segundos, el icono **prog** deja de parpadear.

Valor máximo de programación: 999.

Valor mínimo de programación: 0.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.18.4. VALOR DE HISTÉRESIS

En esta pantalla se programa el valor de histéresis, la diferencia entre el valor de conexión y desconexión de la alarma, en %.

Circutor -

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas 🖄 y 🔇 para desplazar el cursor de edición.

Para validar el dato pulsar 📃 durante 3 segundos, el icono **prog** deja de parpadear.

Valor máximo de programación: 99. Valor mínimo de programación: 0.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.18.5. ENCLAVAMIENTO (LATCH)

En esta pantalla se selecciona el enclavamiento, es decir si tras el disparo de la alarma ésta quedará enclavada aunque desaparezca la condición que la ha provocado.

Pulsar la tecla () durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla = para desplazarse entre las posibles opciones: **Yes** o **No**. Para validar el dato pulsar = durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla >

Nota: Si se produce un reset del equipo el estado de las alarmas se borra y vuelven al estado de reposo programado, siempre y cuando no se siga manteniendo la condición para activarlar.

6.18.6. RETARDO EN LA DESCONEXIÓN

En esta pantalla se programa el retardo en segundos en la desconexión de la alarma.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Circutor

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas \bigotimes y \bigotimes para desplazar el cursor de edición.

Para validar el dato pulsar 🔳 durante 3 segundos, el icono **prog** deja de parpadear.

Valor máximo de programación: 999. Valor mínimo de programación: 0.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.18.7. ESTADO DE LOS CONTACTOS

En esta pantalla se selecciona el estado de los contactos del relé.

Pulsar la tecla 🔳 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para desplazarse entre las posibles opciones:

 $n \Box$ Contacto normalmente abierto.

nL Contacto normalmente cerrado.

Para validar el dato pulsar 🔲 durante 3 segundos, el icono **prog** deja de parpadear. Para acceder al siguiente paso de programación pulsar la tecla S.

6.18.8. KILOVATIOS POR PULSO

Nota: Pantalla visible si el parámetro de alarma seleccionado en una energía, ver Tabla 22.

En esta pantalla se programa los kilovatios por pulso.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Valor máximo de programación : 999.99 kWh Valor mínimo de programación : 000.01 kWh

Para validar el dato pulsar (=) durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Para acceder al siguiente paso de programación pulsar la tecla 😕.

6.18.9. ANCHURA DEL PULSO

Nota: Pantalla visible si el parámetro de alarma seleccionado en una energía, ver Tabla 22.

En esta pantalla se selecciona la anchura del pulso en ms.

Pulsar la tecla () durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.
Valor máximo de programación : 500 ms. Valor mínimo de programación : 30 ms.

Para validar el dato pulsar 💷 durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.19.- FUNCIONAMIENTO DE LA ENTRADA DIGITAL (Modelos CVM-E3-MINI-xxx)

En esta pantalla se selecciona la función de la entrada digital 1.

SEE InPuE Ser F

Pulsar la tecla 🔳 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para desplazarse entre las posibles opciones:

LO9/ C Entrada lógica

EALT Selección de tarifa.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.20.- SELECCIÓN DE TARIFA (Modelos CVM-E3-MINI-xxx-WiEth)

En esta pantalla se selecciona la tarifa de funcionamiento.

```
582
28, F
€8, F
```

Pulsar la tecla e durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para desplazarse entre las posibles opciones:

E | Tarifa 1.*E* | Tarifa 2.

Circutor

Para validar el dato pulsar 💻 durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.21.- BACKLIGHT, RETRO-ILUMINACIÓN DEL DISPLAY

En esta pantalla se programa el tiempo de máxima luminosidad del display desde la última manipulación del equipo mediante teclado, pasado el tiempo programado el display disminuye el nivel de luminosidad.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Valor máximo de programación: 999 segundos.

Valor mínimo de programación: 1 segundo.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Para acceder al siguiente paso de programación pulsar la tecla 😕.

6.22.- COMUNICACIONES RS-485 (Modelos CVM-E3-MINI-xxx)

En esta pantalla se selecciona el protocolo de las comunicaciones RS-485.

SEE ProE node

Pulsar la tecla 🔳 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla para desplazarse entre las posibles opciones: nodb Modbus.

ЬЯсл BACnet.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla >.

Nota: Al salir del menú de configuración, cuando se han modificado los parámetros de comunicaciones RS-485, el equipo se reinicia.

Si se ha seleccionado el protocolo Modbus, la siguiente pantalla de configuración se muestra en el apartado *"6.22.1. PROTOCOLO MODBUS: VELOCIDAD DE TRANSMISIÓN"*.

Si se ha selecciona el protocolo BACnet, la siguiente pantalla de configuración se muestra en el apartado *"6.22.6.- PROTOCOLO BACnet : VELOCIDAD DE TRANSMISIÓN"*.

6.22.1.- PROTOCOLO MODBUS: VELOCIDAD DE TRANSMISIÓN

En esta pantalla se programa la velocidad de transmisión de las comunicaciones modbus.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla = para desplazarse entre las posibles opciones: 9600 o 19200 bps. Para validar el dato pulsar = durante 3 segundos, el icono **prog** deja de parpadear.

Manual de Instrucciones

CVM-E3-MINI

Para acceder al siguiente paso de programación pulsar la tecla >.

6.22.2.- PROTOCOLO MODBUS: NÚMERO DE PERIFÉRICO

En esta pantalla se programa el número de periférico.

Circutor

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Valor máximo de programación: 255.

Valor mínimo de programación: 1.

Para validar el dato pulsar 🔳 durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.22.3.- PROTOCOLO MODBUS: PARIDAD

En esta pantalla se selecciona el tipo de paridad en las comunicaciones Modbus.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla \bigcirc para desplazarse entre las posibles opciones: nonE sin paridad. EuEn paridad par.

odd paridad impar.____

Para validar el dato pulsar 🔳 durante 3 segundos, el icono **prog** deja de parpadear. Para acceder al siguiente paso de programación pulsar la tecla 😕.

6.22.4.- PROTOCOLO MODBUS: BITS DE DATOS

En esta pantalla se programa el número de bits de datos en las comunicaciones Modbus.

Pulsar la tecla 🔳 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para desplazarse entre las posibles opciones: 7 o 8 bits.

Para validar el dato pulsar 🔳 durante 3 segundos, el icono **prog** deja de parpadear. Para acceder al siguiente paso de programación pulsar la tecla >.

6.22.5.- PROTOCOLO MODBUS: BITS DE STOP

En esta pantalla se programa el número de bits de Stop en las comunicaciones Modbus.

	SEE Seop	
prog •	1	

Pulsar la tecla 🔳 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla e para desplazarse entre las posibles opciones: 1 o 2 bits.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.22.6.- PROTOCOLO BACnet: VELOCIDAD DE TRANSMISIÓN

En esta pantalla se programa la velocidad de transmisión de las comunicaciones BACnet.

Pulsar la tecla 🔳 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla para desplazarse entre las posibles opciones: **9600** o **19200** bps. Para validar el dato pulsar durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.22.7.- PROTOCOLO BACnet: ID

Circutor

En esta pantalla se programa el ID del equipo.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas $\bigotimes y \bigotimes$ para desplazar el cursor de edición.

Valor máximo de programación: 99999. Valor mínimo de programación: 0.

Para validar el dato pulsar 🔳 durante 3 segundos, el icono **prog** deja de parpadear.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.22.8.- PROTOCOLO BACnet: DIRECCIÓN MAC

En esta pantalla se programa la dirección MAC.

Pulsar la tecla 🔳 durante 3 segundos, para entrar en modo edición. En la parte izquierda de la pantalla el icono **prog** parpadea.

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Si el valor introducido está fuera del rango de valores de programación, el valor programado se borra y se restablece el último valor guardado.

Valor máximo de programación: 127.

Valor mínimo de programación: 0.

Para validar el dato pulsar 🚍 durante 3 segundos, el icono **prog** deja de parpadear.

Para acceder al siguiente paso de programación pulsar la tecla >.

6.23.- BLOQUEO DE LA PROGRAMACIÓN

En esta pantalla tiene por objetivo la protección de los datos programados en el menú de configuración.

Pulsar la tecla 😑 durante 3 segundos, para entrar en modo edición. Aparece la pantalla de la Figura 32 para introducir el password de bloqueo.

Circutor

Figura 32: Pantalla de password.

Utilizar la tecla 😑 para introducir el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Para validar el valor del password pulsar la tecla > si estamos en el último dígito o la tecla < si estamos en el primer dígito.

Valor del password: 1234

Si el valor del password introducido es correcto, ya se podrán modificar el bloqueo de la programación.

Utilizar la tecla para desplazarse entre las posibles opciones:

UnLoE Al entrar al menú de programación podemos ver y modificar la programación. El icono en el display indica el estado de desbloqueo permanente.

LoC Al entrar en programación podemos ver la programación pero no es posible modificarla. El icono indica el estado de bloqueo. Para poder modificar la programación hay que introducir un password.

Para validar el dato pulsar 😑 durante 3 segundos, el icono **prog** deja de parpadear.

Pulsar la tecla > para introducir el password de bloqueo o desbloqueo de la programación.

6.23.1.- PASSWORD

En esta pantalla se introduce el password de bloqueo o desploqueo de la programación.

	588
	PRSS
prog	0000

Circutor

Utilizar la tecla 😑 para modificar el valor del dígito que está parpadeando.

Cuando el valor en pantalla sea el deseado, utilizar las teclas > y < para desplazar el cursor de edición.

Para validar el valor del password pulsar la tecla > si estamos en el último dígito o la tecla < si estamos en el primer dígito.

Valor del password: 1234

Este valor solo se puede modificar por comunicaciones, ver "7.3.7.16. Configuración del password."

7.- CVM-E3-MINI-xxx: COMUNICACIONES RS-485

Los **CVM-E3-MINI-xxx** disponen de un puerto de comunicaciones RS-485. El equipo posee de serie dos protocolos de comunicación: **MODBUS RTU** ® y **BACnet**.

En el menú de configuración se selecciona el protocolo y los parámetros de configuración, ("6.22.- CO-MUNICACIONES RS-485").

7.1.- CONEXIONADO

Circutor.

La composición del cable RS-485 se deberá llevar a cabo mediante cable de par trenzado con malla de apantallamiento (mínimo 3 hilos), con una distancia máxima entre el **CVM-E3-MINI** y la unidad master de 1200 metros de longitud.

En dicho bus podremos conectar un máximo de 32 CVM-E3-MINI.

Para la comunicación con la unidad master, debemos utilizar un conversor inteligente de protocolo de red RS-232 a RS-485.

Figura 33: Esquema de conexionado RS-485.

7.2.- PROTOCOLO MODBUS

Dentro del protocolo Modbus el **CVM-E3-MINI** utiliza el modo RTU (Remote Terminal Unit). Las funciones Modbus implementadas en el equipo son:

Función 0x03 y 0x04: Lectura de registros integer. Función 0x05: Escritura de un relé. Función 0x10: Escritura de múltiples registros.

7.2.1.- EJEMPLO DE LECTURA: Función 0x04.

Pregunta: Valor instantáneo de la tensión de fase de la L1.

Dirección	Función	Registro inicial	№ registros	CRC
0A	04	0000	0002	70B0

Dirección: OA, Número de periférico: 10 en decimal. Función: O4, Función de lectura. Registro Inicial: 0000, registro en el cual se desea que comience la lectura. Nº de registros: 0002, número de registros a leer. CRC: 70B0, Carácter CRC.

Respuesta:

Dirección	Función	N° Bytes	Registro nº 1	Registro nº 2	CRC
0A	04	04	0000	084D	86B1

Dirección: OA, Número de periférico que responde: 10 en decimal. **Función: O4**, Función de lectura.

N° de bytes: 04, N° de bytes recibidos.

Registro: 0000084D, valor de la tensión de fase de la L1: VL1 x 10 : 212.5V. **CRC: 86B1**, Carácter CRC.

Nota: Cada trama Modbus, tiene un límite máximo de 30 variables (60 registros).

7.2.2.- EJEMPLO DE ESCRITURA: Función 0x05.

Pregunta: Borrado de los valores máximos y mínimos.

Dirección	Función	Registro inicial	Valor	CRC
0A	05	0834	FF00	CEEF

Dirección: OA, Número de periférico: 10 en decimal.

Función: 05, Función de lectura.

Registro Inicial: 0834, registro del parámetro de borrado de los valores máximos y mínimos. **Valor: FF00**, Indicamos que queremos borrar los valores máximos y mínimos. **CRC: CEEF**, Carácter CRC.

Respuesta:

Dirección	Función	Registro inicial	Valor	CRC
0A	05	0834	FF00	CEEF

7.3.- COMANDOS MODBUS

Para las variables de Medida, Energía y Armónicos de tensión y Corriente se han implementado dos mapas de memoria diferente, pero funcionales por igual:

✓ Mapa 1, Utiliza las direcciones del equipo CVM-MINI, introduciendo las direcciones de los nuevos parámetros que mide esta nuevo equipo.

✓ Mapa 2, Utiliza las direcciones del equipo CVM-C10 (sumando 0x1000 a todas las direcciones). Exceptuando 3 parámetros, los parámetros del CVM-C10 y del CVM-E3-MINI son los mismos.

Si se va a implementar un mapa Modbus desde cero, se aconseja utilizar el Mapa 2. Si en cambio se parte de un mapa ya utilizado en otro equipo, si es un CVM-MINI utilizar el Mapa 1 y si es un CVM-C10, utilizar el Mapa 2.

7.3.1. VARIABLES DE MEDIDA

Todas las direcciones del mapa Modbus están en Hexadecimal. Para estas variables está implementada la Función 0x03 y 0x04.

Tabla 23: Mapa 1 de memoria Modbus (Variables de medida).								
Mapa 1								
Parámetro	Símbolo	Instantáneo	Máximo	Mínimo	Unidades			
Tensión fase L1	V 1	00-01	60-61	CO-C1	V x 10			
Corriente L1	A 1	02-03	62-63	C2-C3	mA			
Potencia Activa L1	kW 1	04-05	64-65	C4-C5	W			
Potencia Reactiva L1	kvar 1	06-07	66-67	C6-C7	var			
Potencia Inductiva L1	kvarL 1	12C-12D	13E-13F	150-151	var			
Potencia Capacitiva L1	kvarC 1	12E-12F	140-141	152-153	var			
Potencia Aparente L1	kVA 1	4A-4B	AA-AB	10A-10B	VA			
Factor de potencia L1	PF 1	08-09	68-69	C8-C9	x 100			
Cos φ L1	Cos φ 1	130-131	142-143	154-155	x 100			
Tensión fase L2	V 2	0A-0B	6A-6B	CA-CB	V x 10			
Corriente L2	A 2	0C-0D	6C-6D	CC-CD	mA			
Potencia Activa L2	kW 2	0E-0F	6E-6F	CE-CF	W			
Potencia Reactiva L2	kvar 2	10-11	70-71	D0-D1	var			
Potencia Inductiva L2	kvarL 2	132-133	144-145	156-157	var			
Potencia Capacitiva L2	kvarC 2	134-135	146-147	158-159	var			
Potencia Aparente L2	kVA 2	4C-4D	AC-AD	10C-10D	VA			
Factor de potencia L2	PF 2	12-13	72-73	D2-D3	x 100			
Cos φ L2	Cos φ 2	136-137	148-149	15A-15B	x 100			

Mapa 1							
Parámetro	Símbolo	Instantáneo	Máximo	Mínimo	Unidades		
Tensión fase L3	V 3	14-15	74-75	D4-D5	V x 10		
Corriente L3	A 3	16-17	76-77	D6-D7	mA		
Potencia Activa L3	kW 3	18-19	78-79	D8-D9	W		
Potencia Reactiva L3	kvar 3	1A-1B	7A-7B	DA-DB	var		
Potencia Inductiva L3	kvarL 3	138-139	14A-14B	15C-15D	var		
Potencia Capacitiva L3	kvarC 3	13A-13B	14C-14D	15E-15F	var		
Potencia Aparente L3	kVA 3	4E-4F	AE-AF	10E-10F	VA		
Factor de potencia L3	PF 3	1C-1D	7C-7D	DC-DD	x 100		
Cos φ L3	Cos φ 3	13C-13D	14E-14F	160-161	x 100		
Potencia Activa trifásica	kW III	1E-1F	7E-7F	DE-DF	W		
Potencia inductiva trifásica	kvarL III	20-21	80-81	E0-E1	var		
Potencia capacitiva trifásica	kvarC III	22-23	82-83	E2-E3	var		
Potencia aparente trifásica	kVA III	42-43	A2-A3	102-103	VA		
Factor de potencia trifásica	PF III	26-27	86-87	E6-E7	x100		
Cos φ trifásico	Cos φ III	24-25	84-85	E4-E5	x100		
Frecuencia L1	Hz	28-29	88-89	E8-E9	Hz x10		
Tensión L1-L2	V12	2A-2B	8A-8B	EA-EB	V x 10		
Tensión L2-L3	V23	2C-2D	8C-8D	EC-ED	V x 10		
Tensión L3-L1	V31	2E-2F	8E-8F	EE-EF	V x 10		
% THD tensión L1	%THDV1	30-31	90-91	F0-F1	% x 10		
% THD tensión L2	%THDV2	32-33	92-93	F2-F3	% x 10		
% THD tensión L3	%THDV3	34-35	94-95	F4-F5	% x 10		
% THD Corriente L1	%THDI1	36-37	96-97	F6-F7	% x 10		
% THD Corriente L2	%THDI2	38-39	98-99	F8-F9	% x 10		
% THD Corriente L3	%THDI3	3A-3B	9A-9B	FA-FB	% x 10		
Máxima demanda kW III	Md(Pd)	162-163	16A-16B	-	W		
Máxima demanda kVA III	Md(Pd)	164-165	16C-16D	-	VA		
Máxima demanda kvarL III	Md(Pd)	166-167	16E-16F	-	var		
Máxima demanda kvarC III	Md(Pd)	168-169	170-171	-	var		
Máxima demanda l L1	Md(Pd)	44-45	A4-A5	-	mA		
Máxima demanda l L2	Md(Pd)	52-53	B2-B3	-	mA		
Máxima demanda I L3	Md(Pd)	54-55	B4-B5	-	mA		
Corriente trifásica (media)	A AVG	46-47	A6-A7	106-417	mA		

Tabla 23 (Continuación): Mapa 1 de memoria Modbus (Variables de medida).

Circutor

Tabla 24: Mapa 2 de memoria Modbus (Variables de medida).

Мара 2							
Parámetro	Símbolo	Instantáneo	Máximo	Mínimo	Unidades		
Tensión fase L1	V 1	1000-1001	1106-1107	1164-1165	V x 10		
Corriente L1	A 1	1002-1003	1108-1109	1166-1167	mA		
Potencia Activa L1	kW 1	1004-1005	110A-110B	1168-1169	W		
Potencia Inductiva L1	kvarL 1	1006-1007	110C-110D	116A-116B	var		
Potencia Capacitiva L1	kvarC 1	1008-1009	110E-110F	116C-116D	var		
Potencia Aparente L1	kVA 1	100A-100B	1110-1111	116E-116F	VA		

Мара 2							
Parámetro	Símbolo	Instantáneo	Máximo	Mínimo	Unidades		
Factor de potencia L1	PF 1	100C-100D	1112-1113	1170-1171	x 100		
Cos φ L1	Cos q 1	100E-100F	1114-1115	1172-1173	x 100		
Tensión fase L2	V 2	1010-1011	1116-1117	1174-1175	V x 10		
Corriente L2	A 2	1012-1013	1118-1119	1176-1177	mA		
Potencia Activa L2	kW 2	1014-1015	111A-111B	1178-1179	W		
Potencia Inductiva L2	kvarL 2	1016-1017	111C-111D	117A-117B	var		
Potencia Capacitiva L2	kvarC 2	1018-1019	111E-111F	117C-117D	var		
Potencia Aparente L2	kVA 2	101A-101B	1120-1121	117E-117F	VA		
Factor de potencia L2	PF 2	101C-101D	1122-1123	1180-1181	x 100		
Cos φ L2	Cos φ 2	101E-101F	1124-1125	1182-1183	x 100		
Tensión fase L3	V 3	1020-1021	1126-1127	1184-1185	V x 10		
Corriente L3	A 3	1022-1023	1128-1129	1186-1187	mA		
Potencia Activa L3	kW 3	1024-1025	112A-112B	1188-1189	W		
Potencia Inductiva L3	kvarL 3	1026-1027	112C-112D	118A-118B	var		
Potencia Capacitiva L3	kvarC 3	1028-1029	112E-112F	118C-118D	var		
Potencia Aparente L3	kVA 3	102A-102B	1130-1131	118E-118F	VA		
Factor de potencia L3	PF 3	102C-102D	1132-1133	1190-1191	x 100		
Cos φ L3	Cos φ 3	102E-102F	1134-1135	1192-1193	x 100		
Potencia Activa trifásica	kW III	1030-1031	1136-1137	1194-1195	W		
Potencia inductiva trifásica	kvarL III	1032-1033	1138-1139	1196-1197	var		
Potencia capacitiva trifásica	kvarC III	1034-1035	113A-113B	1198-1199	var		
Potencia aparente trifásica	kVA III	1036-1037	113C-113D	119A-119B	VA		
Factor de potencia trifásica	PF III	1038-1039	113E-113F	119C-119D	x100		
Cos φ trifásico	Cos φ III	103A-103B	1140-1141	119E-119F	x100		
Frecuencia L1	Hz	103C-103D	1142-1143	11A0-11A1	Hz x100		
Tensión L1-L2	V12	103E-103F	1144-1145	11A2-11A3	V x 10		
Tensión L2-L3	V23	1040-1041	1146-1147	11A4-11A5	V x 10		
Tensión L3-L1	V31	1042-1043	1148-1149	11A6-11A7	V x 10		
% THD tensión L1	%THDV1	1046-1047	114C-114D	11AA-11AB	% x 10		
% THD tensión L2	%THDV2	1048-1049	114E-114F	11AC-11AD	% x 10		
% THD tensión L3	%THDV3	104A-104B	1150-1151	11AE-11AF	% x 10		
% THD Corriente L1	%THDI1	104C-104D	1152-1153	11B0-11B1	% x 10		
% THD Corriente L2	%THDI2	104E-104F	1154-1155	11B2-11B3	% x 10		
% THD Corriente L3	%THDI3	1050-1051	1156-1157	11B4-11B5	% x 10		
Máxima demanda kW III	Md(Pd)	1052-1053	1158-1159	-	W		
Máxima demanda kVA III	Md(Pd)	1054-1055	115A-115B	-	VA		
Máxima demanda kvarL III	Md(Pd)	1200-1201	1204-1205	-	var		
Máxima demanda kvarC III	Md(Pd)	1202-1203	1206-1207	-	var		
Máxima demanda l L1	Md(Pd)	1058-1059	115E-115F	-	mA		
Máxima demanda l L2	Md(Pd)	105A-105B	1160-1161	-	mA		
Máxima demanda I L3	Md(Pd)	105C-105D	1162-1163	-	mA		

Tabla 24 (Continuación): Mapa 2 de memoria Modbus (Variables de medida).

Circutor _____

7.3.2. VARIABLES DE ENERGÍA

Todas las direcciones del mapa Modbus están en Hexadecimal. Para estas variables está implementada la **Función 0x03** y **0x04**.

Мара 1							
Parámetro	Símbolo	Instantáneo	Unidades				
Energía activa III	kWh III	3C-3D	Wh				
Energía reactiva inductiva III	kvarhL III	3E-3F	varhL				
Energía reactiva capacitiva III	kvarhC III	40-41	varhC				
Energía aparente III	kVAh III	56-57	VAh				
Energía activa III generada	kWh III	58-59	Wh				
Energía reactiva inductiva III generada	kvarhL III	5A-5B	varhL				
Energía reactiva capacitiva III generada	kvarhC III	5C-5D	varhC				
Energía aparente III generada	kVAh III	5E-5F	VAh				

Tabla 25: Mapa 1 de memoria Modbus (Variables de energía instantáneos)

Tabla 26: Mapa 1 de memoria Modbus (Variables de energía).

Mapa 1							
Parámetro	Símbolo	Tarifa 1	Tarifa 2	Total	Unidades		
Energía activa III consumida (kWh)	kWh III	18C-18D	1B6-1B7	1E0-1E1	kWh		
Energía activa III consumida(Wh)	kWh III	18E-18F	1B8-1B9	172-173	Wh		
Energía reactiva inductiva III consumida (kvarhL)	kvarhL III	190-191	1BA-1BB	1E2-1E3	kvarh		
Energía reactiva inductiva III consumida (varhL)	kvarhL III	192-193	1BC-1BD	174-175	varh		
Energía reactiva capacitiva III consumida (kvarhC)	kvarhC III	194-195	1BE-1BF	1E4-1E5	kvarh		
Energía reactiva capacitiva III consumida (varhC)	kvarhC III	196-197	1CO-1C1	176-177	varh		
Energía aparente III consumida (kVAh)	kVAh III	198-199	1C2-1C3	1E6-1E7	kVAh		
Energía aparente III consumida (VAh)	kVAh III	19A-19B	1C4-1C5	178-179	VAh		
Emisiones CO ₂ consumidas	KgCO ₂	19C-19D	1C6-1C7	182-183	x10		
Coste comsumida	\$	19E-19F	1C8-1C9	184-185	x10		
Energía activa III generada (kWh)	kWh III	1A0-1A1	1CA-1CB	1E8-1E9	kWh		
Energía activa III generada (Wh)	kWh III	1A2-1A3	1CC-1CD	17A-17B	Wh		
Energía reactiva inductiva III generada (kvarhL)	kvarhL III	1A4-1A5	1CE-1CF	1EA-1EB	kvarh		
Energía reactiva inductiva III generada (varhL)	kvarhL III	1A6-1A7	1D0-1D1	17C-17D	varh		
Energía reactiva capacitiva III generada (kvarhC)	kvarhC III	1A8-1A9	1D2-1D3	1EC-1ED	kvarh		
Energía reactiva capacitiva III generada (varhC)	kvarhC III	1AA-1AB	1D4-1D5	17E-17F	varh		
Energía aparente III generada (kVAh)	kVAh III	1AC-1AD	1D6-1D7	1EE-1EF	kVAh		
Energía aparente III generada(VAh)	kVAh III	1AE-1AF	1D8-1D9	180-181	VAh		
Emisiones CO ₂ generadas	KgCO ₂	1BO-1B1	1DA-1DB	186-187	x10		
Coste generada	\$	1B2-1B3	1DC-1DD	188-189	x10		
Horas por tarifa	Hours	1B4-1B5	1DE-1DF	18A-18B	seg		

	I*I0	aha z			
Parámetro	Símbolo	Tarifa 1	Tarifa 2	Total	Unidades
Energía activa III consumida (kWh)	kWh III	105E-105F	1088-1089	10DC-10DD	kWh
Energía activa III consumida(Wh)	kWh III	1060-1061	108A-108B	10DE-10DF	Wh
Energía reactiva inductiva III consumida (kvarhL)	kvarhL III	1062-1063	108C-108D	10E0-10E1	kvarh
Energía reactiva inductiva III consumida (varhL)	kvarhL III	1064-1065	108E-108F	10E2-10E3	varh
Energía reactiva capacitiva III consumida (kvarhC)	kvarhC III	1066-1067	1090-1091	10E4-10E5	kvarh
Energía reactiva capacitiva III consumida (varhC)	kvarhC III	1068-1069	1092-1093	10E6-10E7	varh
Energía aparente III consumida (kVAh)	kVAh III	106A-106B	1094-1095	10E8-10E9	kVAh
Energía aparente III consumida (VAh)	kVAh III	106C-106D	1096-1097	10EA-10EB	VAh
Emisiones CO ₂ consumidas	KgCO ₂	106E-106F	1098-1099	10EC-10ED	x10
Coste comsumida	\$	1070-1071	109A-109B	10EE-10EF	x10
Energía activa III generada (kWh)	kWh III	1072-1073	109C-109D	10F0-10F1	kWh
Energía activa III generada (Wh)	kWh III	1074-1075	109E-109F	10F2-10F3	Wh
Energía reactiva inductiva III generada (kvarhL)	kvarhL III	1076-1077	10A0-10A1	10F4-10F5	kvarh
Energía reactiva inductiva III generada (varhL)	kvarhL III	1078-1079	10A2-10A3	10F6-10F7	varh
Energía reactiva capacitiva III generada (kvarhC)	kvarhC III	107A-107B	10A4-10A5	10F8-10F9	kvarh
Energía reactiva capacitiva III generada (varhC)	kvarhC III	107C-107D	10A6-10A7	10FA-10FB	varh
Energía aparente III generada (kVAh)	kVAh III	107E-107F	10A8-10A9	10FC-10FD	kVAh
Energía aparente III generada(VAh)	kVAh III	1080-1081	10AA-10AB	10FE-10EF	VAh
Emisiones CO ₂ generadas	KgCO ₂	1082-1083	10AC-10AD	1100-1101	x10
Coste generada	\$	1084-1085	10AE-10AF	1102-1103	x10
Horas por tarifa	Hours	1086-1087	10B0-10B1	1104-1105	seg

Tabla 27: Mapa 2 de memoria Modbus (Variables de energía).

Circutor ———

Tabla 28: Mapa 1 y Mapa 2 de memoria Modbus (Variables de energía por fase).

Мара 1 у Мара 2						
Parámetro	Símbolo	L1	L2	L3	Unidades	
Energía activa consumida (kWh) T1	kWh	1400-1401	1460-1461	14CO-14C1	kWh	
Energía activa consumida(Wh) T1	kWh	1402-1403	1462-1463	14C2-14C3	Wh	
Energía reactiva inductiva consumida T1 (kvarhL)	kvarhL	1404-1405	1464-1465	14C4-14C5	kvarh	
Energía reactiva inductiva consumida T1 (varhL)	kvarhL	1406-1407	1466-1467	14C6-14C7	varh	
Energía activa generada T1 (kWh)	kWh	1410-1411	1470-1471	14D0-14D1	kWh	
Energía activa generada T1 (Wh)	kWh	1412-1413	1472-1473	14D2-14D3	Wh	
Energía reactiva inductiva generada T1 (kvarhL)	kvarhL	1414-1415	1474-1475	14D4-14D5	kvarh	
Energía reactiva inductiva generada T1 (var- hL)	kvarhL	1416-1417	1476-1477	14D6-14D7	varh	
Energía activa consumida (kWh) T2	kWh	1420-1421	1480-1481	14E0-14E1	kWh	
Energía activa consumida(Wh) T2	kWh	1422-1423	1482-1483	14E2-14E3	Wh	

Мара 1 у Мара 2						
Parámetro	Símbolo	L1	L2	L3	Unidades	
Energía reactiva inductiva consumida T2 (kvarhL)	kvarhL	1424-1425	1484-1485	14E4-14E5	kvarh	
Energía reactiva inductiva consumida T2(varhL)	kvarhL	1426-1427	1486-1487	14E6-14E7	varh	
Energía activa generada T2 (kWh)	kWh	1430-1431	1490-1491	14F0-14F1	kWh	
Energía activa generada T2 (Wh)	kWh	1432-1433	1492-1493	14F2-14F3	Wh	
Energía reactiva inductiva generada T2(kvarhL)	kvarhL	1434-1435	1494-1495	14F4-14F5	kvarh	
Energía reactiva inductiva generada T2 (varhL)	kvarhL	1436-1437	1496-1497	14F6-14F7	varh	
Energía activa consumida (kWh) Total	kWh	1440-1441	14A0-14A1	1500-1501	kWh	
Energía activa consumida(Wh) Total	kWh	1442-1443	14A2-14A3	1502-1503	Wh	
Energía reactiva inductiva consumida Total (kvarhL)	kvarhL	1444-1445	14A4-14A5	1504-1505	kvarh	
Energía reactiva inductiva consumida Total (varhL)	kvarhL	1446-1447	14A6-14A7	1506-1507	varh	
Energía activa generada Total (kWh)	kWh	1450-1451	14B0-14B1	1510-1511	kWh	
Energía activa generada Total (Wh)	kWh	1452-1453	14B2-14B3	1512-1513	Wh	
Energía reactiva inductiva generada Total (kvarhL)	kvarhL	1454-1455	14B4-14B5	1514-1515	kvarh	
Energía reactiva inductiva generada Total (varhL)	kvarhL	1456-1457	14B6-14B7	1516-1517	varh	

Tabla 28 (Continuación): Mapa 1 y Mapa 2 de memoria Modbus (variables de energía por fase).

Circutor

7.3.3. ARMÓNICOS DE TENSIÓN Y CORRIENTE.

Todas las direcciones del mapa Modbus están en Hexadecimal. Para estas variables está implementada la **Función 0x03** y **0x04**.

Tabla 29: Mapa 1 de memoria Modbus (Armónicos de tensión).

Mapa 1					
Parámetro	Tensión L1	Tensión L2	Tensión L3	Unidades	
Arm.Fundamental	2AE-2AF	2CC-2CD	2EA-2EB	V x 10	
2º Armónico	2B0-2B1	2CE-2CF	2EC-2ED	% x 10	
3º Armónico	2B2-2B3	2D0-2D1	2EE-2EF	% x 10	
4º Armónico	2B4-2B5	2D2-2D3	2F0-2F1	% x 10	
5° Armónico	2B6-2B7	2D4-2D5	2F2-2F3	% x 10	
6° Armónico	2B8-2B9	2D6-2D7	2F4-2F5	% x 10	
7º Armónico	2BA-2BB	2D8-2D9	2F6-2F7	% x 10	
8º Armónico	2BC-2BD	2DA-2DB	2F8-2F9	% x 10	
9º Armónico	2BE-2BF	2DC-2DD	2FA-2FB	% x 10	
10º Armónico	2C0-2C1	2DE-2DF	2FC-2FD	% x 10	
11º Armónico	2C2-2C3	2E0-2E1	2FE-2FF	% x 10	
12º Armónico	2C4-2C5	2E2-2E3	300-301	% x 10	
13º Armónico	2C6-2C7	2E4-2E5	302-303	% x 10	
14º Armónico	2C8-2C9	2E6-2E7	304-305	% x 10	
15º Armónico	2CA-2CB	2E8-2E9	306-307	% x 10	

		Mapa 1		
Parámetro	Tensión L1	Tensión L2	Tensión L3	Unidades
16º Armónico	308-309	328-329	348-349	% x 10
17º Armónico	30A-30B	32A-32B	34A-34B	% x 10
18º Armónico	30C-30D	32C-32D	34C-34D	% x 10
19º Armónico	30E-30F	32E-32F	34E-34F	% x 10
20º Armónico	310-311	330-331	350-351	% x 10
21º Armónico	312-313	332-333	352-353	% x 10
22º Armónico	314-315	334-335	354-355	% x 10
23º Armónico	316-317	336-337	356-357	% x 10
24º Armónico	318-319	338-339	358-359	% x 10
25º Armónico	31A-31B	33A-33B	35A-35B	% x 10
26º Armónico	31C-31D	33C-33D	35C-35D	% x 10
27º Armónico	31E-31F	33E-33F	35E-35F	% x 10
28º Armónico	320-321	340-341	360-361	% x 10
29º Armónico	322-323	342-343	362-363	% x 10
30° Armónico	324-325	344-345	364-365	% x 10
31º Armónico	326-327	346-347	366-367	% x 10

Tabla 29 (Continuación): Mapa 1 de memoria Modbus (Armónicos de tensión).

Circutor ———

Tabla 30: Mapa 2 de memoria Modbus (Armónicos de tensión).

Мара 2						
Parámetro	Tensión L1	Tensión L2	Tensión L3	Unidades		
Arm.Fundamental	1A28-1A29	1A48-1A49	1A68-1A69	V x 10		
2º Armónico	1A2A	1A4A	1A6A	% x 10		
3º Armónico	1A2B	1A4B	1A6B	% x 10		
4º Armónico	1A2C	1A4C	1A6C	% x 10		
5º Armónico	1A2D	1A4D	1A6D	% x 10		
6º Armónico	1A2E	1A4E	1A6E	% x 10		
7º Armónico	1A2F	1A4F	1A6F	% x 10		
8º Armónico	1A30	1A50	1A70	% x 10		
9º Armónico	1A31	1A51	1A71	% x 10		
10º Armónico	1A32	1A52	1A72	% x 10		
11º Armónico	1A33	1A53	1A73	% x 10		
12º Armónico	1A34	1A54	1A74	% x 10		
13º Armónico	1A35	1A55	1A75	% x 10		
14º Armónico	1A36	1A56	1A76	% x 10		
15° Armónico	1A37	1A57	1A77	% x 10		
16º Armónico	1A38	1A58	1A78	% x 10		
17º Armónico	1A39	1A59	1A79	% x 10		
18º Armónico	1A3A	1A5A	1A7A	% x 10		
19º Armónico	1A3B	1A5B	1A7B	% x 10		
20° Armónico	1A3C	1A5C	1A7C	% x 10		
21º Armónico	1A3D	1A5D	1A7D	% x 10		
22° Armónico	1A3E	1A5E	1A7E	% x 10		
23º Armónico	1A3F	1A5F	1A7F	% x 10		

Мара 2						
Parámetro	Tensión L1	Tensión L2	Tensión L3	Unidades		
24º Armónico	1A40	1A60	1A80	% x 10		
25º Armónico	1A41	1A61	1A81	% x 10		
26º Armónico	1A42	1A62	1A82	% x 10		
27º Armónico	1A43	1A63	1A83	% x 10		
28º Armónico	1A44	1A64	1A84	% x 10		
29º Armónico	1A45	1A65	1A85	% x 10		
30° Armónico	1A46	1A66	1A86	% x 10		
31º Armónico	1A47	1A67	1A87	% x 10		

Tabla 30 (Continuación): Mapa 2 de memoria Modbus (Armónicos de tensión).

Circutor

Tabla 31: Mapa 1 de memoria Modbus (Armónicos de corriente).

Mapa 1						
Parámetro	Corriente L1	Corriente L2	Corriente L3	Unidades		
Arm.Fundamental	1F4-1F5	212-213	230-231	mA x 10		
2º Armónico	1F6-1F7	214-215	232-233	% x 10		
3º Armónico	1F8-1F9	216-217	234-235	% x 10		
4º Armónico	1FA-1FB	218-219	236-237	% x 10		
5º Armónico	1FC-1FD	21A-21B	238-239	% x 10		
6º Armónico	1FE-1FF	21C-21D	23A-23B	% x 10		
7º Armónico	200-201	21E-21F	23C-23D	% x 10		
8º Armónico	202-203	220-221	23E-23F	% x 10		
9º Armónico	204-205	222-223	240-241	% x 10		
10º Armónico	206-207	224-225	242-243	% x 10		
11º Armónico	208-209	226-227	244-245	% x 10		
12º Armónico	20A-20B	228-229	246-247	% x 10		
13º Armónico	20C-20D	22A-22B	248-249	% x 10		
14º Armónico	20E-20F	22C-22D	24A-24B	% x 10		
15° Armónico	210-211	22E-22F	24C-24D	% x 10		
16º Armónico	24E-24F	26E-26F	28E-28F	% x 10		
17º Armónico	250-251	270-271	290-291	% x 10		
18º Armónico	252-253	272-273	292-293	% x 10		
19º Armónico	254-255	274-275	294-295	% x 10		
20° Armónico	256-257	276-277	296-297	% x 10		
21º Armónico	258-259	278-279	298-299	% x 10		
22º Armónico	25A-25B	27A-27B	29A-29B	% x 10		
23º Armónico	25C-25D	27C-27D	29C-29D	% x 10		
24º Armónico	25E-25F	27E-27F	29E-29F	% x 10		
25° Armónico	260-261	280-281	2A0-2A1	% x 10		
26º Armónico	262-263	282-283	2A2-2A3	% x 10		
27º Armónico	264-265	284-285	2A4-2A5	% x 10		
28º Armónico	266-267	286-287	2A6-2A7	% x 10		
29º Armónico	268-269	288-289	2A8-2A9	% x 10		
30° Armónico	26A-26B	28A-28B	2AA-2AB	% x 10		
31º Armónico	26C-26D	28C-28D	2AC-2AD	% x 10		

Unidades mA x 10 % x 10

lor			
Tab	ıla 32: Mapa 2 de me	emoria Modbus (Armó	ónicos de corriente).
		Мара 2	
Parámetro	Corriente L1	Corriente L2	Corriente L3
Arm.Fundamental	1A88-1A89	1AA8-1AA9	1AC8-1AC9
2º Armónico	1A8A	1AAA	1ACA
3º Armónico	1A8B	1AAB	1ACB
4º Armónico	1A8C	1AAC	1ACC
5º Armónico	1A8D	1AAD	1ACD
6º Armónico	1A8E	1AAE	1ACE
7º Armónico	1A8F	1AAF	1ACF
8º Armónico	1A90	1AB0	1AD0
9º Armónico	1A91	1AB1	1AD1
10º Armónico	1A92	1AB2	1AD2
11º Armónico	1A93	1AB3	1AD3
12º Armónico	1A94	1AB4	1AD4
13º Armónico	1A95	1AB5	1AD5
14º Armónico	1A96	1AB6	1AD6
15° Armónico	1A97	1AB7	1AD7
16º Armónico	1A98	1AB8	1AD8
17º Armónico	1A99	1AB9	1AD9
18º Armónico	1A9A	1ABA	1ADA
19º Armónico	1A9B	1ABB	1ADB
20º Armónico	1A9C	1ABC	1ADC
21º Armónico	1A9D	1ABD	1ADD
22º Armónico	1A9E	1ABE	1ADE
23º Armónico	1A9F	1ABF	1ADF
24° Armónico	1AA0	1AC0	1AE0

7.3.4. BORRADO DE PARÁMETROS

25° Armónico

26° Armónico

27º Armónico

28º Armónico

29° Armónico

30° Armónico

31º Armónico

Todas las direcciones del mapa Modbus están en Hexadecimal. Para estas variables está implementada la **Función 0x05.**

1AA1

1AA2

1AA3

1AA4

1AA5

1AA6

1AA7

Tabla 33: Mapa de memoria	Modbus: Borrado de parámetros.
---------------------------	--------------------------------

1AC1

1AC2

1AC3

1AC4

1AC5

1AC6

1AC7

1AE1

1AE2

1AE3

1AE4

1AE4

1AE6

1AE7

% x 10

Parámetros	Dirección	Margen válido de datos
Borrado de máximos	849	FF00
Borrado de mínimos	84A	FF00
Inicialización de la máxima demanda	852	FF00
Borrado de los contadores de horas (Tarifa 1)	837	FF00
Borrado de los contadores de horas (Tarifa 2)	83A	FF00

Parámetros	Dirección	Margen válido de datos				
Borrado de las energías por fase (L1, L2, L3) y trifásicas	874	FF00				
Borrado de las energías trifásicas	834	FF00				
Borrado de las energías por fase (L1, L2, L3)	873	FF00				
Borrado de las energías por fase (L1)	870	FF00				
Borrado de las energías por fase (L2)	871	FF00				
Borrado de las energías por fase (L3)	872	FF00				
Borrado de todos los parámetros anteriores	898	FF00				

Tabla 33 (Continuación): Mapa de memoria Modbus: Borrado de parámetros.

Circutor

7.3.5. ESTADO DE LA POTENCIA

Todas las direcciones del mapa Modbus están en Hexadecimal. Para esta variable está implementada la **Función 0x04.**

Esta variable indica el cuadrante en el que está trabajando el equipo.

Tabla 34: Mapa d	e memoria	Modbus:	Estado	de la	potencia
	•				

Estado de la potencia		
Variable	Dirección	Valor por defecto
Estado de la potencia	7D1	-

El formato de la variable se muestra en la Tabla 35:

Tabla 35: Forn	nato de la vari	able: Estado d	e la potencia.
----------------	-----------------	----------------	----------------

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	0	0	0	1: Capacitiva	1: Inductiva	1: Generada	1: Consumida

7.3.6. DETECCIÓN DE SENTIDO DE GIRO INCORRECTO

Todas las direcciones del mapa Modbus están en Hexadecimal.

Para esta variable está implementada la Función 0x04.

Esta variable indica si se ha detectado un sentido de giro incorrecto en las tensiones.

labla 36: Mapa de memoria	a Modbus: Detección de sentido de giro incorrecto.
---------------------------	--

Detección de sentido de giro incorrecto					
Variable	Dirección	Valor			
Detección de sentido de giro incorrecto	7D5	0: No se ha detectado ningún fallo 1: Fallo detectado			

7.3.7. NÚMERO DE SERIE DEL EQUIPO

Todas las direcciones del mapa Modbus están en Hexadecimal. Para esta variable está implementada la **Función 0x04.**

Tabla 37: Mapa de memoria Modbus: Nº de serie del equipo.

N° de serie del equipo	
Variable	Dirección
N° de serie	5AA - 5AB - 5AC - 5AD - 5AE - 5AF - 5BO

7.3.8. VARIABLES DE CONFIGURACIÓN DEL EQUIPO

Todas las direcciones del mapa Modbus están en Hexadecimal. Para esta variable está implementada la **Funciónes 0x04** y **0x10**.

La función Modbus del equipo no comprueba si las variables que se graban están dentro de los márgenes correctos, sólo se comprueban al leerlos de la EEPROM, en caso de grabar algún parámetro con un valor incorrecto el equipo se configurará con el valor que tiene por defecto.

La configuración realizada por Modbus no tendrá efecto hasta que se realice un reset del equipo.

7.3.8.1. Relaciones de transformación

Tabla 38: Mapa de memoria Modbus: Relaciones de transformación.

Relaciones de transformación					
Variable de configuración ⁽⁵⁾	Dirección	Margen válido de datos	Valor por defecto		
Primario de tensión	2710 - 2711	1 - 99999	1		
Secundario de tensión	2712	1 - 999	1		
Primario de corriente ⁽⁶⁾	2713	1 - 10000	5		
Secundario de corriente ⁽⁷⁾	2714	0: /1A 1: /5A	1		

⁽⁵⁾ Ratio de tensión x Ratio de corriente \leq 300000.

Ratio de tensión ≤ 1000.

Circutor

⁽⁶⁾ Parámetro configurable en los modelos CVM-E3-MINI-ITF, CVM-E3-MINI-ITF-WiEth, CVM-E3-MINI-MC y CVM-E3-MI-NI-MC-WiEth.

⁽⁷⁾ Parámetro configurable en los modelos CVM-E3-MINI-ITF y CVM-E3-MINI-ITF-WiEth.

Nota: El Ratio es la relación entre el primario y el secundario.

Nota: Los 5 registros tiene que ser escritos o leídos a la vez (en grupo), en caso contrario responderá con un error.

7.3.8.2. Tipo de sensor Flex (Modelos CVM-E3-MINI-FLEX y CVM-E3-MINI-FLEX-WiEth)

Tabla 55.Mapa de memoria Moduda. Tipo de sensor Flex.						
Tipo de sensor Flex						
Variable de configuración	Dirección	Margen válido de datos	Valor por defecto			
Sensor Flex	2756	0: 100 uV/A 1: 76 uV/A	0			

Tabla 39:Mapa de memoria Modbus: Tipo de sensor Flex.

7.3.8.3. Número de cuadrantes

Tabla 40:Mapa de memoria Modbus: Número de cuadrantes.

Número de cuadrantes				
Variable de configuración	Valor por defecto			
Número de cuadrantes	2B64	0: 4 cuadrantes 1: 2 cuadrantes	0	

Circutor

7.3.8.4. Convenios de medida

Tabla 41:Mapa de memoria Modbus: Convenios de medida

Convenios de medida					
Variable de configuración Dirección Margen válido de datos Valor por defec					
Convenios de medida	2886	0: Circutor 1: IEC 2: IEEE	0		

7.3.8.5. Sistema de medida

Tabla 42:Mapa de	memoria	Modbus:	Sistema	de medida.

Sistema de medida					
Variable de configuración Dirección		Margen válido de datos	Valor por defecto		
Sistema de medida	2B5C	 0: 4- 3Ph Red trifásica 4 hilos. 1: 3- 3Ph Red trifásica 3 hilos. 2: 3- A-Di Red trifásica 3 hilos, Aron.⁽⁸⁾ 3: 3- 2Ph Red bifásica 3 hilos. 4: 2- 2Ph Red monofásica de fase a fase 2 hilos. 5: 2- IPh Red monofásica de fase a neutro 2 hilos. 	0		

⁽⁸⁾ Opción no disponible en los modelos CVM-E3-MINI-FLEX y CVM-E3-MINI-FLEX-WiEth.

7.3.8.6. Máxima demanda

Tabla 43: Mapa de memoria Modbus: Máxima demanda.

Máxima demanda				
Variable de configuración	Dirección	Margen válido de datos	Valor por defecto	
Periodo de integración	274C	0: No se realza el cálculo de la Máxima demanda 1 - 60 minutos	0	

7.3.8.7. Backlight, Retro-iluminación del display

Tabla 44: Mapa de memoria Modbus: Backlight.

Backlight			
Variable de configuración Dirección Margen válido de datos d			Valor por defecto
Backlight	2B5E	1 - 999 segundo	300 s

7.3.8.8. Activar la pantalla de visualización de armónicos

Tabla 45: Mapa de memoria Modbus: Visualización de armónicos.

Visualización de armónicos			
Variable de configuración Dirección Margen válido de datos defe			
Visualización de armónicos	2B62	0: No 1: Yes	1

7.3.8.9. Emisiones de CO_2 en consumo y generación.

Tabla 46: Mapa de memoria	a Modbus: Emisiones de CO), en consumo v generación.
ieele ieriepe ee memerie		generation generation

Emisiones de CO ₂			
Variable de configuración ⁽⁹⁾	Dirección	Margen válido de datos	Valor por defecto
Ratio de emisiones de la tarifa 1 en consumo	2724	0 - 1.9999	0
Ratio de emisiones de la tarifa 2 en consumo	2725	0 - 1.9999	0
Ratio de emisiones de la tarifa 1 en generación	2728	0 - 1.9999	0
Ratio de emisiones de la tarifa 2 en generación	2729	0 - 1.9999	0

⁽⁹⁾ Tienen 1 decimal.

Circutor

7.3.8.10. Coste de la energía en consumo y generación.

Tabla 47: Mapa de memoria Modbus: Coste de la energía en consumo y generación.

Coste por kWh			
Variable de configuración ⁽¹⁰⁾	Dirección	Margen válido de datos	Valor por defecto
Coste por kWh de la tarifa 1 en consumo	272C	0 - 1.9999	0
Coste por kWh de la tarifa 2 en consumo	272D	0 - 1.9999	0
Coste por kWh de la tarifa 1 en generación	2730	0 - 1.9999	0
Coste por kWh de la tarifa 2 en generación	2731	0 - 1.9999	0

⁽¹⁰⁾ Tienen 1 decimal.

7.3.8.11. Programación de la salida digital T1

Nota: Los modelos **CVM-E3-MINI-xxx-WiEth** no disponen de Salida Digital, la activación de la alarma solo provoca la activación del LED de **ALARMA / PULSOS ENERGÍA**.

Tabla 48: Mapa de memoria Modbus: Programación de la salida digital T1 (Alarma).

Programación de la salida digital T1 como alarma				
Variable de configuración	Dirección Margen válido de datos		Valor por de- fecto	
Valor máximo	2AF8-2AF9	según variable	0	
Valor mínimo	2AFA-2AFB	según variable	0	
Código de la variable	2AFC	Tabla 20 y Tabla 21	0	
Retardo en la conexión	2AFD	0 - 9999 segundos	0	
Histéresis	2AFE	0 - 99 %	0	
Enclavamiento (latch)	2AFF	0: No 1: Yes	0	
Retardo en la desconexión	2B00	0 - 9999 segundos	0	
Estado de los contactos	2B01	0: Normalmente abierto 1: Normalmente cerrado	0	

Tabla 49: Mapa de memoria Modbus: Programación de la salida digital T1 (Salida de pulsos).

Programación de la salida digital T1 como salida de pulsos				
Variable de configuración	onfiguración Dirección Margen válido de datos			
Kilovatios por pulso	2B20-2B21	0.01 - 999.99 kWh	1.00 kWh	
Código de la variable	2AFC	Tabla 22	0	
Anchura del pulso	2B22	30 - 500 ms	100 ms	

7.3.8.12. Entrada digital (Modelos CVM-E3-MINI-xxx)

Circutor

Variable de configuración	Dirección	Margen válido de datos	Valor por defecto
Modo de funcionamiento	2866	0 : Tarifa 1: Estado lógico	0

También podemos leer el estado de la entrada digital, cuando están en modo lógico:

Para esta variable está implementada la Función 0x04.

Tabla 51: Mapa de memoria Modbus: Estado de la entrada digital (Modo estado lógico).

Estado de la entrada digital		
Variable	Dirección	Valor por defecto
Estado de la entrada digital	4E20	-

El formato de la variable se muestra en la Tabla 52:

Tabla 52: Formato de la variable: Estado de las entradas digitales.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	0	0	0	0	0	0	Entrada 1 0: OFF 1: ON

7.3.8.13. Selección de Tarifa (Modelos CVM-E3-MINI-xxx-WiEth)

Tabla 5	3: Mapa	de	memoria	Modbus:	Configuración	Selección de Tarifa.
---------	---------	----	---------	---------	---------------	----------------------

Variable de configuración	Dirección	Margen válido de datos	Valor por defecto
Selección de tarifa	2866	0 : Tarifa 1 1 : Tarifa 2	0

7.3.8.14. Salida digital (Modelos CVM-E3-MINI-xxx)

Lectura del estado de la salida digital.

Para esta variable está implementada la Función 0x04.

Tabla 54: Mapa de memoria Modbus: Estado de la salida digital

Estado de la salida digital						
Variable	Dirección	Valor por defecto				
Estado de la salida digital	4E21	-				

El formato de la variable se muestra en la Tabla 55:

Tabla 55: Formato de la variable: Estado de las salidas digitales.

В	it 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
	0	0	0	0	0	0	0	Salida 1 0: OFF 1: ON

_

7.3.8.15. Comunicaciones (Modelos CVM-E3-MINI-xxx)

Circutor

Comunicaciones						
Variable de configuración	Dirección	Margen válido de datos	Valor por defecto			
Protocolo	2742	0: Modbus 1: BACnet	0			
Modbus y BACnet: Número de periférico	2743	0 - 255	1			
Modbus: Velocidad de transmisión	2744	0 : 9600 - 1 :19200	1			
Modbus: Paridad	2745	0: Sin paridad 1: Paridad impar 2: Paridad par	0			
Modbus: Bits de datos	2746	0: 8 bits 1: 7 bits	0			
Modbus: Bits de stop	2747	0: 1 bit de stop 1: 2 bits de stop	0			
BACnet: Device ID	2EE0- 2EE1	0- 99999	2			
BAcnet: MAC	2EE2	0 - 127	1			
BAcnet: Velocidad de transmisión	2744	0 : 9600 - 1 :19200	1			

Tabla 56: Mapa de memoria Modbus: Comunicaciones.

7.3.8.16. Configuración del password

Estas variables permiten bloquear o desbloquear el acceso al menú de programación y también permite cambiar el código de password. La única forma de cambiar el código de password es mediante este comando.

El equipo no necesita el password antiguo para grabar el nuevo, se graba el nuevo directamente sin ninguna comprobación.

Tabla 57: Mapa de memoria Modbus: Configuración del password.

Password			
Variable	Dirección	Margen válido de datos	Valor por defecto
Valor del password ⁽¹¹⁾	2B70	0 - 9999	1234
Bloqueo-Desbloqueo	2B71	0 : Desbloqueo 1 : Bloqueo	0

⁽¹¹⁾ El valor del password se lee y escribe en hexadecimal.

7.4.- PROTOCOLO BACnet

BACnet es un protocolo de comunicación para Redes de Control y Automatización de Edificios (Building Automation and Control NETworks). Este protocolo reemplaza las comunicaciones propietarias de cada dispositivo, volviéndolo un conjunto de reglas de comunicación común, que posibilita la integración completa de los sistemas de control y automatización de edificios de diversos fabricantes.

Circutor

El equipo incorpora comunicación **BACNet** MS/TP, siguiendo las especificaciones de la normativa ANSI/ ASHRAE 135 (ISO 16484-5).

Mediante una conexión RS485 el equipo puede conectarse a una red BACnet e incorporar todos los objetos y servicios definidos en el mapa adjunto PICS (Protocol Implementation Conformance Statement). ("**7.4.1.- MAPA PICS**")

La velocidad de defecto es 19200 bps y el MAC es 2 (número de nodo), pudiéndose cambiar mediante la pantalla de configuración, o bien escribiendo las variables BaudRate y MAC_Address. El identificador (Device_ID) se puede cambiar por la pantalla de configuración, mediante la propiedad de escritura sobre la variable o a través de la variable Device_ID.

Otra opción es escribir sobre la propiedad Object_Name dentro del objeto Device:

a) #Baud x – donde x puede ser: 9600, 19200, 38400

b) #MAC x – donde x puede ser: 0 ... 127 c) #ID x – donde x puede ser: 0 ... 99999

Más información sobre el protocolo en www.bacnet.org.

7.4.1.- MAPA PICS

PICS		
Vendor Name:	CIRCU	TOR
Product Name:	CVM-E	3-MINI
Product Model Number:		837
Application Software Version:	1.0	
Firmware Revision:	0.7.1	
BACnet Protocol Revision:	10	

Product Description:

Electrical energy meter

Х

BACnet Standardized Device Profile (Annex L)

BACnet Application Specific Controller (B-ASC)

List all BACnet Interoperability Building supported (see Annex K in BACnet Addendum 135d):

DS-RP-B Read Property DS-WP-B Write Propery DS-RPM-B Read Property Multiple DM-DDB-B Dynamic Device Binding DM-DOB-B Dynamic Object Binding DM-DCC-B Device Communication Control DM-RD-B Reinitialize Device

Which of the following device binding methods does the product support? (check one or more)

х	Recive Who-Is, send I-Am (BIBB DM-DDB-B)
х	Recive Who-Has, send I-Have (BIBB DM-DOB-B)

Circutor ——

Standard Object Types Supported:

Analog Input Object Type

1. Dynamically creatable using BACnet's CreateObject service? No					
2. Dynamically deleatable using BACnet's DeleteObject service?	No				
3. List of optional properties supported:	max_pres_value	min_pres_value			
4. List of all properties that are writable where not otherw is a required by this standard					
5. List of proprietary properties:					
6. List of any property value range restrictions:					

Properly Identifier

Object_Name

max 32 characters

DESCRIPTION		SYMBOL	ID OBJECTS	OBJECT NAME	UNITS
Tensión fase-neutro	Voltage phase to neutral	V 1	AIO	Ph2NU1	V
Corriente	Current	A 1	Al1	Ph1Current	А
Potencia activa	Active power	kW 1	AI2	ActPwrPh1	kW
Potencia reactiva	Reactive power	kvar 1	AI3	ReactPwrPh1	kvar
Factor de potencia	Power factor	PF 1	Al4	PwrFactPh1	PF
Tensión fase-neutro	Voltage phase to neutral	V 2	AI5	Ph2NU2	V
Corriente	Current	A 2	AI6	Ph2Current	А
Potencia activa	Active power	kW 2	AI7	ActPwrPh2	kW
Potencia reactiva	Reactive power	kvar 2	AI8	ReactPwrPh2	kvar
Factor de potencia	Power factor	PF 2	AI9	PwrFactPh2	PF
Tensión fase-neutro	Voltage phase to neutral	V 3	AI10	Ph2NU3	V
Corriente	Current	A 3	AI11	Ph3Current	А
Potencia activa	Active power	kW 3	Al12	ActPwrPh3	kW
Potencia reactiva	Reactive power	kvar 3	AI13	ReactPwrPh3	kvar
Factor de potencia	Power factor	PF 3	Al14	PwrFactPh3	PF
Potencia activa trifásica	Three phase active power	kW III	AI15	ActPw0n3Ph	kW
Potencia inductiva trifásica	Three phase reactive inductive power	kvarL III	Al16	InductPw0n3Ph	kvarL
Potencia capacitiva trifásica	Three phase capacitive inductive power	kvarC III	AI17	CapPwOn3Ph	kvarC
Cos φ trifásico	Three phase cos ϕ	Cos φ III	AI18	Cosphi	Cos φ
Factor de potencia trifásico	Three phase power factor	PFIII	Al19	PwFactOn3Ph	PF
Frecuencia (L2)	Frequency	Hz	AI20	Frequency	Hz
Tensión fase-fase	Voltage phase to phase	V12	AI21	Ph2PhU12	V
Tensión fase-fase	Voltage phase to phase	V23	AI22	Ph2PhU23	V
Tensión fase-fase	Voltage phase to phase	V31	AI23	Ph2PhU31	V
%THD V	%THD V	%THD V1	AI24	THDVal_U1	%THD
%THD V	%THD V	%THD V2	AI25	THDVal_U2	%THD
%THD V	%THD V	%THD V3	AI26	THDVal_U3	%THD
%THD A	%THD A	%THD A1	AI27	THDVal_11	%THD
%THD A	%THD A	%THD A2	AI28	THDVal_12	%THD
%THD A	%THD A	%THD A3	AI29	THDVal_13	%THD
Energía activa	Active energy	kW∙h III	AI30	ActEnergy	kW∙h

DESCRIPTION		SYMBOL	ID OBJECTS	OBJECT NAME	UNITS
Energía reactiva induc- tiva	Reactive inductive energy	kvarL•h III	AI31	InductEnergy	kvarL∙h
Energía reactiva capa- citiva	Reactive capacitive energy	kvarC∙h III	AI32	CapEnergy	kvarC•h
Energía Aparente trifá- sica	Three phase aparent energy	kVA∙h III	AI33	AppEnergy	kVA∙h
Energía activa generada	Three phase generated active energy	kW∙h III (-)	AI34	ActEnergy_exp	kW∙h
Energía inductiva gene- rada	Three phase generated reactive inductive energy	kvarL∙h III (-)	AI35	IndEnergy_exp	kvarL•h
Energía capacitiva ge- nerada	Three phase genera- ted reactive capacitive energy	kvarC∙h III(-)	AI36	CapEnergy_exp	kvarC∙h
Energía aparente gene- rada	Three phase generated aparent energy	kVA∙h III (-)	AI37	AppEnergy_exp	kVA∙h
Máxima demanda kvarL	Maximum demand kvarL	kvarL III	AI38	MaxDemand_ kvarL	kvarL
Potencia aparente L1	Aparent power L1	kVA	AI40	AppPwrPh1	kVA
Potencia aparente L2	Aparent power L2	kVA	AI41	AppPwrPh2	kVA
Potencia aparente L3	Aparent power L3	kVA	AI42	AppPwrPh3	kVA
Potencia aparente trifásica	Three phase aparent power	kVAIII	AI43	AppPw3Ph	kVA
Máxima demanda I1	Maximum demand I1	Md (A1)	AI44	MaxDemand_A1	А
Máxima demanda l2	Maximum demand I2	Md(A2)	AI45	MaxDemand_A2	А
Máxima demanda I3	Maximum demand I3	Md(A3)	AI46	MaxDemand_A3	А
Máxima demanda kvarC	Maximum demand kvarC	kvarC III	AI47	MaxDemand_ kvarC	kvarC
Máxima demanda kW	Maximum demand kW	kW III	AI48	MaxDemand_kW	kW
Máxima demanda kVA	Maximum demand kVA	kVA III	AI49	MaxDemand_ kVA	kVA

Analog Value Object Type

1. Dynamically creatable using BACnet's CreateObject service? No				
2. Dynamically deleatable using BACnet	's DeleteObject service?	No		
3. List of optional properties supported:				
4. List of all properties that are writable	where not otherwise required by this sta	andard		
5. List of propietary properties:				
Property Identifier Property Datatype Meaning				
5. List of object identifiers and their meaning in this device				
Object ID	Object Name	Description		
AV1 MAC_Address MAC				
AV2 BaudRate		BAUD RATE		
AV3	Device_ID	DEVICE ID		

Device Object Type

1. Dynamically creatable using BACnet's CreateObject service?	No	
2. Dynamically deleatable using BACnet's DeleteObject service?	No	
3. List of optional properties supported:	Description, Protocolo_Conformance_Class	
4. List of all properties that are writable where not otherwise required by this standard		

Circutor

Object_Name	
Max_Master	
Max_Info_Frames	
Object_Identifier	
5. List of propietary properties:	
5. List of any property value range restr	ictions
Property Identifier	Restrictions
Object_Name	< 32 bytes
Object_Identifier	Device Type only
Number_Of_APDU_Retries	0-255
APDU_Timeout	0-65535 miliseconds
Vendor_Identifier	0-65535

Data Link Layer Options (check all that supported):

Х	MS/TP master (Clause 9), baud rate(s): 9.6, 19.2k, 38.4kB/s
Character S	iets Supported (check all that apply):
Indicating s	upport for multiple character set does not imply that they can all be supported simultaneously.
Х	ANSI X3.4

8.- CVM-E3-MINI-xxx-WiEth: COMUNICACIONES

Los equipos CVM-E3-MINI-xxx-WiEth disponen de comunicaciones Ethernet, Wi-Fi y Bluetooth®.

La configuración de las comunicaciones se puede realizar a través de la página web de configuración del equipo (*"8.5.- PÁGINA WEB DE CONFIGURACIÓN"*) o a través del display del equipo, ver *"5.5.- PANTA-LLAS DE COMUNICACIONES ETHERNET - Wi-Fi - BLUETOOTH (Modelos CVM-E3-MINI-xxx-WiEth)"*.

El mapa Modbus del apartado *"7.3.- COMANDOS MODBUS"*, también es valido para los equipos CVM-E3-MINI-xxx-WiEth, utilizando el protocolo Modbus TCP.

8.1.- ENTORNO DE USO Y SALUD

Las comunicaciones inalámbricas emiten energía electromagnética de radiofrecuencia como otros dispositivos de radio.

Debido a que las comunicaciones inalámbricas funcionan dentro de las directrices que se encuentran en los estándares y recomendaciones de seguridad de radiofrecuencia, son seguras para el uso por parte de los usuarios.

En algún entorno o situación, la utilización de comunicaciones inalámbricas puede verse restringida por el propietario del edificio o los representantes responsables de la organización. Estas situaciones pueden ser:

✓ Utilización de conexiones inalámbricas a bordo de aviones, en hospitales o cerca de estaciones de servicio, áreas de explosiones, implantes médicos o dispositivos médicos electrónicos implantados en el cuerpo (marcapasos ...).

 \checkmark En cualquier otro entorno donde el riesgo de interferencias con otros dispositivos o servicios se identifica como peligroso.

Si no está seguro sobre la política que se aplica sobre el uso de dispositivos inalámbricos en una organización específica (aeropuerto, hospital...), es aconsejable que solicite autorización para el uso de las comunicaciones inalámbricas.

8.2.- COMUNICACIONES Wi-Fi

Wi-Fi es una de las tecnologías inalámbricas más utilizadas hoy en día, para conectar e intercambiar información entre dispositivos electrónicos sin necesidad de conectarlos físicamente.

Los modelos **CVM-E3-MINI-xxx-WiEth** disponen de comunicaciones Wi-Fi en la banda de 2.4GHz, según los estándares IEEE 802.11b, IEEE 802.11g y IEEE 802.11n.

Nota: Para mantener la dirección IP del equipo y no perder la comunicación Wi-Fi, se recomienda configurar el router para que dé a los equipos CVM-E3-MINI-xxx-WiEth una dirección IP fija referenciada a la dirección MAC del equipo.

8.3.- COMUNICACIONES Bluetooth®

El equipo dispone de comunicaciones inalámbricas Bluetooth®.

La tecnología inalámbrica Bluetooth[®] es una tecnología inalámbrica de corto alcance que permite la comunicación inalámbrica de datos entre equipos, en un rango de aproximadamente 10 metros.

8.4.- APLICACIÓN MÓVIL

Circutor

La aplicación móvil **MyConfig**, que permite configurar las comunicaciones Wi-Fi y Ethernet a través de Bluetooth[®], se puede descargar gratuitamente en Google Play (Android).

≞ 🖨 🖂	🖇 💐 🗟 🖉 42% 🖨 1	0:18	
← Configuración	₽ () ()	3	
	-0081	È⊠∟ *¥? ← Bluetooth	रु,⊪ 42% ∎ 10:18 ट
Activado	Activad		
SSID	CIRCUTOR-WIF	DISPOSITIVOS ENLAZADOS	
Contraseña	•••••• «	E3-Mini-0081	8
Estado de la conexión	Conect	E3-Mini-0082	\otimes
Dirección IP	10.0.123		
Dirección MAC	4C:11:AE:D7:4;	NUEVOS DISPOSITIVOS ENCONTRAD	OS
		No se han encontrado nuevos d	ispositivos

Figura 34: Aplicación móvil MyConfig.

8.5.- PÁGINA WEB DE CONFIGURACIÓN

Para acceder a la página web de configuración interna, se debe introducir en el buscador web la dirección IP del equipo.

Circutor

La dirección IP del equipo se puede consultar en las pantallas "5.5.2. COMUNICACIONES ETHERNET : DI-RECCIÓN IP", para una conexión a través de Ethernet, o "5.5.6. COMUNICACIONES WI-FI : DIRECCIÓN IP", para una conexión Wi-Fi.

En la página web del equipo se puede:

✓ En la pantalla **Device Info**, visualizar la información del equipo y la configuración de las comunicaciones Ethernet, Wi-Fi y Bluetooth (**Figura 35**).

Circutor	CVM-E3-MINI-WiEth	
Device Info	Device Info	
Communications		
Firmwara	Device Variables	
TIIIWale	Serial Number	21851543050151
	Manufacturing Date	Year: 2018 Week: 51
	Model	CVM-E3-MINI-ITF-WiEth
	Communications Firmware Version	1.0.2
	Measure Firmware Version	1.17
	Ethernet Communications	
	DHCP	Enabled
	Ethernet Link Status	Connected
	Ethernet IP	10.0.120.32
	Ethernet Netmask	255.255.255.0
	Ethernet Gateway	10.0.120.254
	Ethernet MAC	24:6F:28:D4:28:AF
	Wi-Fi Communications	
	Wi-Fi	Enabled
	Wi-Fi Status	
	Wi-Fi Name (SSID)	Pruebas
	Wi-Fi IP	10.0.123.15
	Wi-Fi Netmask	255.255.255.0
	Wi-Fi Gateway	10.0.123.254
	WI-FI MAC	24:6F:28:D4:28:AC
	Bluetooth	
	Bluetooth Name	E3-Mini-0151

Figura 35: Página Web: Device Info.

 ✓ En la pantalla Communications, modificar la configuración de la comunicaciones Ethernet y Wi-Fi (Figura 36).

Circutor -

Circutor	CVM-E3-MINI-WiEth	
Device Info	Communications	
Communications		
Firmware	Ethernet Communications	
FIIIIware	DHCP	
	Ethernet IP	10.0.120.32
	Ethernet Netmask	255.255.255.0
	Ethernet Gateway	10.0.120.254
		🕒 Save
	WI-FI Communications	
	Wi-Fi	
	Wi-Fi Name (SSID)	Pruebas
	Wi-Fi Password	Ø
		🖺 Save

Figura 36: Página Web: Communications.

✓ En la pantalla **Firmware**, actualizar el firmware de comunicaciones (**Figura 37**).

Circutor	CVM-E3-MINI-WiEth	
Device Info	Firmware	
Communications	Upgrade Communications Firmware Version	
Firmware	Current Communications Firmware Version	1.0.2

🛃 Upgrade

Figura 37: Página Web: Firmware.

9.- CARACTERÍSTICAS TÉCNICAS

Alimentación en CA (12)				
CVM-E3-MINI-ITF - CVM-E3-MINI-MC - CVM-E3-MINI-FLEX				
Tensión nominal	207 253 V ~ 100 240 V ~ ± 10%			
Frecuencia	50 60 Hz	50 60 Hz		
Consumo	4 VA	4.9 6.1 VA		
Categoría de la Instalación	CAT III 300 V	CAT III 300 V		
CVM-E3-MINI-ITF-WiEth - CVM-E3-MINI-MC-WiEth - CVM-E3-MINI-FLEX-WiEth				
Tensión nominal 100 240 V ~ ± 10%				
Frecuencia	50 60 Hz			
Consumo	4 5.2 VA			
Categoría de la Instalación	CAT III 300 V			
Alimentación en CC (12)				
CVM-E3-MINI-ITF - CVM-E3-MINI-MC - CVM-E3-MINI-FLEX				
Tensión nominal 100 240 V ± 10%				
Consumo	3 3.5 W			
Categoría de la Instalación	CAT III 300 V			
CVM-E3-MINI-ITF-WiEth - CVM-E3-MINI-MC-WiEth - CVM-E3-MINI-FLEX-WiEth				
Tensión nominal	100 240 V === ± 10%			
Consumo	2.5 2.8 W			
Categoría de la Instalación	CAT III 300 V			

⁽¹²⁾ Según modelos.

Circuito de medida de tensión			
Tensión nominal (Un) 300V F-N, 520V F-F			
Margen de medida de tensión	5120% Un		
Margen de medida de frecuencia	45 65 Hz		
Impedancia de entrada	400 kΩ		
Tensión mínima de medida (Vstart)	11 V f-n		
Categoría de la Instalación CAT III 300 V			

Circuito de medida de corriente				
CVM-E3-MINI-FLEX-xxx	Medida mediante sensores Rogwski.			
	CVM-E3-MINI-ITF-xxx	/5A o/1 A		
Corriente nominal (In)	CVM-E3-MINI-MC-xxx	/0.250 A		
	CVM-E3-MINI-FLEX-xxx	2000 A		
	CVM-E3-MINI-ITF-xxx	2 120% In		
Margen de medida de corriente	CVM-E3-MINI-MC-xxx	2 100% In		
	CVM-E3-MINI-FLEX-xxx	2 120% In		
	CVM-E3-MINI-ITF-xxx	0.2% In		
Corriente mínima de medida (Istart)	CVM-E3-MINI-MC-xxx	0.2% In		
	CVM-E3-MINI-FLEX-xxx	5 A		
Consumo	0.9 VA			
Categoría de la Instalación	CAT III 300 V			

Circutor _____

Precisión de las medidas				
Medida de tensión	CVM-E3-MINI-ITF-xxx	0.5% ± 1 dígito		
	CVM-E3-MINI-MC-xxx			
	CVM-E3-MINI-FLEX-xxx ⁽¹³⁾			
Medida de corriente	CVM-E3-MINI-ITF-xxx	0.5% ± 1 dígito		
	CVM-E3-MINI-MC-xxx	0.5% ± 1 dígito (I ≤ 100% In)		
	CVM-E3-MINI-FLEX-xxx ⁽¹³⁾	0.5% ± 1 dígito		
Medida de frecuencia	CVM-E3-MINI-ITF-xxx	0.5%		
	CVM-E3-MINI-MC-xxx			
	CVM-E3-MINI-FLEX-xxx ⁽¹³⁾			
Medida de potencia activa	CVM-E3-MINI-ITF-xxx	0.5% ± 2 dígitos		
	CVM-E3-MINI-MC-xxx	1% ± 2 dígitos (l > 2%, l ≤ 100% ln)		
	CVM-E3-MINI-FLEX-xxx ⁽¹³⁾	2% ± 2 dígitos		
Medida de potencia reactiva	CVM-E3-MINI-ITF-xxx	1% ± 2 dígitos		
	CVM-E3-MINI-MC-xxx	2% ± 2 dígitos (I ≤ 100% In)		
	CVM-E3-MINI-FLEX-xxx ⁽¹³⁾	2% ± 2 dígitos (a 50 Hz) 3% ± 2 dígitos (a 60 Hz)		
Medida de potencia aparente	CVM-E3-MINI-ITF-xxx	0.5% ± 2 dígitos		
	CVM-E3-MINI-MC-xxx	1% ± 2 dígitos (l > 2%, l ≤ 100% ln)		
	CVM-E3-MINI-FLEX-xxx ⁽¹³⁾	2% ± 2 dígitos		
Medida de energía activa	CVM-E3-MINI-ITF-xxx	l < 0.1In	l > 0.1In	
		Clase 1	Clase 0.5	
	CVM-E3-MINI-MC-xxx	Clase 1 (I > 2%, I ≤ 100% In)		
	CVM-E3-MINI-FLEX-xxx ⁽¹³⁾	Clase 2		
Medida de energía reactiva	CVM-E3-MINI-ITF-xxx	Clase 2		
	CVM-E3-MINI-MC-xxx	Clase 2 (I > 2%, I ≤ 100% In)		
	CVM-E3-MINI-FLEX-xxx ⁽¹³⁾	Clase 3		

⁽¹³⁾ Precisión de las medidas con sensores.

Salida de pulsos (CVM-E3-MINI-ITF, CVM-E3-MINI-MC, CVM-E3-MINI-FLEX)					
Cantidad			1		
Тіро		NPN salida			
Tensión máxima		24V			
Corriente máxima		50 mA			
Frecuencia máxima		16 impulsos / seg,			
Anchura de pulso		30 ms a 500 ms (Programable)			
Entrada digital (CVM-E3-MINI-ITF, CVM-E3-MINI-MC, CVM-E3-MINI-FLEX)					
Cantidad		1			
Тіро		NPN Contacto libre de potencial			
Aislamiento		optoaislado			
Comunicaciones (CVM-E3-MINI-ITF, CVM-E3-MINI-MC, CVM-E3-MINI-FLEX)					
		Modbus RTU	BACnet		
Bus de campo	RS-485		MS/TP		
Protocolo de comunicación	Modbus RTU		BACnet		
Velocidad	9600 - 19200 bps		9600 - 19200 bps		
Bits de stop		1-2	1		
Paridad		sin - par - impar	sin		
CVM-E3-MINI	Circutor				
--	--	--	--	--	--
	Comunication of Etherent				
Comunicaciones Ethernet (CVM-E3-MINI-ITF-WiEth, CVM-E3-MINI-MC-WiEth, CVM-E3-MINI-FLEX-WiEth)					
Тіро	Ethernet 10BaseT - 100BaseTX autodetectable				
Conector	RJ45				
Protocolo	Modbus TCP - Web server - MQTT ⁽¹⁴⁾				
Modo de conexión a Red	DHCP ON/OFF (ON por defecto)				
⁽¹⁴⁾ Consultar.					
(CVM-E3-MINI-	Comunicaciones Wi-Fi ITF-WiEth, CVM-E3-MINI-MC-WiEth, CVM-E3-MINI-FLEX-WiEth)				
Banda	2.4 GHz (Rango: 2.4 2.5 GHz)				
Estándares	IEEE 802.11 b / g, IEEE 802.11 n (hasta 150 Mbps)				
Potencia de salida máxima	IEEE 802.11 b : 20 dBm IEEE 802.11 n : 14 dBm				
Comunicaciones Bluetooth® (CVM-E3-MINI-ITF-WiEth, CVM-E3-MINI-MC-WiEth, CVM-E3-MINI-FLEX-WiEth)					
Protocolos	Bluetooth [®] v4.2 BR/EDR and BLE specification				

	NZIF receiver with –97 dBm sensitivity
Radio	Class-1, class-2 and class-3 transmitter
	Adaptive Frequency Hopping (AFH)

Interface con usuario			
Display	LCD Custom COG de alto contraste		
Teclado	3 teclas		
LED	2 LED		

Características ambientales				
Tomographico do krabaja	CVM-E3-MINI-xxx	-5°C +45°C		
	CVM-E3-MINI-xxx-WiEth	-10°C +50°C		
	CVM-E3-MINI-xxx	-10°C +50°C		
remperatora de annacenamiento	CVM-E3-MINI-xxx-WiEth	-30°C +80°C		
Humedad relativa (sin condensación)	5 95%			
Altitud máxima	2000 m			
Grado de protección	IP30, Frontal :IP40			

Características mecánicas					
Dimensiones (Figura 38)	52.5 x 118 x 74 mm				
	CVM-E3-MINI-xxx	300 g.			
Paga	CVM-E3-MINI-ITF-WiEth	275 g.			
	CVM-E3-MINI-MC-WiEth	255 g.			
	CVM-E3-MINI-FLEX-WiEth	255 g.			
Envolvente	Plástico VO autoextinguible				
Fijación (15)	Carril DIN				

⁽¹⁵⁾ La distancia mínima recomendada entre carriles, para la instalación de los equipos CVM-E3-MINI, es de 150 mm.

Normas	
Requisitos de seguridad de equipos eléctricos de medida, control y uso en labo- ratorio. Parte 1: Requisitos generales.	EN 61010-1:2010
Requisitos de seguridad de equipos eléctricos de medida, control y uso en labora- torio. Parte 2-030: Requisitos particulares para circuitos de ensayo y de medida.	EN 61010-2-030: 2010

(Continuación) Normas	
Material eléctrico para medida, control y uso en laboratorio. Requisitos de com- patibilidad electromagnética (CEM). Parte 1: Requisitos generales. (Ratificada por AENOR en marzo de 2013.)	EN 61326-1:2013
Seguridad eléctrica en redes de distribución de baja tensión de hasta 1 000 V en c.a. y 1 500 V en c.c. Equipos para ensayo, medida o vigilancia de las medidas de protección. Parte 12: Dispositivos de medición y vigilancia del funcionamiento.	EN 61557-12:2008
Test for flammability of plastic materials for parts in devices and appliances	UL 94

Circutor -

Figura 38: Dimensiones del CVM-E3-MINI.

10.- MANTENIMIENTO Y SERVICIO TÉCNICO

En caso de cualquier duda de funcionamiento o avería del equipo, póngase en contacto con el Servicio de Asistencia Técnica de **CIRCUTOR, SA**

Circutor

Servicio de Asistencia Técnica

Vial Sant Jordi, s/n, 08232 - Viladecavalls (Barcelona) Tel: 902 449 459 (España) / +34 937 452 919 (fuera de España) email: sat@circutor.com

11.- GARANTÍA

CIRCUTOR garantiza sus productos contra todo defecto de fabricación por un período de dos años a partir de la entrega de los equipos.

CIRCUTOR reparará o reemplazará, todo producto defectuoso de fabricación devuelto durante el período de garantía.

Circutor -

12.- CERTIFICADO CE

		CIRCUTOR, SA – Vial Sant Jordi, s/n 08232 Viladecavalls (Barcelona) Spain (+34) 937 452 900 – info@circutor.com
DECLARACIÓN UE DE CONFORMIDAD La presente declaración de conformidad se expide bajo la exclusiva responsabilidad de CIRCUTOR con dirección en Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcelona) España	EU DECLARATION OF CONFORMITY This declaration of conformity is issued under the sole responsibility of CIRCUTOR with registered address at Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcelona) Spain	DÉCLARATION UE DE CONFORMITÉ La présente déclaration de conformité est délivrée sous la responsabilité exclusive de CIRCUTOR dont l'adresse postale est Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcelone) Espagne
Producto:	Product:	Produit:
Analizadores de redes trifásicos, carril DIN	Power analyzer, three-phase DIN rail	analyseurs de réseaux triphasés, rail DIN
Serie:	Series:	Série:
CVM-E3-MINI	CVM-E3-MINI	CVM-E3-MINI
Marca:	Brand:	Marque:
CIRCUTOR	CIRCUTOR	CIRCUTOR
EL objeto de la declaración es conforme con la legislación de armonización pertinente en la UE, siempre que sea instalado, mantenido y usado en la aplicación para la que ha sido fabricado, de acuerdo con las normas de instalación aplicables y las instrucciones del fabricante	The object of the declaration is in conformity with the relevant EU harmonisation legislation, provided that it is installed, maintained and used for the application for which it was manufactured, in accordance with the applicable installation standards and the manufacturer's instructions	L'objet de la déclaration est conforme à la législation d'harmonisation pertinente dans l'UE, à condition d'avoir été installé, entretenu et utilisé dans l'application pour laquelle il a été fabriqué, conformément aux normes d'installation applicables et aux instructions du fabricant
2014/35/UE: Low Voltage Directive 2014/30/UE:Electromagnetic Compatibility Directive 2011/65/UE: RoHS2 Directive	2014/35/UE: Low Voltage Directive 2014/30/UE: Electromagnetic Compatibility Directive 2011/65/UE: RoHS2 Directive	2014/35/UE: Low Voltage Directive 2014/30/UE: Electromagnetic Compatibility Directive 2011/65/UE: RoHS2 Directive
Está en conformidad con la(s) siguiente(s) norma(s) u otro(s) documento(s) normativos(s):	It is in conformity with the following standard(s) or other regulatory document(s):	ll est en conformité avec la(les) suivante (s) norme(s) ou autre(s) document(s) réglementaire (s):
IEC61010-1:2010+AMD1:2016CSVEd30 IEC 61326-1:2012 Ed 2.0 IEC 61557-12:2007 Ed 1.0	IEC 61010-1:2010+AMD1:2016 CVEd 3.0 IEC 61326-1:2012 Ed 2.0 IEC 61557-12:2007 Ed 1.0	IEC 61010-1:2010+AMD1:2016 GVEd 3.0 IEC 61326-1:2012 Ed 2.0 IEC 61557-12:2007 Ed 1.0
Año de marcado "CE": 2018	Year of CE mark: 2018	Année de marquage « CE »: 2018 CIRCUTOR S.A.
	Viladecavalls (Spain), 08/02 General Manager: Ferra	/2018 /2018 n Gil Torné n Gil Torné

KONFORMITÄTSERKLÁRUNG UE

Manual de Instrucciones

Verantwortung von CIRCUTOR mit der Anschrift, Vial Sant Jorliegende Konformitätserklärung wird unter alleiniger 08232 Viladecavalls (Barcelona) Spanien, Jordi, s/n ausgestellt

		_
		10.2
		-
		_
		•
		-
		_
		-
		_
		-
		_
		_
		- 0
		- 4
		_
		-
		_
		- 7
		•••
		_
		_
		i e
		Ξ
		Ŧ
		Ŧ
		141
		411
		ict1
		ictu
		ictu
		aictu
		I aictu
		l aictu
		-l aistu
		-laictu
		-laistu
		n-l aictu
		n-laistu
		n-laictu
		un-laistu
		an-laistu
		an-laistu
		an-laistu
		can-laictu
		can-laictu
		scan-laictu
		acon-loictu
		acon-loictu
		acon-loictu
		usen-leictu
		hacen-leictu
		hacen-leictu
		hacan-laictu
		hacen-leictu
		nhasen-leistu
		nhasen-leistu
		inhasen-l eistu
		inhasen-l eistu
		inhacen-l eictu
		einhasen-Leistu
		einhacen-l eictu
		reinhasen-Leistu
		reinhacen-l eistu
		rreinhasen-Leistu
		Ireinhasen-Leistu
		Dreinhasen-Leist
		Dreinhasen-Leistu

Produkt:

Serie:	
CVM-E3-MINI	

Marke:

CIRCUTOR

entsprechend gemäß den geltenden Der Gegenstand der Konformitätserklärung ist konform mit der geltenden Gesetzgebung zur Harmonisierung der EU, sofern die nstallation, Wartung undVerwendung der Anwendung seinem nstallationsstandards und der Vorgaben des Herstellers erfolgt. 2014/35/UE: Low Voltage Directive 2014/30/UE: Electromagnetic Compatibility Directive Verwendungszweck

2011/65/UE: RoHS2 Directive

Es besteht Konformität mit der/den folgenden sonstigem/sonstiger oder Regelwerk/Regelwerken Norm/Normen

IEC 61326-1:2012 Ed 2.0 IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0 IEC 61557-12:2007 Ed 1.0

Jahr der CE-Kennzeichnung:

2018

Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcelona) Espanha A presente declaração de conformidade é expedida sob exclusiva responsabilidade da CIRCUTOR com morada em DECLARAÇÃO DA UE DE CONFORMIDADE

La presente dichiarazione di conformità viene rilasciata sotto

DICHIARAZIONE DI CONFORMITÀ UE

E

la responsabilità esclusiva di CIRCUTOR, con sede in

Producto:

Analisadores de redes trifásicos, Calha DIN

Marca:

0

CIRCUTOR

mantido e utilizado na aplicação para a qual foi fabricado, de acordo com as normas de instalação aplicáveis e as instruções do objeto da declaração está conforme a legislação de harmonização pertinente na UE, sempre que seja instalado, fabricante.

2014/30/UE: Electromagnetic Compatibility Directive 2014/35/UE: Low Voltage Directive 2011/65/UE: RoHS2 Directive Está em conformidade com a(s) seguinte(s) norma(s) ou outro(s) documento(s) normativo(s): IEC 61326-1:2012 Ed 2.0 IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0 IEC 61557-12:2007 Ed 1.0

Ano de marcação "CE"::

2018

Viladecavalls (Spain), 08/02/2018

08232 Viladecavalls (Barcelona) Spain CIRCUTOR, SA - Vial Sant Jordi, s/n (+34) 937 452 900 - info@circutor.com Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcellona) Spagna Analizzatori di reti trifase, binario DIN CVM-E3-MINI prodotto: Serie:

MARCHIO:

CIRCUTOR

normativa di armonizzazione dell'Unione Europea, a condizione dell'applicazione per cui è stato prodotto, secondo le norme di L'oggetto della dichiarazione è conforme alla pertinente che venga installato, mantenuto e utilizzato nell'ambito installazione applicabili e le istruzioni del produttore 2014/30/UE: Electromagnetic Compatibility Directive

2014/35/UE: Low Voltage Directive

2011/65/UE: RoHS2 Directive

 $\dot{\mathrm{E}}$ conforme alle seguenti normative o altri documenti normativi:

IEC 61326-1:2012 Ed 2.0 IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0

CIRCUTOR, SJA IEC 61557-12:2007 Ed 1.0

2018 Anno di marcatura "CE":

General Manager: Ferran Gil Torné

Val Sant Jord OR222 VILLOE CALMULS (Barrenona) Span Tal (+34) 37 745 23 07

PL) DEKLARACIA ZGODNOŚCI UE

Niniejsza deklaracja zgodności zostaje wydana na wylączną odpowiedzialność firmy CIRCUTOR z siedzibą pod adresem: Viał

odpowiedzialność firmy CIRCUTOR z siedzibą pod adresem: Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcelona) Hiszpania

produk: Trójfazowe analizatory sieci, szyna DIN

Seria:

7		
-		
2		
m		
Ш.		
÷		
2		
< _		
2		
0		
	and	nin innin

marka:

CIRCUTOR

Przedmiot deklaracji jest zgodny z odnośnymi wymaganiami prawodawstwa harmonizacyjnego w Unii Europejskiej pod warunkiem, że będzie instalowany, konserwowany i użytkowany zgodnie z przeznaczeniem, dla którego został wyprodukowany, zgodnie z mającymi zastosowanie normami dotyczącymi instalacji oraz instrukcjami producenta

2014/35/UE: Low Voltage Directive 2014/30/UE: Electromagnetic Compatibility Directive 2011/65/UE: RoHS2 Directive

Jest zgodny z następującą(ymi) normą(ami) lub innym(i) dokumentem(ami) normatywnym(i): IEC60101-12010+MD1:2016 CSV Ed3.0 IEC 61326-1:2012 Ed 2.0 IEC 61557-12:2007 Ed 1.0

Rok oznakowania "CE":

2018

CIRCUTOR, SA – Vial Sant Jordi, s/n 08232 Viladecavalls (Barcelona) Spain (+34) 937 452 900 – info@circutor.com

Circutor

Viladecavalls (Spain), 08/02/2018 General Manager: Ferran Gil Torné

ANEXO A.- MENÚS DE CONFIGURACIÓN

Programación de la alarma

Comunicaciones RS-485

(Modelos CVM-E3-MINI-xxx)

CIRCUTOR, SA Vial Sant Jordi, s/n 08232 - Viladecavalls (Barcelona) Tel: (+34) 93 745 29 00 - Fax: (+34) 93 745 29 14 www.circutor.es central@circutor.com